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Introduction

The nonlinear least squares problem may be used to solve a large class of problems ranging from
nonlinear system of equations to parameter estimation and surface �tting. In recent years much
interest has been focused on problems where the solution is either not unique or may be very sensitive
to perturbations in input data.

In the optimization community these problems have often been treated as special cases not suitable
for standard software. One reason is that regularity conditions at a local solution of the minimization
problem are almost always imposed in order to get the methods to behave well close to a local
solution. Stabilization is used in the methods in order to get su�ciently close to the well behaved
local solution. Another reason is that the optimization problem is almost always formulated as a
�nite dimensional one ignoring the possible fact that the background (in�nite dimensional) problem
is ill-posed. Consequently, the terms ill-posed and regularization, refering to problems that are not
well de�ned at a local solution, are seldom used by optimizers. However, ill-posed problems do indeed
exist in optimization.

We will de�ne what we mean by an ill-posed nonlinear least squares problem. This is simple
enough using second order derivatives but for our problem there is more to say. The main reason is
the structure of the Jacobian and the Hessian. By using this structure we can do a more informative
analysis.

Another reason for looking more closely on the structure of the problem is that the natural met-
hod for solving nonlinear least squares methods is the Gauss-Newton method. In the Gauss-Newton
method a linear least squares problem is solved in each iteration using the Jacobian. Obviously, there
will be trouble using this method if the Jacobian is very ill-conditioned at the solution of interest. To
handle this case we use Tikhonov regularization together with the L-curve.

The ill-posed unconstrained problem

Consider the nonlinear least squares problem

min
x

1

2
kf(x)k22 = F (x); (1)

where f : Rn ! R
m is at least twice continuously di�erentiable and k � k2 is the 2-norm. The �rst

order KKT-condition for (1) is

rxF = JT f = 0; (2)

where J = @f=@x is the Jacobian of f . A solution x̂ to (2) will be called a critical point. For clarity
we sometimes denote functions or derivatives evaluated at x̂ with a hat, e.g. Ĵ = J(x̂).

Obviously, if the Hessianr2
xxF = JTJ+

Pm

i=1 fif
00

i
does not have full rank or is very ill-conditioned

at the critical point of interest we have an ill-posed problem. Suprisingly enough this will always be
the case when when J is of rank r < n in a neighbourhood of the critical point x̂. To be more speci�c
we state the following theorem.
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Theorem 0.1. Let x̂ be a critical point and the rank of J equal to r < n in a neighbourhood of x̂.
Then r2

xx
F (x̂) is a matrix of rank r < n with its nullspace containing the nullspace of J(x̂).

Examples of such ill-posed problems are underdetermined nonlinear system of equations and nonli-
near total least squares. We may conclude that having J rank-de�cient makes (1) an ill-posed problem
in the sense that (2) does not have a unique solution (but a local minimum to (1) may exist though).
For the constrained nonlinear least squares problem with rank de�cient constraints we have shown
results corresponding to Theorem 0.1.

The strong dependence between the Jacobian and the ill-posedness of the problem is partly in-
herited for the case the Jacobian is very ill-conditioned in a neighbourhood of the critical point.
Consider the SVD of J = U�V T and assume that we have a gap in the singular values such that
�r+1=�r = � � 1. We will also, for simplicity, assume that we have used the SVD to transform our
problem such that we get a new J = �. We partition J = � = diag(�1;�2) with �1 containing the
�rst r singular values and de�ne J1 = diag(�1; 0) and J2 = diag(0;�2). Then J = J1 + J2 with J1 of
rank r and JTJ = diag(D2

1; D
2
2) where D1 = diag(�1; : : : ; �r) and D2 = diag(�r+1; : : : ; �n).

