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1 Finite-di�erence scheme

In this report we investigate numerical methods for solving problems which
arise in mathematical modelling of nonwowens used for making diapers.
We consider numerical methods for solving a 3D elliptic-parabolic equation,
which is parabolic in the region 
p and it becomes elliptic in the region of
saturation 
E: In the parabolic region the equation is of nonlinear degenerate
parabolic type and it can lead to a nonlinear advection-dominated di�usion
equation, at least in some parts of 
p [1,2]. Firstly we change the de�nition
of some coe�cients in such a way, that the new equation is parabolic in the
whole region 
 = 
p [ 
E: Then we approximate this generalized problem
with the following stability { correction scheme
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where s de�nes the number of the elliptic (or outer) iterations
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Here Q and K are given nonlinear functions, @�xi and @xi denote the standard
�nite-di�erence approximations of derivatives. Equations (1) are de�ned on
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the di�erence mesh 
h = f(x1i; x2j; x3k); 0 < i < N1; 0 < j < n2; 0 < k <

N3g: Boundary conditions are speci�ed on @
h: The Newton method is used
for solving (1) and it de�nes inner (or nonlinear) iterations.

We summarize the main properties of the algorithm (1):

P1 Each splitting step (1) constitutes O(N2) tridiagonal nonlinear systems.
At the boundary layer points the two tridiagonal equations are replaced
by the following two equations

Cj�1Uj�1 � Bj�1Uj = Fj�1; (3)

�PjUj�2 � AjUj�1 + CUj � BUj+1 = Fj: (4)

P2 A di�erent number of Newton's iterations is needed in di�erent parts of

h:

P3 The solution of (1) has a �nite speed of propagation of disturbances to
undisturbed region due to the degenerate nonlinear parabolic equation.

2 Parallel Numerical Algorithm

We consider a parallel version of (1) scheme. Our main goal is to investigate
algorithms targeted for parallel computers with distributed memory or for
clusters of workstations. For such computers the most important character-
istics are the ratio of computation to communication times and the latency
(or start up) time.

Several approaches are possible for the decomposition of 
h: We propose to
use the decomposition of the computational domain into 1D slabs and com-
putations on each slab are handled by di�erent processes. The x1 direction
is used for this decomposition.

We compare 1D decomposition with 3D decomposition (or block decomposi-
tion). The �rst implication is that the communication start-up time is three
times larger in the 3D decomposition case. Next we consider the load balanc-
ing of computations. The SC algorithm (1) has a non-uniformly distributed
computational requirements. Firstly, more iterates are performed during the
�rst splitting step in comparison with the second and third splitting steps.
Secondly, the number of iterates is not the same for di�erent grid layers.
Again 1D decomposition enables us to obtain a uniform workload distri-
bution among all p processors. The computational domain 
h has moving
boundaries in time. Hence a data redistubution must be implemented at

2



some speci�c time moments in order to get a better load balancing. 1D de-
composition is also more convient if a load balancing of computations must
be obtained on non-homogeneous clusters of workstations.

In the case of 1D decomposition the second and the third splitting steps
(1) constitute O(N2) tridiagonal systems distributed over p processors. The
entire matrix of any tridiagonal system is stored in the same processor and
no data transfer is needed.

Now we consider the parallel implementation of the �rst splitting step of SC
scheme. We use a modi�cation of Wang's subtracting Gaussian elimination
algorithm (see [3]).

The standard formula must be changed for equations (3) { (4) at the inner
boundary layer points. In the �rst phase the kth processor performs a forward
factorization sweep in order to eliminate the sub-diagonal elements

Ui = iUik + �iUi+1 + �i i = ik + 1; : : : ; ik+1:

Then it follows from (3) that j = 0: Equation (4) is modi�ed before the
forward elimination step

�Pjj�2Uik � A0

jUj�1 + CjUj � BjUj+1 = F 0

j;

where
A0

j = Aj + Pj�j�2; F 0

j = Fj + Pj�j�2:

The total amount of computations of the parallel Gaussian elimination algo-
rithm is increased twofold in comparison with the serial factorization algo-
rithm. But this drawback is not important since the factorization in the �rst
splitting step takes less then 2% of the whole computation time.
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