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Abstract

There is an obvious need to study how cells react in their environment.
Many cells respond to the presence of chemical substances. When
detecting the chemicals, cells make particular movements by which
they can develop, heal wounds, protect against invaders, create blood
vessels, etc. Mathematical models of cell behaviour and movement
have been studied in order to understand these complex processes.
One that we discuss here is the movement of cells up gradient in the
presence of chemical attractants, renowned as chemotazis. We derive
the widely used model for chemotaxis, the Keller-Segel model which is
a system of Reaction-Diffusion-Convection equations. The model has
been derived from the conservation laws using Fickian-assumption,
and we also perform stability analysis of the model. Solutions of the
equations may blow up in finite time in 2 dimensional space. We
study a modified model using volume-filling mechanism with Allee
effect for cell density and saturating rate mechanism with Michaelis-
Menten kinetics for chemical attractant density. Both are applied to
modify the Keller-Segel equations into a model that can be used to
prevent blow up. Numerical simulations are accomplished using the
Finite Element Method.
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Chapter 1

Introduction

The nature we live in is full with amazing wonders and it continually astonishes
us with its infinite variation that attracts scientists to dissect what lies behind the
phenomena. For instance, the nature has immensely big variety of ”invisible”,
”inaudible” smells upon which all living organisms, from single cell organisms
such as bacteria and amoebae to multi cellular organisms such as insects and
mammals, depend for their lives through chemical communications that occur
upon the completion of three essential steps: (a) the release of a chemical signal,
(b) the transmission of that signal through the environment, and (c) reception
of signal by another individual (28). The simplest important exploitation of
chemical signal release is a directed movement it can generate in a population of
organisms. The knowledge about chemically directed movement is renowned as
chemotazxis, that is the ability to sense the direction of external chemical signals or
sources and to respond by polarizing and migrating towards chemical attractants
or away from chemical repellants.

Chemotaxis is crucial for proper functioning of multi cellular organisms as well
as single cell organisms. As an example in (24), the female silk moth Bombyz
mori exudes a pheromone called bombykol to attract male moth that detects the
bombykol by its remarkably efficient antenna filter that measures the bombykol
concentration, the male moth will move in the direction of increasing concen-
tration. Another example of chemotaxis is the use of smell for communication
and predation by deep sea fish. Chemotaxis in single cell organisms in biological

processes is significant for many purposes.



In chapter 2, we outline some applications of chemotaxis in medical and
biomedical disciplines. Then we discuss biological background cellular slime mold
amoebae Dictyostelium discoideum including its life cycle and its chemical attrac-
tant, which have aroused the interest of many scientists. Here we also give a brief
explanation about the values of mathematical modelling in biology, where the
studies of chemotaxis have been categorized into stochastic approach and deter-
ministic approach.

The first mathematical model of chemotaxis was introduced by C.S. Patlak
in 1953. Evelyn Fox Keller and Lee A. Segel then boosted the model by their
work in 1970. Chapter 3 entails derivation of Patlak-Keller-Segel or Keller-Segel
model from Fick’s law with one chemical attractant. Steady state and linear
stability analysis of the Keller-Segel model are performed, as well as theory of
blow up possibility of the Keller-Segel model. Later we discuss a modification
of the Keller-Segel model that can prevent blow up of solutions by incorporating
the Allee effect in the volume-filling mechanism to prevent cells overcrowding
and Michaelis-Menten kinetics of a saturation mechanism in the production of
chemical attractant. Stability analysis for the modified model is also performed
here.

The foregoing studies of chemotaxis and simulation of chemotaxis using the
Finite Element Method provide one of the motivations for our work. As a nu-
merical tool that is usually used for Partial Differential Equations, we employ the
Finite Element Method as our means in numerical simulations, given in Chapter 4.

Chapter 5 discusses reviews of chemotaxis from previous studies and researches.



Chapter 2

Biology and Mathematical Values
of Chemotaxis

2.1 Applications of Chemotaxis

The focus of our discussion is chemotaxis in biological processes of molecular level.
In vitro experiments have shown that chemotaxis allows single cell organisms, or
cells, to detect chemicals with exquisite sensitivity. Some chemotactic cells can
sense chemical gradients that differ by only a few percent from cell’s front to
its back. It has been discovered that a cell is able to discriminate between a
relative chemical attractant concentration of 100 at its front and 99 at its back,
the threshold spatial gradient of chemical attractant between ends of a cell is
around 1% of the mean concentration around the cell. This was experimentally
studied by Peter van Haastert in his article (35) and references therein.

By sensing its environment and then moving in chemotactically up gradient
towards their attractants, cells can develop, heal wounds, protect against invaders,
and create blood vessels.

Chemotaxis has been shown to play an integral role in cell guidance and
tissue organisation during embryonic growth. It is also a major component of
inflammatory, mammalian reproductive systems (spermatozoa), development of
the nervous system which crucially depends on the detection and response to a
group of chemical signals by the tip of the growing nerve cells (growth cone), and
tumor growth where the stimulation of new blood vessel growth (“angiogenesis”)

mediated by chemotaxis is an indicator of increased malignancy (16).



2.2 Dictyostelium discoideum

Chemotaxis and signal transduction by chemical attractant receptors also play
a key role in arthritis, asthma, lymphocyte trafficking, and in axon guidance.

In formation of patterns on animal skin, a generalized Turing model with
chemotaxis was developed by Painter et. al. (31) to account for cell growth and
movement. Chemotaxis in response to chemical gradients leads to aggregation
of one type of pigment cell into a striped spatial pattern. Most of the original
chemotactic models considered interactions between one cell type and one chem-
ical attractant, as we are going to discuss in this thesis. However, models with
two types of chemicals, an attractant and a repellent, have been discussed, such
as that by Painter et. al. (31) and Luca et. al. (5).

