
1

Controlled Random Search Parallel Algorithm for Global Optimization with Distributed

Processes on Multivendor CPUs

Salvatore Rinaudoy, Francessco Moschellay, and Marcello A. Anilez
y SGS-THOMSON Microelectronis, Stradale Primo Sole 50, 95121 Catania (Italy)

zDipartimento di Matematica, Viale Andrea Doria, 95125 Catania (Italy)

Abstract|This work presents the implementation
of the Controlled Random Search (CRS) [1], [2] al-
gorithm for global optimization within a parallel
processing environment consisting of a cluster of
multivendor workstations. This allows us to extract
and optimize parameters or calibrate a general sim-
ulator, without needing the analytical form of the
implemented model.

I. Introduction

I
N many areas of research and design simulators are a
crucial tool for determining the e�ect of parameter vari-

ations on the output of a given system. The reliability of
a simulator depends on the accuracy of the implemented
models (e.g. physical or otherwise) and, in particular, the
model parameters. Generally, the method used to extract
parameters from an event, is based on the Least Squares
Method, i.e. in minimizing the l2 norm of the di�erence
between the output and the measured (or required) value.
Many commercially available simulation tools in the mi-
croelectronics industry are endowed with optimization pro-
grams, usually based on Least Squares Methods coupled
with a numerical solver for minimizing, such as the nor-
mal equations or gradient methods. These optimization
codes are strictly linked to the whole simulation package
and cannot be easily adapted to the various requirements
of an industrial environment. For instance, in some indus-
trial applications, one would like to have a global optimizer,
which, being computationally costly, is usually not available
in the commercial package. Howewer the greater computa-
tional cost of global optimization could be tolerable in an
industrial context if e�cient use is made of the computing
power of a given design unit (e.g. by an appropriate use
of a cluster of multivendors workstations). Another exam-
ple of great interest is that of optimizing a cost function
which is computed by using several simulation codes which
are not integrated in a single software package and have
been provided by di�erent software vendors. In this arti-
cle we present a global numerical optimizator implemented
in a software package, named exemplar, based on the CRS
method [1], [2] suitably modi�ed by us in order to obtain
better performance. This method has been implemented in
a parallel version by utilizing a given cluster of multivendor
workstations, already used in the design center (therefore
no further HW and SW investment has been necessary).

II. CRS Method

Given a function of n variables (in our case, the residual

function R(~P )), an initial search domain V , is de�ned by

specifying limits to each variable. A predetermined num-
ber N of trial points are chosen at random over V . The
function is evaluated at each trial and the position and cor-
responding value stored in an array A. After building the
initial array A, at each iteration a new trial point is se-
lected, the function is evaluated in ~P (fP ) and if its value
is lower than the maximum one (fM ) stored in A, this last

one is replaced by ~P and its function value by fP . As the
algorithm proceeds, the current set of N stored points tend
to cluster around a minima. The CRS procedure is very
simple, as it does not need either an initial guess or knowl-
edge of derivatives.

III. CRS on a parallel processing environment

Since this procedure chooses the next trial point starting
from a random search, each iteration does not depend on
the previous one. So if we have M available CPU we can
choose M trial points and evaluate their function values
concurrently. The algorithm used for parallel processing
could be described in the following steps:

� Step 1
ChooseM points at random over V, with M the num-
ber of available CPU, and concurrently compute the
function value at each point.

� Step 2
As soon as any CPU ends the function evaluation store
the result in A.

� Step 3
If A is not full (in the sense that the required N points
have not been computed yet), another trial point is
chosen over V and start to compute the function value
on the same CPU which has just �nished to evaluate
the function value in the previous point and go to step
2.

� Step 4
Find in A the worst point ~M with function value fM
and the best point ~L with function value fL.

� Step 5
If the stop criterion (user de�ned) is satis�ed STOP.

� Step 6
Choose randomly n + 1 distinct points, making our
random simplex.

� Step 7
Compute the next trial point ~P using the simplex al-
gorithm by Nelder and Mead [3].

� Step 8
If there is an idle CPU, start to compute the function
on this CPU and go to step 6.



2

� Step 9
Wait for a CPU to end the function evaluation. If the
function value in ~P is less than fM , then the worst
point ~M and fM are replaced by ~P and its function
value.

� Step 10
Go to step 4.

A. Implementation on Multivendor CPUs

In order to distribute the computations over a network
of workstations, the CRS was designed not by using a par-
allel compiler, but by using a RPC multi-server network
[4]. When it is requested to evaluate a function, the opti-
mizer (the client) asynchronously asks a server to run the
simulation. The client process does not wait. The server re-
quests are sent out with a high-level callrpc(). So, the client
needs to register an RPC deamon, running a service itself
to catch the replies returned by the servers. To verify the
e�ciency of the algorithm on distributed CPUs, the same
optimization, of which we know the results, was made using
up to 10 CPUs on a problem with 8 free parameters. The
example deals with a 1-D process simulation with ssuprem3
[5] for the formation of a bipolar structure (�gure 1). The
free parameters are related to process formation as implant
dose, energy and so on. The CPUs were very di�erent and

SSUPREM3

Bipolar Poly Emitter Device: Active Region

0 1 2 3 4 5 6

11

12

13

14

15

16

17

18

19

20

21

 depth [um]

do
pin

g p
ro

file

Boron (/cm3)

Arsenic (/cm3)

Antimony (/cm3)

Net Doping (/cm3)

Fig. 1. Bipolar Poly Emitter Device: Active Region

with di�erent loads. We used Sun Sparc10, Sun Sparc20,
ULTRASparc, IBM Risc6000 and HP 9000/712 worksta-
tions. The �nal results of the algorithm are summarized
in �gure 2 and �gure 3. We remark that the de�nition we
used of speed-up is not the theoretical one. In fact our
workstations have di�erent performance and the speed-up
we have used is the ratio to the fastest single WS (in an
heterogeneus environment this amounts to a lower bound
on the theoretical speed-up). Besides, due to the random
aspect of the CRS algorithm, the number of iterations at
each test is very di�erent (see �gure 2). So, all the algo-
rithm indicators (e.g. the Cost de�ned as the product of
the number of CPU's and the algorithm time, Speed-Up,
E�cency de�ned as the ratio between the Speed-Up and
the number of CPU's) was computed per iteration (�gure
3).

Fig. 2. Cost, Iterations, time per iterations and total time
per CPU

Fig. 3. Speedup, E�ciency and Speedup � E�ciency of
the Optimization

IV. Conclusion

In this report a new algorithm was described for global
optimization. Even if the new procedure could be slower
than those for local optimization, it is well suited for par-
allel processing so it was implemented to run parallelly on
multivendor CPU's. The parallel process was managed by
a system RPC multi-server network.

References

[1] W.L. Price, Global Optimization by Controlled Random

Search Journal of Optimization Theory and Application,
vol. 40, N. 3, July 1983

[2] W.L. Price, Global Optimization Algorithms for a CAD

Workstation Journal of Optimization Theory and Appli-
cation, vol. 55, N. 1, October 1987

[3] J.A. Nelder and R. Mead, A simplex method for function

minimization Computer Journal, vol. 7 pp. 308 (1965)
[4] John Bloomer. Power Programming with RPC O'Reilly &

Associates, Inc., (1992)
[5] SSUPREM3 User's Manual 1D Process Simulation Software

SILVACO International Inc. (1995)


