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Abstract

Wavelet transform and wavelet bases [11, 16] were originally conceived as a powerful
tool for signal and image processing. More recently, wavelet analysis has been applied
to the numerical solution of partial di�erential equations arising in various areas of
engineering and physics. In particular, with wavelets based methods one can realize
an e�ective multiscale analysis of functions and operators [6]. Within this framework
it is possible to build suitable preconditioners for a given problem as well as consider
new fast and higher order adaptive algorithms by using wavelet bases [9].
This kind of methods has been studied both from the theoretical and the computa-
tional point of view. As to applications to steady state problems, a wavelet-Galerkin
approach was considered in [5], collocation-wavelet methods were introduced in [2],
the boundary element framework was studied in [20], preconditioning in [7], and fast
operator compression in [10]. For time dependent problems, noteworthy contributions
include [1, 3, 8, 4, 15, 17].
This work follows other papers regarding the application of wavelet analysis to di�eren-
tial systems arising in structural mechanics [18, 19]. In particular, we will consider the
numerical approximation of elastoplastic problems. We will adopt a mixed formulation
and analyze the associated mixed variational inequality. There is now a large litera-
ture on the numerical approximation of variational inequalities considered by di�erent
authors using \conventional numerical methods", see for example the works [12, 14].
The aim of this contribution is to consider adaptive wavelet discretizations of mixed
variational problems in form of variational inequalities [13].
By considering a two-�eld functional wherein displacements and plastic strains are inde-
pendently approximated by wavelets with compact support, we can establish adaptive
algorithms that are well suited to capture the localized behavior of the plastic 
ow.
One-dimensional truss structures as well as plane{stress two-dimensional test cases are
numerically studied. Finally, some possible developments are sketched.
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