2.2 Dictyostelium discoideum

The slime mold amoebae of type Dictyostelium discoideum or D. discoideum for
short, is a unicellular eukaryote, and belongs to the kingdom of Protista. It was
discovered by K.B. Raper in 1935 (18).

This species has been the subject of some researches in cell biology. D. dis-
coideum offers numerous research advantages, with primary benefit that its ge-
netic system is easily amenable to experimentation without accompanied by cell
divisions. It uses the signaling pathway for finding food, for intercellular com-
munication, and for starting its differentiation from free-floating amoebae to a
multicellular organism. It can also be grown in large quantities.

D. discoideum is widely used for studying fundamental cellular processes, such
as chemotaxis, cytokinesis, motility, phagocytosis, signal transduction, and as-
pects of development such as cell sorting, pattern formation, and cell-type de-
termination. Many of these cellular behaviors and biochemical mechanisms are
either absent or less accessible in other model organisms.

Segel (34) and Lin (21) gave detailed information in their books the following

facts about chemotaxis in D. discoideum.

2.2.1 Life Cycle of Slime Mold D. discoideum

The slime mold amoebae can be found throughout the world in their natural

habitat, soil. One can begin a description of the life cycle of the amoebae at



2.2 Dictyostelium discoideum

the spore stage, where each amoeba is dormant within protective covering. This
phase is also known as the vegetative stage. When the conditions are favorable
the spore will germinate, and an amoeba will emerge from its protective casing.
Of the order of 10 micrometers (1072 ¢cm) across, the amoebae are rather shapeless
one-celled organisms that move by extending contractile portions of themselves
(pseudopods).

Adaptation

09 —0000 —0

Figure 2.1: Spiral waves of cells movement in response to cAMP propagation. Courtesy of
Nature Encyclopedia of Life Sciences (36)

As an important element of the food chain on earth, the amoebae feed on
bacteria by engulfing them. If food is plentiful, the amoebae continually feed and
multiply by mitosis (dividing in two) (more or less in every three hours according
to Segel (34)). If the food supply becomes exhausted, the amoebae move about
randomly for several hours (eight hours according to Segel (34)), then an initially
uniform amoebae distribution develops what appear to be centers of organization
called aggregation sites. Amoebae are attracted to these loci and move towards
them, often in a pulsating, wavelike manner. During this period, the disappear-
ance of the food supply triggers certain changes in the amoebae whose details are
not known up to now. Contacts begin to form between neighbors, and streams
of amoebae converge on a single site, eventually forming a shapeless multicellular

slug that wanders as a unit towards light and more humid conditions.
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2.2 Dictyostelium discoideum

Some formerly free living amoebae retain their cell walls within the slug. Then
the slug stops and for several hours goes through a period of “purposeful” internal
motion and change. At the end of this time, the slug has transformed itself into
two cell types, stalk cells and spore cells which both build a system of slender stalk

bearing a roundish container of spores at top of it. Thus the cycle is completed.

Figure 2.2: Delicated stalk body, after completing a cycle. From The Scientist magazine
online

Furthermore, in order to provide rigid structural basis for holding the con-
tainer of spores, the stalk cells harden and eventually die. As a result of this
self-sacrifice, the spore cells are provided with an opportunity to survive the
harsh conditions, to be dispersed by air currents, and to propagate the species
into more favorable environments. If a spore is transported to a place that is

favorable for germination, the whole cycle will begin again.

2.2.2 The Role of cAMP

The aggregation of the D. discoideum takes place because the amoebae are at-
tracted to a relatively high concentrations of a chemical that they themselves se-
crete. The attractant has been identified as cyclic adenosine 3’,5’-monophosphate,
or called cyclic AMP or simply cAMP. It has also been shown that the cells se-
crete the enzyme phosphodiesterase that catalyzes the breaking of a bond in
cAMP, turning it into 5'-AMP which is not a chemoattractant for the amoebae.

The discovery that cAMP plays a major role in D. discoideum gave great
impetus to the study of this organism, for cAMP also has a major function in

mammalian physiology as the “universal second messenger” of hormone action.
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Figure 2.3: Life cycle of Dictyostelium discoideum
Courtesy of Nature Encyclopedia of Life Sciences (36)
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2.3 The Value of Mathematical Models

E.W. Sutherland was awarded the Nobel prize for medicine in 1971 for his work
in elucidating some of the roles of cAMP.

In a typical aggregation pattern in D. discoideum, individual amoebae move
steadily towards the aggregation center for about a minute and a half, and then
make no further progress for a period of approximately three to eight minutes.
The steps of aggregation occur in sequence: First the cells nearest the center step
inward, then an adjacent ring of cells farther out steps in, then the next outward
ring, and so forth. Thus, aggregation takes place in pulses, or cAMP is released
during cell aggregation in a pulsatile manner by the aggregation center. Cells in
the neighborhood of the center detect cAMP, react chemotactically, and excrete
cAMP themselves by which the cAMP signal is relayed.

