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Progress in today's high-technology industries is strongly associated with the
development of new mathematical tools. A typical illustration of this partnership
is the mathematical modeling and numerical simulation of electronic circuits and
semiconductor devices. Circuit simulation is a standard task for the computer-
aided design of electronic circuits, especially in the �eld of integrated circuits
(e. g., memory chips). It saves time in the development and money with respect
to the construction of prototypes.

Up to now stochastic disturbances have not been considered in the nonlinear
transient model and simulation of electronic circuits. Because of the reduction
resp. the integration of electronic circuits pro�tting signals get close to disturbing
signals such as electronic noise. We can distinguish between thermal noise, shot
noise and 
icker noise which have all their reasons in the semiconductor material
[1].
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Figure 1: Resistor model
under consideration of ther-
mal noise.

These noise sources can be modeled as current
sources with randomly distributed current supply.
This current sources are shunted to the devices in
which the noise causes occurre.

The stochastic behavior of the noise sources
are modeled by stochastic processes. Most of the
processes can be thought as white noise Wt, with
statistics depending on the regarding noise source.
E. g., the noise current �It of a thermal noise
source in a semiconductor device can be modeled

as �It =
q

4kT
R
�f �Wt; where k is the Boltzmann

constant, T the temperature, R the resistance of
the device, and �f the frequency bandwith of the

device noise.
Fig. 1 shows the circuit diagramm of a resistor including thermal noise. The

noise source with current supply �It is shunted to the resistor device R.
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The modeling of an integrated circuit including noise sources results in a
system of di�erential-algebraic equations, where a stochastic addend is attached,
i. e.

C(Xt) � _Xt + f(Xt)� g(t) +G(Xt) �Wt = 0;

with the stochastic process Xt containing the searched voltages and currents
of the circuit. The matrix function C collects the dynamic devices, the vector
function f the static devices and the vector function g the independent voltage
sources [2]. The matrix function G does not explicitly depend on the simulation
time t. It is a sparse matrix of dimension n � m, where n is the dimension of
the solution vector function Xt and m the number of noise sources in the circuit
(i. g. m � n). The random attains in this model via the vector function Wt, a
multidimensional Gaussian white noise process. In this paper Itô's interpretation
[5] of the circuit equations will be used.

In the area of stochastic di�erential equations we have to determine in which
criteria for the solution of a SDE we are interested [4]. In this paper we will
examine the pathwise solution of a SDE. That means we �x the random part in
the stochastic process white noise. We get an implementation of the white noise
and solve the SDE for this special implementation.

Numerical pathwise approximation schemes for SDEsXt = X0+
R t

t0
a(s;Xs) ds+R t

t0
b(s;Xs) dBs; often need partial derivatives

@a
@x
, @b
@x
, and more than one function

evaluation of a and b in each integration step. This should be avoided in circuit
simulation because of the extensive drift a and di�usion b.

A new multistep method of strong convergence order 1.0 will be presented in
this paper. It uses only one function evaluation of a and b in each integration
step and it avoids the analytical calculation of partial derivatives. The scheme,
here called PEN22, can in the 1-dimensional case be written as

Xn+1 = Xn + anh + (an � an�1)
1

2
h+ bn

an � an�1

Xn �Xn�1

�
I(1;0) ��Bn

1

2
h
�
+

+ bn�Bn+1 + (bn � bn�1)
I(0;1)

h
+ bn

bn � bn�1

Xn �Xn�1

�
I(1;1) ��Bn

I(0;1)

h

�

where t0; : : : ; tn; : : : ; tend is the discretization of the simulation interval, h :=
tn+1� tn the (constant) step size, �Bn+1 := Btn+1�Btn the Brownian increment,
Xn the numerical approximation of Xtn , an := a(tn; Xn) resp. bn := b(tn; Xn)
the function evaluations of a resp. b, I(j;k) := I(j;k);tn;tn+1 the multiple Itô-integral
with j; k = 0; 1. Itô-Taylor-serieses for a and b have been the ansatz functions to
develop this scheme.

The new scheme was compared to the explicit order 1.0 strong scheme [4],
called EO1SS in this paper, Xn+1 = Xn+anh+ bn�Bn+1+

1p
h
(b(tn; �)� bn)I(1;1);

where � = Xn + anh + bn
p
h (1-dimensional case).

To show that the new scheme has strong order 1.0 the geometrical Brownian
motion _Xt = �Xt + �Xt � Wt, Xt0 = 1, �; � 2 R, has been simulated in the
interval [0; 1], cf. tab. 1. The given results for EO1SS and PEN22 show the same
order of strong convergence for both methods.
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Stepsize h 2�6 2�7 2�8 2�9 2�10 2�11

1 Path, � = 1, � = 1
Absolute error EO1SS 3.79 1.19 2.12 0.66 0.51 0.69
Absolute error PEN22 3.77 1.20 2.11 0.66 0.51 0.69
100 Pathes, � = 1, � = 1
Mean absolute error EO1SS 2.10 2.14 2.36 2.06 1.96 2.01
Mean absolute error PEN22 2.11 2.13 2.35 2.05 1.96 2.01
1 Path, � = 1:5, � = 1
Absolute error EO1SS 0.1792 0.0214 0.0374 0.0053 0.0024 0.0010
Absolute error PEN22 0.1551 0.0383 0.0151 0.0008 0.0006 0.0002

Table 1: Computational results with strong order schemes EO1SS and PEN22
for the test example geometrical Brownian motion.

To show that the new scheme PEN22 is more e�cient than standard schemes a
ringoscillator was simulated. This benchmark in circuit simulation [3] is built of n
inverters and each inverter contains 3 noise sources. The mathematical modeling
yields a n-dimensional system of stochastic di�erential equations. Tab. 2 shows
that PEN22 is about 4 times faster than EO1SS for a ringoscillator with n = 5
inverters. Increasing the number n of inverters enlarges further the di�erence in
computation time of both methods.

Stepsize h 10�10 10�11 10�12

CPU-time PEN22 0.44 s 0.87 s 8.66 s
CPU-time EO1SS 0.56 s 3.25 s 32.53 s

Table 2: Computational time for a ringoscillator with n = 5 single inverters. The
simulation interval was [0; 2:5 � 10�8].
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