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Abstract

Dispersed phase systems are rather common and important in in-
dustrial applications. In some cases they still deserve considerable the-
oretical attention since the practical realization of the relevant tech-
nology is only partially ful�lled due to the di�culty to predict the
asymptotic behavior of these dispersions. We mention just one indus-
trial application which, being still challenging despite its economical
importance, has been focusing the attention of petroleum engineers
for a long time. Some o�-shore crude oil reservoirs su�er from ma-
rine water �ltration through the oor of the sea, so that the extracted
primary product is a dispersion of oil in water. In some cases gases
may also be present as a third component. If the o�-shore extraction
platform is su�ciently close to the coast, it would be less expensive
and more e�cient to pipeline the product directly to a treatment plant
on the coast rather than to ship it by tankers. In this connection it
is well known that a dispersion of oil in water is less viscous, and,
therefore, more easily pumpable, than crude oil alone. The main di�-
culty is to maintain the initial dispersion. The original one is usually
\optimized"by a jet-pump which realizes the required size distribution
of droplets. However dispersions are not naturally stable. The ques-
tion is if and how long this dispersion will not start to break up into
separated phases. Indeed once separation begins, oil, being lighter,



tends to migrate towards the top of the pipeline leaving the original
dispersion below it. It may also happen that this separation process
shows up through more than a single free boundary. Depending on
the extension of the pipeline internal boundary wet by the oil phase,
the viscosity of the bulk uid may grow signi�cantly up to the impos-
sibility to continue pumping.

As a �rst step to get some insight within this problem, we propose
a model for the dynamics of breakage and coalescence of droplets. This
model is not completely new (see [?]); however our approach is rather
di�erent. Once such a dynamics is fully understood, the subsequent
problem will be a free-boundary problem in which the mechanism of
phase separation is controlled by the underlying dynamics of droplets
collision.

For simplicity we consider only the spatially homogeneous case.
The initial value problem for the droplet size distribution function
f(v; t) (for unit volume of dispersion) is
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f(v; 0) = fo(v)

(1)

where v stays for the droplet volume, fo is given and P is a symmetric
function of (v; v0) proportional to

(v1=3 + (v0)1=3)2f(v; t)f(v0; t) (2)

The proportionality factor� is a known function of the physical state
of the whole system which should measure the \e�cency"of coales-
cence. Indeed not all collisions result in coalescence, and therefore we
may expect � to depend on (v; v0) as well on temperature and local
value of the shear stress. Therefore the whole problem requires the
coupling of (??) with the Navier-Stokes and energy equations. Equa-
tion (??) is quite naturally suggested by the Boltzmann equation for
gas dynamics.

The whole problem appears to be rather complex. Here we present
some preliminary results for the the simpler case in which collisions
are not driven by shearing motion, the temperature is uniform, and �
is a constant. The following consistency results are easily proved:



(i)
d
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0
f dv < 0 (the number of droplets in the dispersion

decays with time),

(ii)
d

dt
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0
vf dv = 0 (conservation of total droplets volume),

(iii) f(v; t) � 0 for all v � 0 and t � 0.

We also can prove that (??) has one and only one solution which
turns out to be global in time. As a consequence we obtain the fol-
lowing results concerning the asymptotic behavior of f :

(iv) If (ev; et) = 0 is the locus � of maxima of f , then (@f=@t)j� < 0.
This means, in particular, that supv2(0;vmax) f � supv2(0;vmax) fo
for all t � 0 and that limt!1 f(v; t) = 0

The investigation of droplet dynamics under shearing condition
is actually under investigation. A careful analysis is needed as far
as the coalescence e�cency is concerned. Indeed we assumed, for
simplicity, that this parameter is a constant. It is evident that to fully
characterize the dynamics one must consider some parameter as a
characteristic collision time and this in turn has to depend on shearing
situation, density and viscosity of the dispersed and continuous phase.
Moreover droplets which are in an agglomerated state may coalesce or
not, depending on several factors: for example we expect coalescence
if the thin �lm of continuous phase separating two colliding droplets
has drained su�ciently to allow collapse of the phase boundary. On
the other hand, local eddies may impart su�cient kinetic energy to
the droplets to prevent coalescence when this energy is greater of the
energy of adhesion of the droplet pair. We also expect that there is
some minimum drop size above which turbulent velocity uctuations
may prevent coalescence of agglomerated drops. Finally this minimum
should actually depend on shear, density, viscosity and, possibly, on
geometry.
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