- £

-Z>P=-CZ

Figure 2.4: ¢cAMP pulses, taken from http://www.hopkinsmedicine.org/cellbio/profiles/

2.3 The Value of Mathematical Models

The first breakthrough in modern mathematical biology was started when Lotka
(1924) and Volterra (1926) established their works on the expression of predator-
prey and competing species relations in terms of simultaneous nonlinear differ-
ential equations. Since then mathematicians and biologists have attempted to
study and analyze the dynamics of ecosystems as well as to make the quantita-
tive prediction of phenomena in nature into mathematical models.
Mathematical models can be broadly categorized into two types, as quoted

by Okubo (28). One may be referred to as “educational”, and the other as
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2.3 The Value of Mathematical Models

“practical” in nature. Educational models are based on a small number of simple
assumptions and are analitically tractable. The real virtue of these models lies
in the fact that they provide a process for gaining insight, expressing ideas, and
eventually extending to more complex models. Practical models are based on
realistic assumptions and thus involve the parameterization of interrelationships
of large numbers of variables, and often the formulation of numerous equations
containing numerous parameters is required. In such cases analytical treatment
becomes impossible, and one must rely on computer calculations for numerical
approximations.

Mathematical models can also be delineated into deterministic models and
stochastic nature. Educational models often employ deterministic methods, while
practical models tend to be stochastic in approach. Many biological structures
and processes are intrinsically stochastic. However, a greater portion of the in-
dividuals involved in a process may be said to follow a single deterministic path
on the average.

In summary, the phenomenon of chemotaxis as the topic of our discussion has

been mathematically studied and divided in 2 approaches as follow:

e Stochastic processes for the position and moving direction of each individ-

ual, and

e Partial Differential Equations for the density and the mean flux of whole

population (deterministic model)

In this thesis, emphasis has been placed on continuum-based model used in

deterministic approach.



Chapter 3

Mathematical Model for
Chemotaxis

3.1 Formulation of Keller-Segel Model

The motions, migrations, and redistributions of cell populations are of some in-
terest for scientists because the cell populations are rarely distributed evenly
over a featureless environment. On individual level, the movement might result
from amoeboid streaming. On collective level it is often appropriate to make a
continuum assumption, that is, to depict discrete cells or organisms by continu-
ous density distributions. This assumption leads to Partial Differential Equation
(PDE) models that constructed a model introduced by Patlak, Keller, and Segel,
known as the Keller-Segel model, for molecular diffusion, convection, or attraction
that we discuss in this section.

Most of PDEs are ultimately based on the conservation law and its various
forms. Some recent literature are good start to understand the implementation
of conservation laws in biological settings, such as books by Edelstein-Keshet (6),
J.D. Murray (24), Okubo (28), and Fall et. al. (7).

We start deriving the Keller-Segel model by letting S be an arbitrary surface
enclosing a volume V. From the general conservation equation, the rate of change
of the amount of material u in V' is equal to the rate of flow of material across S

into V' plus the material created in V. Thus

9 udv:—/J-nds—i-/fdv (3.1)
ot Jy s v

10



3.1 Formulation of Keller-Segel Model

where J is the flux of material and f represents the source of material.

By the Divergence theorem

/J-ndSZ/V-Jdv (3.2)
S v

and assuming that the function w is continuous, the first equation becomes

(rewrite %% into u)
/[ut+V-J—f]dv:0 (3.3)
v

Since the volume V is arbitrary the integrand must be zero and the conservation
equation for u then reads

This equation holds for a general flux transport J whether by diffusion or by some
other processes.

If we consider the Fick’s law as the process of diffusion,
J=-DVu (3.5)
then equation (3.4) becomes
u =V - (DVu)+ f (3.6)

where D may be a constant or depend on space, time, or even on u.

Applying the formulations to chemotaxis, let us suppose u represents the
cell density, and v a chemical attractant. Biological experiments show that the
presence of a gradient in attractant gives rise to a movement of the cells in up
gradient. The flux of cells will increase with the number of cells present. There
is another flux that plays significant role in the process, that is the chemotactic
flux

J=xuVv (3.7)

where  is chemotactic coefficient. Analysis of y in various forms has been carried
out, such as by Katharina Post (33), Painter and Hillen (15), and Schaaf (see
reference in (5)). The most used is x as a positive constant. Now the flux has
contribution from diffusion flux equation (3.5) and chemotaxis flux of equation

(3.7)

J=1J diffusion + J chemotaxis

11



3.1 Formulation of Keller-Segel Model

Subtituting equations (3.7) and (3.5) into (3.4) yields
u =V -DiVu—V-xuVv + f(u,v) (3.8)

where D is the diffusion coefficient of the cells. Now the term f(u, v) is a function
of u and v and it represents cell proliferation and death.
The chemical attractant v also diffuses and is produced by the cells themselves.

For one chemical attractant, the equation for v can typically be in the from
v =V -DyVv + g(u,v) (3.9)

The first term in the right hand side expresses the diffusion of the attractant
with diffusion coefficient D,, and the second term g(u,v) is kinetics or source
term that represents production and/or degradation of attractant.

To give a minimal model for aggregation phase, Keller and Segel made a

number of simplifying assumptions (6):

1. Individual cells undergo a combination of random motion and chemotaxis

towards chemical attractant.
2. Cells neither die nor divide during aggregation.
3. The attractant is produced at a constant rate by each cell.
4. The rate of degradation of attractant depends linearly on its concentration.
5. The attractant diffuses passively over the aggregation field.

