
Reduced Kernel Regression for Fast Classi�cation

Fabian Hoti
Rolf Nevanlinna Institute

P.O. Box 4 (yliopistonkatu 5)
FIN-00014 University of Helsinki

Finland

Tel: +358-9-191 22770
Fax: +358-9-191 22779
E-mail: hoti@helsinki.�

Keywords: Pattern recognition; Kernel regression; Radial basis function

26 January 1998

1 Introduction

Pattern recognition has applications in various �elds such as speech recognition and
classi�cation of handwritten characters. Discrimination techniques used in pattern
recognition can be divided into parametric and non-parametric according to their
structures. In this paper we introduce a method that lies somewhere between these
two categories. First we will introduce the basics of classi�cation and the theo-
retically optimal Bayes classi�er. Next we will use a kernel regression method to
approximate the bayes classi�er and �nally we will reduce its complexity consider-
ably. The resulting method can then be viewed either as a local parametric method
or as a non-parametric radial basis function expansion familiar from neural network
studies.

The performance of the method is tested with two real world data and the results
are compared to those gained from popular classi�ers [1]. It appears that by using
our method one can get competitive classi�cation results ten times faster. Here we
measure the speed by the complexity of the methods, which in these cases depends
directly on the number of kernels used.

2 Statistical Classi�cation

Let x = [x1; � � � ; xd]
T 2 Rd; be a pattern vector, a multidimensional measurement,

taken from an object that belongs to one of c di�erent classes. Given a pattern
vector x, a classi�cation problem is to guess from which class j 2 f1; � � � ; cg the
measurement originated. A classi�er can now be regarded as a function g : Rd !
f1; � � � ; cg.

In the sense of probability theory the whole observation is a d + 1 dimensional
random vector [XT ; J ]T . Let Pj = P (J = j) be the a priori probability and fj
the probability density of class j. Now the density of the pooled data is f =Pc

j=1
Pjfj and the a posteriori probability of class j conditional on X = x is

qj(x) = Pjfj(x)=f(x), if f(x) 6= 0. The optimal classi�er in the sense that it
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minimizes the probability of misclassi�cation is called the Bayes classi�er. It can
be shown to be given by

qBAY ES(x) = argmax
j=1;���;c

qj(x):

In case j is not unique, the chose can be made freely among the classes with the
biggest value qj . In practice classi�ers are constructed either by estimating the class
densities or by using some regression technique to directly estimate the a posteriori

probabilities from given data.

3 Reduced Kernel Regression

Let f(X1; J1); � � � ; (Xn; Jn)g be a sample. We estimate the class density with the
kernel estimator

f̂j(x) = n�1

j

nX

i=1

Y i
jK

i
h(x�Xi);

where nj = #fi : Ji = jg, Y i
j is 1 if Ji = j and Y i

j is 0 otherwise. And Kh(x) =

h�dK(x=h), where K is a function, which integrates to one and is symmetric about
the origin, and h is a smoothing parameter. Further we derive an estimate for the
j'th class a posteriori probability as follows

qj(x) =
Pjfj(x)

f(x)
�

P̂j f̂j(x)Pc
k=1 P̂kf̂k(x)

=

nj
n

1

nj

P
fi:Ji=jg

Kh(x �X i)
Pc

k=1
nk
n

1

nk

P
fr:Jr=kg

Kh(x �Xr)

=

Pn
i=1 Y

i
jKh(x�X i)

Pn
r=1Kh(x�Xr)

= q̂j(x):

This estimator is known as the Nadaraya { Watson estimator [4]. Note that the
estimate is a weighted sum over Y i

j and can be written as

q̂j(x) =

nX

i=1

Y i
j wi(x); (1)

where wi(x) = Kh(x � X i)=
Pn

r=1
Kh(x �Xr) and

Pn
i=1 wi = 1: We can further

improve the 
exibility of the estimator by replacing the constants Y i
j with locally

�tted functions, for example polynomials of di�erent degree. In our studies we only
considered constants and �rst-order polynomials

q̂j(x) =

nX

i=1

(aij � (x�Xi)
T bij)wi(x): (2)

The �tting was done in the least square sense

cX

j=1

nX

i=1

(q̂j(Xi; a; b)� Y i
j )

2 = min
a;b

!;

where a; b = (aij ; b
i
j); i 2 f1 � � �ng; j 2 f1 � � � cg. The resulting scheme is a very

e�ective estimator, but as the dimension of the data increases it is due to run into
trouble. The complexity of the estimator depends directly on the number of data

2



points used and in higher dimensions the amount of data needed to get good esti-
mates increases rapidly. This phenomenon is known as the curse of dimensionality.

We attacked the problem of dimensionality by adapting some methods from
neural network studies. The Radial basis function expansion of Moody and Darken
[2] has the form

q̂j(x) =

MX

r=1

arjK(x�mr

h
)

PM
s=1K(x�ms

h
)
: (3)

Here M << n kernels with centers at locations mr are used to produce a weighted
sum of the constants arj . This scheme is fast to use and its complexity does not
depend on the amount of data. Now by combining the 
exibility of local �tting
in scheme (2) and the speed achieved in scheme (3) we get the Reduced Kernel
Regression scheme

q̂j =
MX

r=1

(arj � xT brj)wi(x); (4)

where wr(x) = K(x�mr

hr
)=
PM

s=1K(x�ms

hs
): Here the constants arj , b

r
j , kernel cen-

ters mr and smoothing parameters hr are chosen so that the least square error is
minimized. A similar scheme (4) was proposed in [3].

4 Case Studies and Conclusions

We tested the performance with two di�erent data sets: a highly non-normal, 2-
class, 5-dimensional phoneme data set and a 64-dimensional handwritten digit data
set with 10 roughly normally distributed classes. We compared the results with
those obtained in [1]. The results show that in both cases by using our method one
can reduce the complexity considerably, compared to traditional non-parametric
methods, without loosing classi�cation accuracy.
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