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Abstract

Wavelet transform and wavelet bases [11, 16] were originally conceived as a powerful
tool for signal and image processing. More recently, wavelet analysis has been applied
to the numerical solution of partial differential equations arising in various areas of
engineering and physics. In particular, with wavelets based methods one can realize
an effective multiscale analysis of functions and operators [6]. Within this framework
it is possible to build suitable preconditioners for a given problem as well as consider
new fast and higher order adaptive algorithms by using wavelet bases [9].

This kind of methods has been studied both from the theoretical and the computa-
tional point of view. As to applications to steady state problems, a wavelet-Galerkin
approach was considered in [5], collocation-wavelet methods were introduced in [2],
the boundary element framework was studied in [20], preconditioning in [7], and fast
operator compression in [10]. For time dependent problems, noteworthy contributions
include [1, 3, 8, 4, 15, 17].

This work follows other papers regarding the application of wavelet analysis to differen-
tial systems arising in structural mechanics [18, 19]. In particular, we will consider the
numerical approximation of elastoplastic problems. We will adopt a mixed formulation
and analyze the associated mixed variational inequality. There is now a large litera-
ture on the numerical approximation of variational inequalities considered by different
authors using “conventional numerical methods”, see for example the works [12, 14].
The aim of this contribution is to consider adaptive wavelet discretizations of mixed
variational problems in form of variational inequalities [13].

By considering a two-field functional wherein displacements and plastic strains are inde-
pendently approximated by wavelets with compact support, we can establish adaptive
algorithms that are well suited to capture the localized behavior of the plastic flow.
One-dimensional truss structures as well as plane-stress two-dimensional test cases are
numerically studied. Finally, some possible developments are sketched.
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