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The Navier-Stokes equations for the ow of a viscous and incompressible uid in a
porous channel, with constant and uniform injection or suction of uid through the walls,
admit a similarity solution [1]. The problem is thus reduced to a fourth order di�erential
equation with boundary conditions at the channel walls. The equation depends on one
parameter, the Reynolds number R, de�ned in terms of the channel half width, and the
velocity of the uid at the walls.

The inuence of a temperature dependent viscosity when the channel walls are at
di�erent temperatures is analised, neglecting thermal dissipation e�ects. This problem
admits a similarity solution also, leading to a system of two coupled di�erential equations
for a variable related to the velocity and for the temperature. There are three boundary
conditions at each wall. The problem now depends on two parameters such as R and the
P�eclet number, P , and on the functional dependence of viscosity on temperature.

As mentioned above, the similarity solution for the time-independent problem without
temperature e�ects was studied by Berman [1] for small values of R in 1953, and has been
considered by many authors. Succesive papers (see, e.g., Refs. 2{7) proved the existence
of symmetric solutions for all values of R. In fact, for the suction case there are three
symmetric solutions above a certain critical value of R. The existence of asymmetric
similarity solutions for the suction case with constant viscosity has also been established
in Ref. 8, where an analysis of the stability of the various solutions is given.

Basic equations. The x cooordinate is taken along the channel and the y coordinate
perpendicular to the channel walls. The velocity, temperature and pressure are written
as

u(x; y; t) = x
@f(y; t)

@y
x̂� f(y; t)ŷ ; (1)

T (x; y; t) = �(y; t) ; (2)

p(x; y; t) = �(y; t) + A(t)x2=2 : (3)

For the dimensionless variables the units of length and velocity are the channel half width,
and injection or suction velocity at the walls, respectively. Temperature is measured with
respect to the value at one wall, in units of the temperature di�erence between walls. All
other scalings of variables are obvious. Under these assumptions, the following system of
equations for the unknowns f(y; t) and �(y; t) holds,

R(ff 000
� f 0f 00) + (�(�)f 00)00 = R

@f 00

@t
; (4)

Pf�0 + �00 = P
@�

@t
; (5)
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where ' � @=@y. The boundary conditions are: f(�1; t) = 1, f(1; t) = �1, f 0(�1; t) = 0,
f 0(1; t) = 0, �(�1; t) = 0, �(1; t) = 1. After solving this system, the pressure �eld is
obtained using the relations

�0(y; t) = �(f 2=2)0
� (�f 0)0=R +

@f

@t
; (6)

A(t) = ff 00
� f 02 + (�f 00)0=R�

@f 0

@t
: (7)

Numerical methods. The system ??{?? was solved with an algoritm based on spectral
methods, where the unknowns are expanded in a basis of Tchebyschev polynomials and
the spatial derivatives are evaluated using the recurrence properties of the coe�cients in
transform space. The time evolution was implemented with a fourth order Runge-Kutta
algorithm.

The stationary case was solved entirely in the transform space. The boundary condi-
tions were enforced using a spectral tau method.[9]

Accuracy of the algoritms was tested by comparing with known results of the temper-
ature independent case.

Stationary solutions. An exponential dependence with temperature was selected for
the viscosity: �(T ) = exp(�T ). The limit  ! 0 represents the temperature indepen-
dent case. Taking the P�eclet number P = 1 and small values for  the e�ect of the
temperature gradient on the ow is analised. For each value of R, the solutions are de-
scribed in terms the value of f 00(�1), which is proportional to the viscous stress on one
wall. The bifurcation diagram for the  = 0 case is characterised by the presence of a
`pitchfork' bifurcation. At this value of R the symmetric solution becomes unstable and
two asymmetric stable solutions appear.[8] As  increases, the unfolding of the pitchfork
is observed.

Approximate analytic expressions for the behaviour of f 00(�1) as a function of R in
the neighbourhood of the bifurcation point have been derived, for di�erent values of .
These results are in good agreement with those obtained from the numerical solutions.

Stability analysis. An analysis of the temporal stability of the stationary solutions
f0, �0 was performed taking small perturbations espressed by f = f0 + fs exp(st) and
� = �0 + �s exp(st). The following eigenvalue problem is obtained

R (f0f
000

s
+ f 000

0
fs � f 0

0
f 00

s
� f 00

0
f 0

s
) + (�0f

000

s
+ _�0f

00

0
�s)

00 = Rsf 00

s
; (8)

P (f0�
0

s
+ �0

0
fs) + �00

s
= Ps�s ; (9)

where the functions �0(y) and _�0(y) denote �(�0(y)) and d�=d�(� = �0(y)), respectively.
Of the three solutions that exist for values of R above the bifurcation, one solution is

unstable and the other two are stable in a certain range of r, losing stability at a Hopf
bifurcation. The critical value of R where stability is lost takes place at di�erent values
of R for each branch and depends on . It decreases with increasing . For example,
for  = 0:3 the critical values for each branch are R = 9:989 and R = 12:428. When
 = 0 both critical values coincide and are equal to 12.963. The stability analysis shows
that the R�  plane can be divided into four regions, each one characterised by the type
(stationary or periodic) and number of stable solutions that exist there.
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Periodic solutions. For values of R above a critical value, there exist periodic solu-
tions. These solutions have been obtained using the time dependent numerical integration
scheme mentioned above. For  = 0:3 and R = 10 the period obtained is 7.37. The cor-
responding value obtained from the eigenvalue equations ??{?? is given by 2�/Im(s) =
7.33. Similar calculations for  = 1 and R = 5:45 give 6.30 for the numerical integration,
also in good agreement with the result 2�/Im(s) = 6.23 from equations ??{??.

A detailed analysis of the results and graphics will be presented.
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