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1 Introduction

Level set methods are used to solve front propagating problems like crystal growth
and multi-phase flow where a moving boundary must be determined. In contrast
to front tracking methods, which are based on a Lagrangian formulation, the
moving boundary is represented as the zero level set of a so-called level set func-
tion, which is given on an Eulerian co-ordinate system. Thus, the moving front
is ‘captured’ implicitly by the level set function. This approach avoids some
complex problems, such as numerical instabilities or complicated bookkeeping
techniques which occur usually using front tracking methods.

2 Basic Equations

Consider the motion of two immiscible and incompressible fluids separated by its
interface , , which is modelled as the zero level set of a level set function @, in
a computational domain 2. Using a level set approach as a description of the
interface implies the existence of a mathematical relation between the evolution
of the interface and the underlying flow field u. The stipulation that the level
sets always move according to the velocity field means that ® does not change
along any trajectory z(t) (i.e. ®(¢,2(t)) = constant). Thus, the following result
is easily obtained by chain rule:

S@(t,a(1) = 0
= &+ () VE = 0 (1)

This is a first-order partial differential equation of Hamilton-Jacobi type. It moves
the zero level set exactly as the interface moves with the flow, which is given by
its velocity field u = 4(¢). However, it turns out that the level set function
becomes ‘irregular’ during the computation. Therefore, it needs to be updated
in order to stay ‘regular’. This process is called reinitialization of the level set
function and needs to be done after a small number of evolution time steps.
Hence, reinitialization is applied many times during the entire computation.



Consider the following partial differential equation which appeared first in [2]:
®; = sign(Po) (1 — [VP) (2)

with initial condition ®(z,0) = ®¢(x) where ®; defines the interface implicitly
by, =:{z € Q: ®y(x) = 0}. This is a non-linear hyperbolic PDE which belongs
to the class of Hamilton-Jacobi equations. The idea using this equation is that
a steady-state solution of (2) will be a distance function of the zero level set
(i.e. |[V®| = 1) with the same zero level set as the initial function ®. If the level
set function becomes too ‘irregular’ this equation will be applied to enforce the
level set function to be the distance function to the zero level set. Hence, ® will
again be ‘regular’ enough.

Since the zero level set represents an interface of two different fluids it must not
move during reinitialization. In fact, in numerical computations it does. Hence,
it introduces an error to the areas separated by the zero level set. Moreover, the
error is not qualitatively arbitrary but tends always to one direction. In particu-
lar, the area enclosed by the zero level set shrinks, i.e. area loss is introduced by
reinitialization which may accumulate from application to application.

3 Analysis of Area Loss

An analysis of the the numerical scheme which is used for a discretization of
equation (2) shows that a systematic error is introduced in the approximation of
the absolute value of the gradient. Moreover, it turns out that this systematic
error may explain the effect of area loss.

In addition to that, a modification of equation (2) is proposed, which is aimed
to reduce area loss. The essential idea of this modification is to extrapolate the
values of the level set function adjacent to the interface instead of computing
them by the equation (2).

The results which are obtained in numerical experiments show a significant
improvement as far as area loss is concerned. Furthermore, the curvature of the
level sets, which is important to know in curvature-dependent problems, can be
computed with less oscillations than using purely equation (2).
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