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Nonlinear least-square problems often arise when estimating the parameters of functional
dependence on the data of experiments or statistical samples. Such data can be obtained,
for instance, with the radiolocation trajectory measuring when the flight of airplanes is
studied. Solving the nonlinear systems where the amount of nonlinear bonds is larger then
the degrees of freedom is also possible only in the sense of the least-squares.

We consider the nonlinear least-square problem:
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where function #:R" — R™ - is nonlinear on x, m>n.. For solving (1) the Gauss-

Newton method and medifications [1,4,6,7] are often used. But all of those methods use
the operator of derivative F'(x) in the iterative formulas. The calculation of /''(x) is

undesirable when the analytical expression of F'(x) is complicated or when we have not
the analytical expression of function /(x) but only the computational algorithm.

In this paper we propose the iterative process for solving problem (1) which does
not require the evaluation of #'(x):
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where F(u,v) —is the first divided difference for function /(x), which is evaluated by the
formula [see 3]:
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where F; (u,v) denotes the component of the matrix F(u,v) in row i and column j,

F(v)=

moreover F(u,u) = F'(u) [8]. Varying choice of #;,v; we obtain different analogies of
the Gauss-Newton method with the different rates of convergence. When #; =v; =x;

method (2) coincides with the known Gauss-Newton method [4].
Let us consider some cases of choice u;,vy .
1) Let u, = 2x; — x;_y, V; = X;_y. Then formula (2) can be written under the form
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When m=n method (4) transforms into the method of linear interpolation for
nonlinear functional equations [5]. We present the following theorem, which provides the
assumptions and rate of convergence of method (4).

Theorem. 1) Let for the initial approximation x; there exists the inverse operation
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2) ”F'(xo)” <a,

3) in the region R= {x:”x—x*llgé}, & =const >0, which contains the unique

solution of problem (1),
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Then for xp,x;, sufficiently close to the solution x, of problem (1), the iterative
process (4) converges to the solution with the order which is characterized by the
inequality
2
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where C,C, - are some limited constants.

The proof of theorem is bulky and so we don’t give it here, but we would like to
note one estimate, obtained in the proof :

[ s e sl = st [[ed xn—m [+ x (O8] 2 |+ gmea | )
From (7) it follows that in the case of null residual when F(x,.)=0 and /(x) is a
linear function (then parameter 6=0) the rate of convergence of method ( 2) is quadratic .

Thus, the iterative process (2) converges with the same rate as Gauss-Newton method,
but it’s advantage is that method (2) doesn’t require the evaluation of F’(x) .

2) Let u; = x;, v; = x;_1. Then formula (2) is written under the form
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Method (8) converges with the lower order than method (4) . It is easy to prove that in
the case of null residual method (8) converges with the order 1.618... But method ()
requires evaluation of vector-function #(x) in one point, meanwhile method (4) requires
evaluation of F(x) in two points per iteration. Thus, considering the total amount of
evaluations for some problems method (8) is not worse than method (4) and Gauss-
Newton method.



Taking into consideration that methods (4) and (8) are simple in realization and
require only evaluation of F(x) they can be broadly used in practice.

The numerical experiments confirm the high efficiency of the difference methods
(4) and (8). The results of the calculations will be discussed in report.

Note that difference methods for the problems of unconstrained minimization
problems are presented in [2].
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