Using these assumptions, the cell proliferation and death term f(u,v) in equation
(3.8) is set to be zero and the term g(u, v) in equation (3.9) is expanded to au— v
where a and 3 are the rates of chemical production and degradation, respectively,
they are assumed to be positive constants. Taking D;, Dy and x also to be positive
constants, thus the parabolic quasi-linear strongly coupled system of Keller-Segel
is

u=D1Vu-V-xuVv ; €, t>0 (3.10)

v=DVu4+oau—pPv ; 2€Q, t>0 (3.11)

12



3.2 Analysis of the Keller-Segel Model

Equation (3.10) and (3.11) are to be completed with initial and boundary con-
ditions. If we assume that the population to stay constant during chemotactic
aggregation, then it is natural to impose no-flux boundary conditions
ou Ov
—=—=0 forxeod, t>0
on  0On
and the initial data as smooth non-negative functions
u(z,0) = ug(x), wv(z,0) =wvo(z) forz e

This gives two linear equations when it is seen as separate, but the strong
coupling term V - yuVv makes the system strongly nonlinear. And this term
describes aggregation directed towards the center of aggregation with velocity

proportional to Vuv. In the absence of this term cells move in random way.

3.2 Analysis of the Keller-Segel Model

3.2.1 Homogeneous Steady States

Let us now study the homogeneous steady state of the classical Keller-Segel sys-
tem. Homogeneous steady state of a PDE model is a solution that is constant in

space and in time, and such solutions must satisfy the following

u(z,t) = a, v(z,t) =0 (3.12)
where 95 o
a v
== 3.13
ot ot (3:13)
ou 0v
—=22=0 3.14
Ox Oz (3:-14)
Substituting these equations into (3.10) and (3.11) gives
0 = 0,
0 = 0+au—pv (3.15)
Then it must follow that
at = [ (3.16)

This means that in the uniform state the secretion rate of attractant must be

exactly balanced by the decay rate.

13



3.2 Analysis of the Keller-Segel Model

3.2.2 Stability Analysis

A reaction-diffusion system exhibits diffusion-driven instability, sometimes called
Turing instability, if the homogeneous steady state is stable to small perturba-
tions in the absence of diffusion but unstable to small spatial perturbations when
diffusion is present (25). The main process driving the spatially inhomogeneous
instability is diffusion: the mechanism determines the spatial pattern that evolves.

In determining the necessary and sufficient conditions for diffusion-driven in-
stability of the steady state and the initiation for the general system, or bio-
logically, to determine whether aggregation of cells is likely to begin, we look
at the spatially inhomogeneous perturbations and then we explore whether the
perturbations are amplified or attenuated.

If an amplification occurs, then a situation close to the spatially uniform
steady state will destabilize, leading to some new state in which spatial varia-
tions predominate, and even there could possibly exist oscillating solutions. This
process of destabilization is identified as the onset of aggregation and is presumed
to happen because of changes of the parameters Dy, D5, x, and c.

We perform the stability analysis in one dimension. Introduce the variables

u' and v’ by the definitions
u(z,t) = u+ u'(z,t) (3.17)

v(z,t) =0+ ' (,1) (3.18)

where u' = u — 4, for example, measures departure from uniformity, it can be
identified with the disturbance (perturbation) in cell density. We consider v’ and
v' to be small.
To obtain equations for u’, we substitute (3.17) into (3.10)
ou’ 0%/

—=D1——X<(7E+u')

0% ou' o'
ot 0x?

This equation is nonlinear, owing to the presence of the quadratic terms u'(9%*u’/0x?)

and (0u'/0z)(0v'/0z). We shall also assume that the derivative of v’ and v’ are

small. Therefore products of two small terms should be negligible in comparison

14



3.2 Analysis of the Keller-Segel Model

with the other terms, which contain but a single perturbation. We thus linearize

the equation by deleting all nonlinear terms and obtain

ou' D 0%u’ 0%

o = D T (320
As for (3.11), upon substituting (3.18) we obtain

o ! 82 !

a—: = 26—;2 +au' — B (3.21)

which is already linear.
We equip the perturbation equations (3.20) and (3.21) with no-flux boundary

conditions and smooth initial conditions.

8 !

6_u =0 at z=0,z=L  and u'(x,0) given (3.22)
T

o' , .

e 0 at z=0,z=1L and v'(z,0) given (3.23)
T

With spatial variation, u’ and v’ satisfy
uy, =0 vy =oau — B (3.24)

Linearising about the steady state (u,v) we set

y=(u2y) 329

and for small |y|, equation (3.24) becomes

y:+= By  where B = ( 2 _Oﬁ ) (3.26)

with B is regarded as the stability matrix. We now look for solutions in the form

y o< e (3.27)

where ) is the eigenvalue. The steady state y = 0 is linearly stable if ReA < 0
since in this case of perturbation y — 0 as t — oc.

Now we consider the full system of equations (3.20) and (3.21) and linearize
about the steady state, which with equation (3.25) is y = 0 to get

D va
y: = AV’y + By A:( 01 52“) (3.28)

15



3.2 Analysis of the Keller-Segel Model

To solve this system of equation subject to the boundary conditions, we define
Y(r) to be the time-independent solution of the spatial eigenvalue problem de-
fined by

VY +k*Y =0 (n-V)Y =0 r on boundaries (3.29)

where £ is the eigenvalue. The general solution of the equation is
Y (z) = Cicos(kz) + Cysin(kz) (3.30)
Taking account of the boundary conditions which then force Cy = 0, we get

m”) (3.31)

Y  cos (T
where n is positive integer and we take C; = 1. The eigenvalue in this case is
k = mn/L, it also represents the wavenumber of the perturbation and n is the
mode (2L/n is the wavelength in this example).

