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The movement of  the sticky incompressible liquid between two parallel disks, moving
towards each other or in the opposite direction, is considered. The below description of
possible movement conditions is based on the exact solution of Navier-Stokes equations. The
movement stability is analyzed with different initial perturbations given.

There is a large class of  processes which can be considered from
the mathematical point of view as the movement of liquid between two
parallel disks, moving towards each other or in the opposite directions.
Here are included such processes as the movement of underground waters,
the movement of liquid through the hydraulic pump. These problems are
interesting, because some of their solutions, though  analytically obtained,
can be proved by experiment. For example, let us put two parallel disks in
the water and start moving them towards each other and then in the
opposite directions. Even with a qualitative assessment we will see that in
the first situation (when the disks are approaching each other) the
approach force is smaller than the separation  force in the second situation
(when the disks are moving apart). This can be explained by the different
character of the liquid movement: when the disks are approaching the
movement is potential, when the disks are moving apart the movement is
rotational.

This work deal with a description of the types of possible unstability
of  the above movements.

To carry out a accurate analysis let us consider the movement of
sticky incompressible liquid induced by two parallel disks moving towards
each other. Let us assume that the horizontal velocity does not  depend on
the vertical coordinate while the vertical velocity depends linearly on the
distance between the disks. In this case Navier-Stokes equation has the
following form [1-3]:
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where  the velocity components are represented as:
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( P - pressure divided by liquid density, Q - the constant which
defines  the disks approach velocity ).

For convenience of analysis let us select the potential component
from the velocity  horizontal components and introduce the flow function:
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where ψ  - the flow function [1] .
After exclusion of the pressure and introduction of the vorticity ω

the movement equations have the following form:
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One of the solutions for the equation (3) is ψ = � , which
corresponds to the liquid potential movement, which is known as the
movement near the stagnant place. To investigate the stability of this
solution let us consider the periodical one-dimensional perturbation.
Expressed by the following equation:
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and analyze the change of the vorticity ω  in the course of time.
Substituting ψ in the equation (3) with the equation (5) and equating

groups of items with the same x powers we will get the following system
of nonlinear equations
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These equations disintegrate into successively solvable linear
equations, which allows us to find the general solution:
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where α β�  are free constants, determining the amplitude and the
wavelength of the initial perturbation.

The sign Q  in the equation (7) determines the stability of the
solution ψ = � . In this case if Q >0, the solution is stable, the amplitude is
decreasing; otherwise, the solution is unstable, the amplitude  is



increasing. However, the solution is unstable only until T
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which the amplitude decreases rapidly, owing to dissipation.
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particular interest. This perturbation of flow function corresponds to the
change of the vorticity ω  which has the following form:
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If  Q >0, the solution is stable, with both the amplitude and the wave
number K  decreasing in the course of time. Otherwise if Q < � , the solution
is unstable. However, the increase of the amplitude takes place until
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decreases rapidly. As for the wave number K , it is increasing in the course
of time. The new and interesting fact which has been discovered in the
course of research is that the wave number K , corresponding to the time
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It should be noted that in each of the investigated cases Q >0

corresponds to the situation when disks are moving towards each other
and Q <0 - to the situation when the disks are moving apart.

Conclusions:
1.  The analytical solution of Navier-Stokes equation for the movement of

incompressible liquid between two disks moving towards each other or
in the opposite directions has been obtained.

2.  The investigation of the potential movement stability for different initial
perturbation of flow function ψ   has been carried out. It has been
proved that with the evolution of perturbation of a certain type, wave
structures with different configurations has be formed.
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