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1 Introduction

The simulation of mechanical and mechatronic systems in industrial applications is frequently
based on mechanical multibody system (MBS) models that describe the real physical system
by a �nite number of (rigid or elastic) bodies being connected by massless junctions (joints,
springs, . . . ). Typical applications include vehicle system dynamics and robotics.

Based on the principles of classical mechanics the MBS model equations

M(q)�q(t)� f(t; q; _q; �) +GT (t; q)� = 0 ;
g(t; q) = 0

(1)

are generated by multibody formalisms (see e. g. [6]). In (1) the motion of the MBS is described
by nq position coordinates q(t) that have to satisfy n� holonomic constraints g(t; q) = 0 . These
constraints result from kinematically closed loops in the MBS and from the coupling of substruc-
tures that have been modelled independently of each other. Constraint forces �GT (t; q)� with
G(t; q) := gq(t; q) and n� Lagrangian multipliers � guarantee that the constraints are always
satis�ed. All remaining force terms in the MBS are collected in f(t; q; _q; �), such that f may de-
pend on � if the model includes friction forces that depend on the constraint forces �GT (t; q)�.
The symmetric mass matrix M(q) is positive de�nite on kerG(t; q).

Eqs. (1) may be considered as simpli�ed prototype of model equations in practical applica-
tions that contain e. g. typically additional di�erential and algebraic equations de�ning internal
state variables in force elements and coordinates of contact points. Throughout the paper we
assume that the matrix 

M(q) �(t; q; _q; �)
G(t; q) 0

!
with �(t; q; _q; �) := �f�(t; q; _q; �) +GT (t; q) (2)

is non-singular such that (1) forms a di�erential-algebraic equation (DAE) of index 3 (see e. g.
[4, pp. 463�]). Before discretization the index has to be reduced to guarantee a stable numerical
integration. Substituting the original constraints g(t; q) = 0 by their time derivative

0 =
d

dt
g(t; q(t)) = gt(t; q) + gq(t; q) _q(t) = gt(t; q) +G(t; q) _q(t) (3)

we get an analytically equivalent index-2 system. Standard techniques like projection steps
([5]) or the Gear{Gupta{Leimkuhler formulation ([4, p. 465]) are used to guarantee that the
numerical solution does nevertheless satisfy the constraints g = 0 in (1).

Standard DAE software like the BDF code DASSL (see e. g. [4, Sec. VII.3]) may be applied
to the index-2 system to solve initial value problems for (1) numerically. In practice, however,
the "`general purpose"' simulation software has to be adapted to the special strucutre of (1) to
reduce the large cpu-time in simulations for MBS with many degrees of freedom and in parameter
variations that require the solution of hundreds of initial value problems for (1).
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Over the last 10 years an extensive part of the literature on numerical solution of DAEs
has been devoted to this speci�c application. In the present paper we focus on the application
of these results in the industrial multibody system simulation package SIMPACK and on the
combination of multibody formalisms and numerical methods. The bene�ts of the new and
modi�ed numerical algorithms are illustrated with examples from vehicle industry.

Substantial savings of cpu-time may be achieved e. g. using partitioned integrators for non-
sti� MBS (see Sec. 2), exploiting the structure of Jacobian matrices in implicit integrators
(see Sec. 3), and using integration software for ordinary di�erential equations (ODEs) for MBS
without holonomic constraints (see Sec. 4).

2 Partitioned integrators for constrained mechanical systems

Standard DAE software is based on sti� integrators from ODE theory (BDF, implicit Runge{
Kutta methods). Alternatively, partitioned integrators for non-sti� MBS have been developed.
These integration methods are based on non-sti� ODE methods (explicit Runge{Kutta and
extrapolation methods, Adams methods), they make use of the special structure of the model
equations (1) (see [4, Sec. VII.6] for a comprehensive overview and [1] for a summary of some
actual results).

The prototype of these integration methods is the half-explicit Euler method for the index-2
formulation of (1):

qn+1 � qn

h
� vn = 0 ;

M(qn)
vn+1 � vn

h
� f(tn; qn; vn; �n) +GT (tn; qn)�n = 0 ;

gt(tn+1; qn+1) +G(tn+1; qn+1)vn+1 = 0 :

(4)

Here we have rewritten (1) as �rst order system with velocities v := _q , the holonomic constraints
have been substituted by (3).

For given qn and vn the half-explicit Euler method de�nes qn+1 in an explicit way and
vn+1, �n as solution of a system of nonlinear equations with a Jacobian of the form (2) where
(t; q; _q; �) in the upper blocks are substituted by (tn; qn; vn; �) while (t; q) in the lower left block
are substituted by (tn+1; qn+1).

Various ways to evaluate the Jacobian and to solve the systems of nonlinear equations ef-
�ciently have been discussed by Lubich et al. ([5]) who implemented most of these algorithms
in their successful extrapolation code MEXX. We point out the problems in solving the sys-
tems of nonlinear equations for model equations being generated by the multibody formalisms
in SIMPACK and compare algorithms to evaluate the matrices M , �, and G in the Jacobian
(see (2)).

3 The evaluation of Jacobian matrices in the dynamical simu-

lation of sti� MBS

As in ODE theory the model equations (1) for sti� MBS have to be solved by sti� integrators
(BDF, implicit Runge{Kutta methods). The most simple method of this type is the �rst order
backward Euler method that is again applied to the index-2 formulation of the model equations:

qn+1 � qn

h
� vn+1 = 0 ;

M(qn+1)
vn+1 � vn

h
� f(tn+1; qn+1; vn+1; �n+1) +GT (tn+1; qn+1)�n+1 = 0 ;

gt(tn+1; qn+1) +G(tn+1; qn+1)vn+1 = 0

(5)
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that de�nes (qn+1; vn+1; �n+1) as solution of a system of nonlinear equations. The Jacobian J

of this system has the typical structure

J(q; v; �;h) :=
1

h
� blockdiag ( I ; M(q) ; 0 ) + ~J(q; v; �)

with a matrix ~J being independent of h. The evaluation of the Jacobian J causes often more
than 80% of the overall numerical e�ort in practical applications.

We discuss the implementation and the bene�ts of 2 modi�cations in the evaluation of the
Jacobian that have been proposed by Doc. Dr. C. F�uhrer (Lund University, Sweden):

1. All standard implicit integrators from ODE and DAE theory are implemented such that
the approximation of J is kept �xed over several time steps. After a change of h cpu-time
may be saved if additionally an old approximation of ~J is used in the re-evaluation of J .

2. In larger models the sparsity structure of J may be exploited to compute a �nite di�erence
approximation of J 2 IRN�N with substantially less than N + 1 function calls ([2]).

4 Numerical aspects in the comparison of multibody formalisms

There is a great variety of multibody formalisms to generate the MBS model equations. SIM-
PACK o�ers the Residual formalism ([3]) resulting in (1) and an explicit MBS formalism that
gives model equations

�q(t) = M�1(q)(f(t; q; _q; �)�GT (t; q)�) ;
0 = g(t; q) :

(6)

Obviously, the explicit formalism has advantages for MBS without constraints since any ODE
solver may be applied to (6) in this case. On the other hand the residual

M(q)�q � f(t; q; _q; �) +GT (t; q)�

in (1) may be evaluated by a factor 2 . . . 4 faster than the right hand side in (6).
Surprisingly, the explicit formalism was superior to the Residual formalism in various appli-

cations even for MBS with constraints (that enforce the use of a DAE solver in both cases). We
explain this phenomenon by a convergence analysis of Newton's method applied to the corrector
equations in sti� ODE and DAE integrators.
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