With finite domains there is a discrete set of possible wavenumber since n is
an integer. Let Y(r) be the eigenfunction corresponding to the wavenumber k.
Each eigenfunction Y, satisfies no-flux boundary conditions. We now look for

solutions y(r,t) of equation (3.28) in the form
y(r,t) =) e e Yi(r) (3.32)
k

where the constants ¢, are determined by a Fourier expansion of the initial con-
ditions and A is the eigenvalue which determines temporal growth. Substituting
this into (3.28) with (3.29) and cancelling e, we get, for each k

AY, = BY; — k2AY, (3.33)

For nontrivial solutions of Y, the A are determined by the roots of the char-

acteristic polynomial
M —B+EAl =0 (3.34)

Inserting the elements of A and B and taking the determinant equals to zero,

A+ k2D, —kxu

o a+B4rD, |0 (3.35)
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3.2 Analysis of the Keller-Segel Model

The resulting equation for A is then
X2+ [B+ k*(Dy + Do)]A + [k* D1 Dy + k*(D, B — axi)] (3.36)

or, after rearranging terms, the quadratic equation in A

M4+gh+y=0 (3.37)

where
q=k (D, + Dy) + 3 (3.38)
v = k*[Dy(D2k* + B) — xiia] (3.39)

For a system with two roots of equation to be instable, one root of real part
must be negative and the other must be positive. Suppose that we take the real
part of ¢ to be positive, then it is necessary that the value of v be negative. There-
fore the condition for instability, or for aggregation to commence is determined
by

D (Dyk* + B) < yiia (3.40)

By k = nn/L, the inequality (3.40) implies

nm

T )2+ B| < xta (3.41)

D, [DQ(

The perturbations are characterized by their linear growth rate and wavelength
2L/n.
From these results we can see that to satisfy instability of the inequality (3.41)

it is necessary to have one or several of the following conditions:
1. Values of Dy, Dy, §, and/or n must be small
2. Values of L must be large
3. Values of x, @, and/or o must be largee

This means that the factors elevating the onset of aggregation which leads to

instability are:

1. Low random motility of the cells and low rate of degradation of attractant
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3.3 Chemotactic Collapse

2. Large chemotactic sensitivity, high secretion rate of attractant, and a high

density of cells at steady state @

For D. discoideum amoebae, it has been observed experimentally that its onset of
aggregation is accompanied by an increase in chemotactic sensitivity and cAMP
production. It appears that these changes bring about the condition for insta-
bility, given by inequality (3.41) that leads to aggregation. Edelstein-Keshet (6)

added several other factors that also stimulate aggregation:
1. Aggregation is favored more highly in a larger domains than in smaller ones,

2. The perturbations most likely to be unstable are the perturbations with

small n, asn=1orn=2.

3.3 Chemotactic Collapse

Due to the quadratic nature of the convective term V - xuVv, chemotaxis model
of equations (3.10) - (3.11) is expected to have solutions exhibiting chemotactic
collapse, i.e., such that the solutions may blow up in finite time for which under
suitable circumstances the density of population should concentrate in a single
point in finite time. In mathematical terms, this means formation of a Dirac

delta-type singularity in finite time, i.e.,
u(z,t) = Po(xy) ast—T (3.42)

for some T' < 0.
P= / u(z,t)dr = / ug () dx (3.43)
Q Q

Blow up has been studied to be connected with space dimensions, which also
has been shown to appear in radially symmetric solutions. In the linear case of
chemotactic sensitivity as in equation (3.10) where x is regarded as a constant,
blow up in finite time never occurs in one dimension d = 1 (unless there is no
diffusion of attractant). But blow up can always occur in d-D for d > 3. The
d = 2 is a borderline case and there is threshold found for radially symmetric

solutions. When the initial distribution exceeds this threshold, the solution may
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3.3 Chemotactic Collapse

blow up in finite time. When the initial distribution is below this threshold, then
the solution exists globally.
To better understand the scenario of collapse of the radially symmetric solu-

tions, we introduce an auxiliary mass function in a radial domain €2,

M= / r L u(r) dr (3.44)
Q
of the radial coordinates
Ay tr0 0 (3.45)
YSrar oY )

Brenner and Betterton in (2) noted that if the experiment for chemotaxis
takes place in a petri dish, it is not a quasi-two-dimensional. They explain critical
dimension which is conceivable by comparing the chemotactic and diffusive fluxes
in a contracting structure using cylindrical coordinates which we describe below.

From equation (3.44) we define M'P M?P and M3P as mass per unit area,
mass per unit length with height (cylinder), and mass contained within a sphere,

respectively, in accordance to the space dimension,

MlDz/udr, MQD:/rudr, M3D:/r2udr
Q Q Q

If the chemotaxis is conducted on sheet with thickness [ which is regarded as
experiment in one dimensional with d = 1, the inward diffusive flux is of order

Chemotactic flux - which we consider caused solely by the production of attractant
- follows by integrating Dov,, ~ au to get v, ~ aD, " [udr ~ aDy'M'P. The
chemotactic flux becomes

Jo ~ xuv, ~ axuM'P D;! (3.47)

If the system collapses onto a plane, the thickness of the sheet [ — 0. This makes
the diffusive flux J; explodes (because of division by zero) while the chemotactic
flux J; is unchanged. Hence the plane with small thickness is unable to reach
infinite density, because diffusion dominates and eventually stops the collapse.
For higher dimension space, the chemotactic flux of symmetric spherical col-

lapse is singular. By balancing DyAv ~ au, we get (r’v,), ~ ar*uDy ! which
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3.4 Modified Keller-Segel Model

implies a concentration gradient v, ~ aM3P(I2D,). The net inward flux of cells

in higher space dimension becomes

—Dju N axuM?’ D;?
l [?

