A porous particle in a shear flow.
The effective viscosity of a dilute suspension
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A porous particle is a conventional model of a porous catalyst, polymeric
coil, cotton ball, etc. In some practical applications, it is important to predict
or treat the behavior of this sort of particles in a stream. An analysis of the
effective properties of a suspension of such particles is of importance, especially
in the context of models of continuum mechanics.

A number of questions naturally arise. For example, does the model of rigid
particles agree sufficiently well with available experimental data or should we
consider the particles deformable? Does the permeability significantly influences
the behavior of the particles and the effective viscosity of a suspension of such
particles as compared with the case of impermeable particles? To what extent
the flow rate through the particle can vary in shear or extensional flow patterns?
And so on.

To answer these questions, we study a porous spherical particle of radius a
placed in a 3D shear flow, provided that the Reynolds number is small. The
flow outside the particle is governed by the stationary Stokes equation and the
flow inside the particle obeys Darcy’s law:
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Here V; = 8/0z; (i = 1,2,3); p™, v] and p~, v] are the pressure and the
fluid velocity components outside and inside the particle, respectively; z; are
the Cartesian coordinates with origin at the sphere center; & is the permeability
of the particle; and p is the fluid viscosity. Summation is assumed over repeated
indices. By v; the effective velocity is meant, that is, the actual fluid velocity
in the porous medium times the porosity.
The incompressibility condition for the fluid has the form

Vivi =0, Vu; =0.
Far away from the particle, we have unperturbed shear flow:
r — 00, vj — €T (eij = eji, €y =0).
At the particle surface, the normal velocity component is assumed to be con-

tinuous and so is the normal stress:

+

r=a, v;n;=uv;n

r=a, [6;p" — u(Vivy + Vo )ling = p-,



where n; = x;/r is the ith component of the outward unit normal to the particle
surface (r = /z;z; ).

For the tangential fluid velocity at the particle surface, there are three rea-
sonable alternatives: (a) the Beavers—Joseph—Saffman boundary condition [?, 7],
or, which is the same, the condition of Newtonian friction; (b) the continuity
boundary condition, and (c) the no-slip condition (impermeable particle):

(a) r=a, MWknVi(v] — v;-'njni) = (v - v;-'njni) = (v — v nyni),

(b) r=a, vf - v;fnjni =v;, —v
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where ) is a dimensionless parameter [?, ?] that depends on physical properties
of the porous medium and the geometry of the surface.
Note that case (b) correspond to A =0, and case (c) corresponds to k = 0.
The 3D problem stated was solved in a closed form. For the three cases
(a), (b), and (c), we calculated the surface stresses and performed a comparative
analysis. In the spherical coordinates, the normal (o,,) and tangential (¢,g, ory)
stresses were found to have the form

Opy = (I)(T)G)l (0790)7 Org = ‘II(T)G)?(e:(p)a Orp = ‘II(T)®3(6790)'

The table below shows some results for ®(a) and ¥(a) in the three cases:

| VE/a | @, o, | ®. | U, U, | 0.
0.1

1 . 1.127 1 0943 | 1 || 0.607 | 0.943 | 1
10| 0.1 1444 1 0943 | 1 | 0.029 | 0.943 | 1
1 0.01 || 1.028 | 0.999 | 1 | 0951|0999 | 1
10| 0.01 || 1.213 | 0999 | 1 | 0.642 | 0999 | 1

The flow rate through a single particle is evaluated in cases (a) and (b). It
was established that the flow rate divided by the second invariant of the ten-
sor e;; is practically invariable with respect to e;; (the variation is less than 5%).

Based on the explicit solution for the 3D shear flow about a single particle,
the effective viscosity of a dilute suspension of such particles is estimated in
the spirit of the Einstein theory [?, ?]. The effective viscosity was found to be
smaller compared with the classical Einstein result. In some cases, the decrease
can be significant. For example, for A = 1 and \/E/a = 0.1, the decrease is
about 30% in case (a), and 10% in case (b). The greater A and vk/a, the more
significant is the difference.
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