Consider the Hessian

r2
xx
F = JTJ +

X
fif

00

i
= (JT1 J1 +

rX
i=1

fif
00

i
) + (JT2 J2 +

mX
i=r+1

fif
00

i
):

De�ne
P

m

i=1G
(1)
i

as the second derivatives corresponding to J1. Note that this is generally not any

part of the second derivatives
P

fif
00

i
. It can be shown that fif

00

i
= G

(1)
i

+O(�) making the �rst term

an ill-conditioned matrix since JT1 J1 +
P

r

i=1G
(1)
i

is exactly rank de�cient according to Theorem 0.1
above. The second term is small only if

Pm

i=r+1 fif
00

i
is small giving a simple condition when then

Jacobian does not contain information enough to determine if the problem is ill-posed. An important
case is when f = f1 + f2, the Jacobian of f1, J1, has rank r < n and f2 is some noice (function)
smaller than the relative gap �.

Tikhonov regularization

The Tikhonov regularization for the nonlinear least squares problem consists of solving the problem

min
x

1

2
kf(x)k22 +

1

2
�kx� xck

2
2; (3)

where � > 0 is the regularization parameter and xc is some center ideally chosen as the critical point of
interest but often just as zero. Choosing � large enough we can always get a well posed problem since
the Hessian r2

xx
F = JTJ + �I +

Pm

i=1 fif
00

i
is positive de�nite. This makes Tikhonov Regularization

applicable regardless of the type of ill-posedness. However, the actual implementation should take into
account if the problem is exactly rank de�cient at the wanted critical point. The di�culty is to choose
� as small as possible and at the same time getting the solution and the residual of reasonable size.

The approach taken here is to use a Gauss-Newton method for the Tikhonov problem and using
the L-curve to determine the regularization parameter. In the case the Gauss-Newton method has
slow convergence a specially designed Quasi-Newton method is used also on the Tikhonov problem.

The L-curve

We make the following de�nition of the L-curve.

De�nition 0.2. Let x(�) solve problem (3), i.e.,

x(�) = arg
n
min
x

t(x) + �y(x)
o
; � � 0;

where t(x) = kf(x)k22=2 and y(x) = kx�xck
2
2=2. The L-curve is de�ned as the curve (t(x(�)); y(x(�))).
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Figur 1: L-curve.

A typical L-curve for the special case of nonlinear least squares is shown in Figure 1.
We will show that the L-curve (t(x(�)); y(x(�)) de�nes a strictly decreasing convex function y(t)

with the derivative dy=dt = �1=�. Another very important property of the L-curve is that for any
~x 2 Rn the corresponding point on the L-curve (t(~x); y(~x)) always lies above the L-curve as indicated
in Figure 1. This fact will be proved using two related minimization problems that further motivates
the use of the L-curve.

The corner of the L-curve may be used to �nd a reasonable regularization parameter. In the non-
linear case there may be several such corners but they are all found by minimizing t(x(�))y(x(�)).
This fact together with the property that any approximate solution lies above the L-curve makes the
L-curve very useful in the nonlinear case.

Problems in parameter estimation

We will show results for several �nite and in�nite dimensional parameter estimation problemsa using
our Gauss-Newton method on the Tikhonov problem. The regularization parameter has been chosen
with the help of the L-curve.

Our �rst example it the Urysohn integral
Z 1

0

k(s; x(t)) dt = y(s); 0 � s � 1

where the kernel k(s; x(t)) is nonlinear in x(t). The function x(t) is a vertical pro�le of a physical
quantity that can not be measured directly. The kernel function expresses the transmissibility pro-
perties of the layer under consideration with respect to the rays or waves passing through a layer and
yielding the measurements y(s) depending on the angle of incidence or wave length s.

We have chosen di�erent solutions x(t) giving an exact y(s) The problem is discretized by approx-
imating x in a spline basis and using the trapezoidal rule for the integral. Finally, we add noice to get
a zero residual nonlinear least squares problem.

Our second example is the determination of weights in a feedforward neural network. The data is
both simulated and from standard test examples. This problem is a highly �nite dimensional nonlinear
overparameterisized least squares problem with many local minima.

Finally, we will try to determine the conductivity or di�usion coe�cient a(x) > 0 in

�
d

dx
(a(x)

du

dx
) = f(x); 0 < x < 1;

u(0) = u0; u(1) = u1:

This problem is ill-posed since a depends on ux. An exact solution u is chosen. The problem, i.e. a
and u, is then discretized in the proper function spaces using �nite elements. A �nite dimensional
nonlinear least squares problem is attained by adding noice to the discretized u.
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