Jy ~ (3.48)

In this equation we can see the domination of inward flux (second term) as [ — 0
which then causes collapse.
For the borderline case in two dimensions, by (rv,), ~ aruD;*, the inward

flux is
—Dou + axuMQDDQ1

l
The chemotactic and diffusive fluxes scale the same way with [. If M?P >

Dy D, /(ax), there is a net inward flux which suggests that a system with mass
above this critical value collapse.

See articles by Miguel A. Herrero et. al. (9), Herrero and Veldzquez (10) (11),
Jager and Luckhaus (19), and Nagai (27) (26) for further studies of blow up and

its dependence on space dimensions.

3.4 Modified Keller-Segel Model

Since the results by Jager and Luckhaus, blow up solutions have been quite
well understood and there are scores of literature on blow up solutions. The
historical development of the Keller-Segel model with blow up is summarized by
Dirk Horstmann (18) in two reviews.

However, the scene of blow up (particularly in slime mold amoebae D. dis-
coideum) is still obscure and mathematicians have various interpretations of blow
up into its biological aspects. Herrero and Veldzquez consider blow up as a sim-
plified model for the formation of sporae while Hillen and Painter interpret the
aggregation and formation of fruiting body for sporae as a mechanism of blow up
prevention.

As it has been elucidated in Chapter 2 previously, chemotaxis also plays em-
inent role in inflammation. Chavez-Ross et. al. (5) and references therein ex-
plain about entanglement of chemotactic behaviour of glial (nonneural) cells and

Alzheimer’s disease (AD). The cells, microglia and astrocytes, activate when there
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3.4 Modified Keller-Segel Model

exist inflammation, which causes cells to proliferate and migrate chemotactically
to sites of injury where they secrete a host of chemicals, including cytokinesis.
Microglia, which is 10 - 15 pym in size, distributed sparsely in the brains of healthy
individuals (e.g., 0.3 cells per 10*um? in temporal neocortex), but found at much
higher densities in AD (between 100 and 350 reactive microglia cells in a section
10*um? in area and 30um thick in a hippocampus of an Alzheimer’s patient).
This high density is deemed to result from aggregation of chemotaxis.

We may deduce that some cells possess a mechanism to obstruct population
overcrowding while some cells unfortunately don’t, as we can see from the case of
Alzheimer’s disease above. Therefore it is interesting to study mechanisms that

could prevent collapse of the cell density. Hillen' suggests various types:
1. Saturation effects,
2. Volume filling effects,
3. Quorum sensing effects,
4. Finite Sampling radius.

We are interested in the volume-filling effects which are a mechanism of finite
size of individual cells. In this approach, assumption is put on the probability of
making a jump that depends upon the availability of space into which cells can
move. It has been delineated by Painter and Hillen, in volume-filling mechanism
cells are chemotactically migrating towards an increasing attractant gradient.
Consider figure (3.1).

Cell A is in a low density region and can move freely to any direction though
the chemosensitive bias is to the right. Cell B, on the other hand, is in a semi-
packed environment is inhibited moving to the right due to the lack of space,
although it experiences a bias to that direction. Cell C is completely seized on
all directions, and unable to move.

In this mechanism, chemotaxis equations are derived from reinforced random
walk motions proposed by Othmer and Stevens (29) which are then used to

get a set of continuum models to describe cell movement. Othmer and Stevens

"http://www.math.ualberta.ca/~ thillen/chemotaxis.html

21



3.4 Modified Keller-Segel Model

Increasing chemoattractant concentrati>

e
O
® @O QO%OO
0" 83850
O 570 030

(a) volume filling approach

Figure 3.1: Volume-filling mechanism, taking from Hillen & Painter’s article (16)

introduce master equation for a continuous-time, discrete-space random walk on
a one-dimensional domain of equidistant lattice (though the derivatives extend to
higher dimensions without change and the general result in each case is usually
simplified). This description was labelled a space-jump process. Suppose wu;(t)
is defined as the conditional probability of a walker (or cell) to be at i € Z at
time ¢, conditioned on beginning at ¢ = 0 at £ = 0 and it evolves according to
the continuous-time discrete space master equation and by restricting attention

to one-step jump,

8ui
ot

= TE Wi + Ty (Wi — (T (W) + Ty (W) us (3.50)

where ‘.TZ:'E() are the transitional-probabilities per unit time of a one-step jump to
i+ 1, and (T;/(W) + T;(W))~! is the main waiting time at the ith site. These
are assumed nonnegative and suitably smooth functions. The vector W is given
by

W= ("-aw—i—l/Qaw—iaw—i—i—l/Za -y Wo, W12, ) (3-51)

where w is the control species defined on the lattice of half the step size.

The model of equation (3.50) simply describes the changing particle/cell num-
bers as individuals enter or leave a site.

The decision of when and where to jump is relied upon additional factors, such

as external concentration of a chemical substances. Thus we have a spatial-bias
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3.4 Modified Keller-Segel Model

in the random walk which we assume to be caused by v, a vector representing
the chemical concentration and defined in the similar way as W above. Then,
TE =T ).

The cell movement can be modelled by dividing the one-dimensional lattice
into a finite segment (—N,N). We extend u and v as even functions about —N
and N. The net flux across the boundary under suitable conditions on T can be
ensured to be zero in the continuum limit of the one-dimensional problem, and
this will yield a conserved mass.

