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1 Introduction

When water waves propagate from deep to shallower water, the wave length, wave height
and wave steepness change. These changes have been predicted to 6th order for waves on a
current, using a perturbated solution to the water wave problem. The work is an extension
of a 4th-order solution presented by Jonsson and Arneborg (1995). The aim of this project
is to improve the results by going to 6th order, and compare the solutions with numerical
results. Prediction of wave properties is important in coastal and ocean engineering, when
determining the forces on near-shore or o�shore structures.

In this abstract a brief introduction to Fenton's 5th-order solution of the water wave
problem (Fenton, 1985) is given. This theory forms the basis for calculating the wave proper-
ties. The governing equations for the shoaling calculations are presented, the 6th-order terms
included. Finally some results will be presented.

2 Fenton's 5th-order Solution (1985)

The classical water wave problem can be formulated by assuming irrotational ow, neglecting
the friction forces. By these assumptions potential theory can be used. We further assume
plane (i.e. 2D-) ow.

In Figure 1 the used nomenclature is shown. The problem is solved in a moving frame
of reference, following the wave with the absolute phase velocity ca. The uid velocities
relative to this frame are denoted (u; v). Fenton formulated the governing equations, using
the streamfunction obeying @ 
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(the Bernoulli equation)
 (x; y) =  (x + L; y) periodicity of the solution (L is the wave length)
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) de�nition of the wave height

Fenton made an expansion of the problem with the perturbation parameter " = kH
2

= �H
L

where k is the wave number k = 2�
L
. " is a measure of the wave steepness. The following
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expansion for  was assumed:

k 

�u
= �ky +

1X
i=1

iX
j=1

fij"
i sinh(jky) cos(jkx)

where �u = �u(y) > 0 is the mean uid velocity (in the negative x-direction) at vertical
position y (below wave trough level) in the moving frame of reference. The above expansion
for  automatically satis�es the Laplace equation and the bottom boundary condition. The
expansion was substituted into the two free surface boundary conditions, and perturbation
expansions in terms of " for �u, Q, R, and � were hereafter inserted in these equations. The
�nal result is 5th-order theory expressions for � (the velocity potential), �u, Q, R, and �. In
a �xed frame we �nd the horizontal velocities by adding the phase velocity ca.
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Figure 1: De�nition sketch for Fenton's solu-
tion.
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Figure 2: De�nition sketch for shoaling calcu-
lations. D is the still water depth and h is the
physical depth.

3 Shoaling Calculations

Shoaling calculations are based on the assumption that the ux of energy through a vertical
cross section is conserved, when waves propagate from one depth to another. The potential
energy is often calculated with the Mean Water Surface (MWS) as a datum. When waves
propagate over a sloping bottom, MWS is not horizontal, and thus cannot be used as a datum
for calculating the ux of potential energy, when a current is superposed on the waves.

To tackle this problem, the Mean Energy Level (MEL), which is constant, is introduced.
The distance between MEL and MWS is called the set-down. Now the shoaling calculations
can be based on constancy of the energy ux with MEL as datum.

Figure 2 shows the nomenclature for the shoaling calculations. Calling the volume trans-
port velocity cs, we have the ow q = csh. The governing equations are shown below. Aij, Ci
and Di are coe�cients given in Fenton (1985), except for D6 given in Jonsson and Arneborg
(1995).
Dispersion relation:
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Conservation of mass:

d

dx
(csh) = 0 , csh = const

Bottom topography:
h+�h = D

Energy:
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g

k2
�

"
1

4
(1 + G)�

s
k

g
csD2

#

+"4ca
g

k2
�

"
�3

2
C2D2 � 1

2
C0D4 � D2

2

kh
+C2

0

�
1

2
A11A31 + A2

22

�
kh�

s
k

g
csD4

#

+"6ca
g

k2
�

�
�1

2
C0D6 � 7

6
C2D4 � 11

6
C4D2 � 2

D2D4

kh

+C2

0

�
1

4
A2

31
+
1

2
A11A51 + 2A22A42 +

9

4
A2

33

�
kh�

s
k

g
csD6

#
= const

in which � is the density and G � 2kh= sinh2kh.

The expression for the set-down to 6th order was derived by Jonsson and Arneborg (1995).
The dispersion relation and the expression for FMEL, however, are new to that order.

4 Results

In Figure 3 the evolution of the wave length is depicted for di�erent currents. The chosen
wave has a linear deep water steepness of H0=L0 = 0:10, and the dimensionless current has
the values q� = csh

c0L0

= f�0:10;�0:05;�0:02;0;0:02; 0:05;0:10g. H0 is the deep-water wave
height, and L0, c0 the linear wave length and phase speed at deep water. Transition to a
dotted curve indicates that the wave has become unphysical due to a too large steepness.
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Figure 3: Wave lengths. H0=L0 = 0:10. Numbers in the �gure are the values of the dimen-
sionless current q� = csh

c0L0

.

For opposing currents the wave length always decreases monotonically with decreasing depth.
For strong following currents, however, the wave length increases monotonically. This can
be explained by a stretchening e�ect of the increasing current velocity on the wave pro�le,
which in this case overrules the common shoaling e�ect of decreasing wave length.

The deviation between the 4th- and 6th-order results is largest for opposing currents. The
prediction of the wave height and wave steepness (not shown here) shows the same tendency.
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The larger the steepness, the more nonlinear the waves, and the greater the e�ect of the
added 6th-order terms.

For the plots in Figure 3 we see that the change between monotonically increasing and
decreasing wave length occurs at about q� = 0:02. The waves on a small following current
behave like waves on opposing currents. The reason for this is the so called return current,
a wave induced `counter current' below trough level, balancing the forward mass transport
above wave trough level. A su�ciently high wave on a small following current can impose a
return current overruling the following current under trough level.

In Figure 4 the dimensionless wave generated return current velocity Ureth
c0L0

for waves of

95% of the maximum6th-order, deep-water steepness is plotted. Again dotted curves indicate
waves exceeding the maximal steepness. For q� = 0:02 the wave generated return current
almost eliminates the following current (the return current ow is 75% of q�). This explains
quantitatively why some of the waves on a following current show the same tendencies as
waves on an opposing current.
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Figure 4: Dimensionless return current velo-
city for a wave of 95% of the maximum 6th-
order, deep-water steepness. Numbers in the
�gure are the values of the dimensionless cur-
rent q�.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

D/L0

H
/H

re
f

0.20

0.50

0.75

4th order      
6th order      
Sobey and Bando

Figure 5: Comparison of 4th- and 6th-order
solution and the results from Sobey and Bando
with respect to wave height (q�= 0). Numbers
on curves are a meassure of the deep-water
steepness.

In Figure 5 the 4th- and 6th-order results have been compared with some numerical results
from Sobey and Bando (1991). The steeper the waves, the larger the deviation between the
4th- and 6th-order solution and the results from Sobey and Bando. The 6th-order solution is
however better than the 4th-order solution. For the steepest wave shown, there is still quite
a large di�erence between the numerical results and the 6th-order solution.
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