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Introduction

The nonlinear least squares problem may be used to solve a large class of problems ranging from
nonlinear system of equations to parameter estimation and surface �tting. In recent years much
interest has been focused on problems where the solution is either not unique or may be very sensitive
to perturbations in input data.

One class of ill-posed problems is inverse problems appearing in many di�erent engineering applica-
tions. An inverse problem consists of a direct problem and some unknown function(s) or parameter(s).
In many cases the solution does not depend continuously on the unknown quantities. A typical ill-posed
problem is when the task is to determine these unkowns given measured, inexact, data.

Given such an ill-posed problem it is a good idea to reformulate the original problem into a
well-posed problem that gives a solution that is neither too large nor giving a large residual. For
our applications we have chosen to investigate the use of Tikhonov regularization and Gauss-Newton
methods and we will further disuss this approach.

Tikhonov Regularization and Gauss-Newton Methods

Consider the nonlinear least squares problem

min
x

1

2
kf(x)k22 = F (x); (1)

where f : Rn ! R
m is at least twice continuously di�erentiable and k � k2 is the 2-norm.

The Tikhonov regularization for the nonlinear least squares problem consists of solving the problem

min
x

1

2
kf(x)k22 +

1

2
�kx� xck

2
2; (2)

where � > 0 is the regularization parameter and xc is some center ideally chosen as the critical point
of interest but often just as zero. Choosing � large enough we can always get a well posed problem
since the Hessian is positive de�nite. This makes Tikhonov Regularization applicable regardless of the
type of ill-posedness. However, the actual implementation should take into account if the problem is
exactly rank de�cient at the wanted critical point. The di�culty is to choose � as small as possible
and at the same time getting the solution and the residual of reasonable size.

The general idea is to apply a Gauss-Newton method on (2) with a suitably chosen sequence of
regularization parameters f�kg. This is in many cases a delicate business since there is always the
trade o� between e�ciency, size of the approximation kxkk, and size of the residual kf(xk)k. The
approach taken here is to use the L-curve to determine the regularization parameter. In the case the
Gauss-Newton method has slow convergence a specially designed Quasi-Newton method is used also
on the Tikhonov problem.

1



The L-Curve

We have the following de�nition of the L-curve.

De�nition 0.1. Let x(�) solve problem (2), i.e.,

x(�) = arg
n
min
x

t(x) + �y(x)
o
; � � 0;

where t(x) = kf(x)k22=2 and y(x) = kx� xck
2
2=2. The L-curve is the curve (t(x(�)); y(x(�))).

A typical L-curve for the special case of nonlinear least squares is shown in Figure 1.
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Figur 1: L-curve.

The corner of the L-curve may be used to �nd a reasonable regularization parameter. In the non-
linear case there may be several such corners but they are all found by minimizing t(x(�))y(x(�)).
This fact together with the property that any approximate solution lies above the L-curve makes the
L-curve very useful.

Determination of Conductivity

A common problem in applications is the determination of the conductivity a(x) in the di�erential
equation

�(aux)x = f
u(0) = u0; u(1) = u1

(3)

from measurements of u in ]0; 1[. This is an ill-posed problem since

a(x) =
1

ux(x)

�
a(0)ux(0)�

Z x

0

f(s) ds

�

and attaining a(x) requires the di�erentiation of u which is an ill-posed problem in the presence of
inexact data of u.

The implementation of a Gauss-Newton method requires the calculation of u = F (a) and the
Jacobian, i.e., the di�erential equation (3) has to be solved numerically. This is performed with a

linear spline ansatz
Pn+1

j=0 uj�j(x) for u and the same type of ansatz
Pm+1

j=0 pj�j(x) for a.
In an implmentation of the Gauss-Newton method for this problem one may either have a �nite

dimensional approach or an in�nite dimensional formulation of the method. In the �nite dimensional
case one explicitly calculates the Jacobian in discrete space and use "standard" optimization techniques
on the regularized problem. The model algorithm looks something like this.

0. Discretisize the problem.
Find initial values of the solution, the regularization parameter, and the center.
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1. Do a convergence test.
2. Determine the Jacobian (and second derivatives).
2. Iterate with the Gauss-Newton method on the regularized problem.
3. Update the L-curve (and a-curve) and choose the regularization parameter.
4. Go to 1.

The use of the L-curve (and a-curve) may be more or less sophisticated and automatized but for
e�eciency we have chosen to use a convex spline approximation.

Another approach is to keep the in�nite dimensional problem intact as long as possible and use a
variational formulation of the form

m+1X
j=1

[�k < �i; �j >H1
+ < F 0�i; F

0�j >L2
] pj (4)

= � < F � y; F 0�i >L2
� < ak � a0; �i >H1

:

The Frechet derivative F 0 at ak is attained by solving another di�erential equation.
We will report on computational experiments for both the �nite and in�nite approach.

Determination of Moisture Content in Paper

A model for the moister content in a 
at arc of paper is the system of partial di�erential equations

@wp
@t

=
@

@x
(Dp

@wp
@x

)�Np(kwp � wf )

@wf
@t

= D
@

@x
(Df

@wp
@x

) +Nf (kwp � wf )

where wp; wf is the water content in the pores and �bres respectively of the paper. It is of interest to
determine the conductivity parameters Df ; Dp from measurements in order to �nd a suitable model.
This is a typical inverse problem generally ill-posed in the same way as the conductivity problem stat-
ed earlier. However, the approach using a regularized problem with Gauss-Newton is still applicable
and only the actual discretization di�ers.

Modelling a Continuous Digester

A really di�cult problem is to determine a good model of a continuous digester. Most models are of
the form

@u

@t
+D

@u

@z
= f(u)

where z is the spatial variable along the digester, u is a vector of state variables such as temperature
and concentrations, and f(u) is a nonlinear vector function.

We are currently investigating the use of Collocation and Gauss-Newton methods to determine
di�erent model parameters of the digester from measurements. The parameter estimation problem is
most probably ill-posed but this is yet to be seen.

Arti�cial Neural Networks

Our �nal example is the determination of weights in a feedforward neural network. The data is both
simulated and from standard test examples. This problem is a highly nonlinear and overparameteri-
sized least squares problem with many local minima.

Since this is, in general, a very large problem there is a need for iterative methods when using the
Gauss-Newton method.
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