Painter and Sherratt in (32) describe various types of models of biased move-
ment of a cell on a lattice, where the jump probabilities depend on a variety of
environmental factors (e.g. other cell populations or chemical concentrations).
Those sensing strategies are:

1. Strictly local model : information only at the present position is considered.
By choosing T; = T;" = f(v;) where v; represents the information at i (or,

in our case, the chemical attractant), the master equation becomes

aui
ot

= f(vir1)tipr — 2f (vi)ui + f(vim1)uia (3.52)
and under appropriate scalling, the continuum model of PDE is derived

2
ou Da

= =D (o)) (3.53)

2. Neighbour based model : considers information at the target jump site. Here
the 75 = g(v;11) and results in for the master equation

au,-
ot

and in the PDE limit

Ou_ 0 ()a_“_ 0g(v)
at_ﬁxgvax “ag;

= g(vi) (Uiy1 + ui1) — ui(g(vit1) + g(viz1)) (3.54)

(3.55)

For decreasing g, this models processes such as “space-limitation”, where a
cell is only able to move into a neighbouring site if there is sufficient space

available.
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3.4 Modified Keller-Segel Model

3. Local average model : considers the average of the information between the
particles present and target site. By assuming T = h((vie; + v;)/2), the

master equation becomes

Oou; Vit1 + U Vi + Vi—1
5 h (T) (Uir1 —ui)) — h <T> (u; — ;1) (3.56)

and the PDE is derived as

n_2 (h@)%) (3.57)

4. Gradient based model : this model assumes transitional probabilities of the

form
T = w+ (T (viz1) — 7(v;)) (3.58)

where 7 represents the mechanism of signal detection. The resulting PDE
is

(3.59)

8_u_2 D@—% dr dz
ot Oz ox dvdm

5. Combined model : a combination of the previous models may be necessary

to most accurately reflect cell movement. The master equation becomes

T = f(0)g(viz) (W + @(7(v3) = 7(viz1))) (3.60)
and the PDE corresponding to this combined movement rule is

o = 5 |90 500 = 105 4 ugto) 1)

(3.61)

For the interaction of two cell populations, or interaction between cells and a

chemical substance, the corresponding equations would be as follow

% -2 <f(v)az +u aJ;E} )ax) — — Strictly local model,

2_7: _ 32 (g yu 85} v) gz) — — Neighbour based model,

g_“; - (% (h ) — — Local average model,

g_;‘ _ % ( ‘9“ L gZ) — — Gradient based model.  (3.62)
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3.4 Modified Keller-Segel Model

where here u denotes the density of the cells (or one of the densities in the
case of two interacting species), and v denotes the concentration of the chemical
attractant or the other cell density.

Meanwhile, thinking about how the total cell density can affect the movement
properties of the cells, there are (so far) three models that are led to dispersal of
the population:

1. “Population pressure” — A high cell density results in increased probability
of a cell being “pushed” from a site, for example due to the pressure ex-
erted by neighbouring cells. This might be achieved using the strictly local

formulation and f(v) increasing.

2. “Limited space” — No more cells can enter a site above a total cell density.
This may be achieved either the neighbour or local average-based model,
and choosing g(v) or h(v) such that there exists some T for which ¢g(7") = 0

when v =1T.

3. “Gradient detection” — Cells may detect and respond to a local gradient
in the cell density, achieved by the gradient-based model. This model has
been employed extensively in chemotaxis. To ensure that cells move down

gradients in the total density, we require x(v) > 0.

For the chemotaxis with volume-filling mechanism, we use the gradient de-
tection model, where we assume that before making decision of moving, cells
examine the environment by detecting the difference between v at the current
point (v;) and the the nearest neighbour (v;1;) in the direction of movement.
For simplicity, only linear dependence on nearest-neighbour differences can be
treated, as in equation (3.58). For the transitional probabilities of that form,
w > 0 and ¢ are constants, w is not small compared to ¢ and the variations
T(vix1) — 7(v;) are not too large.

We consider ¢(u) as the probability of the cell finding space at its neighbouring
location. By assuming that the probability of jumping into a neighbouring site
is dependent upon the amount of space available at that site, the transitional

probabilites for this model become (16)

T = quiz1) (@ + o(7(viz1) — 7(v3))) (3.63)
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3.4 Modified Keller-Segel Model

Substituting equation (3.63) into the master equation (3.50), gives

881? = q(u) [w+ o(7(vis1) — 7(v:)] wim1 + q(wi) w + (7 (vi) — T(vit1))] it

= la(uit1) (@ + o(T(vig1) — 7(v3))) + q(uim1) (@ + @(7T(vim1) — 7(vi)))] us
= wlg(ugui1 + q(ui)uiyr — (q(uir) + qui1))ui]
@(q(ui) (1(vi) — 7(vie1))uiz1 + q(ua) (T(vi) = T(Vi41))uit1
—=q(wir1) (7 (vie1) — 7(vi))ui — q(uiz1)(7(vie1) — 7(vi))ws) (3.64)

_|_

We set © = ih, reinterpret x as a continuous variable and extend the definition of
u; accordingly. As the spatial scale, h, is changed, the transitional probabilities
to jump to a neighbouring location must depend on that scale. For some scaling
constant k, it is assumed that ‘J',“L—L = %‘J’i. And as the right hand side in powers

of h is expanded, we obtain for the density u(z,t) in continuum PDE

o _, ( u U%(U)) okl (Q(u)uaT(“)) +0(h?)  (3.65)

ot (u) or? or? ox ox

in the limit of h — 0, divergence form reads

(37; 8‘1 (Dl( (u) = q’(u)u)g_z - q(u)ux(v)g—D (3.66)
where
Di=ke and  x(v)=2kp (3.67)

dv
The diffusion term of this form looks similar to that of Porous Media Equation

(PME). The application of PME to biological populations has been studied by
Gurtin and MacCamy (8). Adopting Gurtin and MacCamy assumption to use
increasing function in the diffusivity when populations behave so as to avoid
crowding, we relate to the model in equation (3.66) that ¢(u) —¢'(u)u is supposed
to be an increasing function.

