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Introduction

Let 
 � IR3 be a thin domain with a constant conductivity �. By thin we

simply mean that the size of 
 is small in one direction with respect to the two

other directions, say 
 � 100 � 100 � 1. Suppose we have electrodes in 
 and

we want to calculate the magnetic �eld1 genereted by the steady current in 


assuming that conductivity � = 0 out of 
. We are interested in the e�ect of

the shape of 
 to the magnetic �eld. This is the reason for the thin domain in

IR3 instead of a 
at domain in IR2.

The problem has applications in geophysics where we, for example, measure

the magnetic �eld on a sea area and from this data want to �nd the shape of

the bottom or, in the winter time, the shape of the ice. Solution for our direct

problem is then used as a tool in solving the inverse problem.
Although the problem is a very basic one, the numerical di�culties appear

when the electrodes are near the boundary @
, which is allways the case in

a thin domain. In the paper we derive a boundary integral equation for the

problem and present a way to regularize the problem numerically.

Equations for the Electric Potential

The current Js generated by electrodes is given by Js = �E = ��rV , where
E is the electric �eld and V the electric potential. Corresponding magnetic �eld

is then, by Biot-Savart law,

Bs(x) =
�0

4�

Z


Js(y)�

x� y

jx� yj3
dy =

�0�

4�

Z
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V (y)
n(y)� (y � x)

jy � xj3
dS(y);

so we just need to solve the boundary values of V . Here n(y) is the unit outer

normal at point y 2 @
.

1The electric �eld or the electric potential on the boundary @
 could also be of interest.
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Let Ij be the current of the electrode located to point zj 2 
, j = 1; :::; N .
Suppose

PN
j=1 Ij = 0. The potential V satis�es

(
���V =

PN
j=1 Ij�(� � zj) in 


@nV = 0 on @
:
(1)

Put

V1(x) =
NX
j=1

Ij

4��

1

jx� zj j
;

so that V1 satis�es the Poisson part of (1), ���V1 =
PN

j=1 Ij�(� � zj). Then

V2 = V � V1 satis�es (
�V2 = 0 in 


@nV2 = �@nV1 on @
:
(2)

>From Green's formulas and the jump relation limh!0�(Kf)(x+ hn(x)) =
(Kf)(x)� 1

2f(x); x 2 @
, of double-layer

(Kf)(x) =

Z
@


@n(y)�(x� y)f(y)dS(y); �(x) = �
1

4�

1

jxj
;

we get a boundary integral equation for V2j@
,

1

2
V2 �KV2 =

1

2
V1 +KV1 on @
:

>From this we can solve V2j@
 numerically (up to a constant).

Numerical Di�culties

Although the singular part of Poisson equation (1) is removed by subtracting

V1 from V , the boundary value @nV1 in equation (2) for V2 changes rapidly near
the electrodes. That would require more grid points there. But the number of

the grid points is very limited because of the size of the computing memory.

In some geometrically simple situations equation (1) can be solved by the

method of image sources. This motivates us to put suitably chosen image

sources into the exterior domain IR3 n 
. Let V 0
1 be the potential generated

by the true electrodes in 
 and the image sources. Now V 01 again satis�es the

Poisson part of (1). Put V 02 = V � V 0
1 , so V 02 satis�es equation (2) with V 0

1

instead of V1. If the image sources are chosen reasonably, then @nV
0
1 is much

smoother than @nV1, which leads to a more regular numerical solution.
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