For this purpose, Allee Effect in model of population dynamics can be one
logical choice for ¢(u), with its simplest form (6)

q(u) =2 — (u—1)3 (3.68)

Allee effect represents a population that has a maximal intrinsic growth rate at

intermediate density, as in figure (3.2).
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3.4 Modified Keller-Segel Model

)

Figure 3.2: Allee effect

Clearly by using equation (3.68), then we have g(u) — ¢'(u)u = u? + 1 which
is of parabolic in increasing form.

Another choice for g(u) suggested by Painter and Hillen in (16) is

u
U 7
max

q(u) =1-— (3.69)

which states that the probability of a jump into a site decreases linearly with the
cell density at that site.

The density equation interpreted as a limiting equation for moderately inter-
acting cells may depend strongly on the dynamics of v, the chemical substance.
In particular, the growth of v determines whether or not blowup occurs. One
realistic type of dynamics for v is saturating growth. We borrow a model from
Michaelis-Menten Kinetics which is based on the fact that bacterial growth rates
may depend on nutrient availability. The mechanism is also known as Saturating
Nutrient Consumption Rate, explained as below. For low level of the nutrient
concentration ¢, bacterial growth rate given by equation (3.70) below is roughly
proportional to c. At high level of c, this rate approaches a constant value K, ;.
The saturating kinetics that are exhibited by numerous biological phenomena

formulated as
_ Kma:cC

K(©) K,+C

(3.70)

and illustrated in figure (3.3)
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K(C)

L L L L L L L L L
0 (o3

Figure 3.3: Michaelis-Menten kinetics

We incorporate the “volume-filling” using Allee effect and “Michaelis-Menten

kinetics” in our modified Keller-Segel equations which become

uy = V- (Di(v®+1)Vu) = V- (xu(2 - (u—1)*)Vv), (3.71)
v = DyAv+ 1€fu — Bu. (3.72)

3.4.1 Steady State Analysis for the Modified Keller-Segel
Model

We study the steady state of the modified equations in one dimension on the
interval [0, L] with zero flux boundary conditions, as given in (16). The cell
density for our new modified model evolves according to the equation (3.71).

Setting u; = 0 leads to
(Dy (v + 1N)uy — xu(2 = (u—1)*)v,) =0 (3.73)
Integrating once then results in
J = constant (3.74)

where J is cell flux, the expression in parenthese in equation (3.73). If the equation
(3.73) is confined to the domain [0, L] with the no-flux boundary conditions, then
J=0 at x = 0 implies that J = 0 for all . Thus

Di(u? + Dug — xu(2 — (u—1)*)v, =0 (3.75)
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3.4 Modified Keller-Segel Model

or
Dy (u® 4+ Vug = xu(2 — (u—1)*)v, (3.76)
We obtain 5 12
up = p(o) "2 (3.7
where
p(z) = Dllvz (3.78)

If we use the general ¢(u) in equation (3.77) and might arrange it into ordinary

form
du q(u)u

&~ " — g

this equation can be solved using method separation of variables by equating all

(3.79)

terms with dependent variable u to the left and integrate

_ A
/Q(U) ¢ (u)u du ~ ¢ (3.80)
uq(u)
and equating terms with x to the right hand side, yields
M(x) ~ /,u(ac)dx = Dlv(x) (3.81)
1
Solving (3.80), we have
U _ eME)
— =ce 3.82
q(u) (382
where M(z) as in equation (3.81), and ¢ can be specified using conservation of
mass
L B L
/ u(z)dr =Uy = / up(z) dz (3.83)
0 0
If we represent the left hand side of equation (3.82) by
u
Y(u) = —— 3.84
(W) = o (3.8)

and we consider ¢(u) to be decreasing function (including our chosen model),
then

oy qu) —ug'(u)
V' (u) = ey 0 (3.85)
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3.5 Finite Element Method

Hence ¥ is strictly increasing and invertible, and ¥~! is also strictly increasing.

Therefore the solution of (3.79) is given by

u=U"(c eM(””)) (3.86)
The steady state of chemical attractant equation is solved by setting v; = 0,
hence
€U
Dyvy, — v = — 3.87
2V pu 1+ u ( )

which is an elliptic boundary value problem. We can solve the equation that is

similar to the inhomogeneous 2nd-order differential equations by

€ u
— Ae™T 4 BeMm2T _
v(w) =A™+ B = 5

(3.88)

with u as in equation (3.86), we get m; and my from integrating factor of the

equation.

3.5 Finite Element Method

In this section, we develop the Finite Element Method using approximations
consist of continuous piecewise linear functions in space and discontinuous poly-
nomials of degree 0 in time, which is called ¢G(1)dG(0) method or the Backward
Euler method for the Keller-Segel models occupy homogeneous Neumann bound-
ary conditions.

Let I = [0, Tinae) be the given time interval and we discretize it on a subdi-
vision 0 =ty < t; < ... < ty = Tpnee into sub-intervals I, = (¢, 1, 1,] of length
kn=1t, —ty_1.

We give the Keller-Segel equations (3.10) and (3.11) the following variational
formulation by multiplying the equations with the so-called test functions w =
w(z,t) € H' such that

(ug, w) + (D, Vu, Vw) = (xu; Vo, Vw) Vw € H! (3.89)

(v, w) + (Do Vv, Vw) + (Bv,w) = (qu,w) Vw € H' (3.90)

(u,w)z/ /uwdet
I, Jo

where
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3.5 Finite Element Method

(Vu,Vw):/ /Vu-deth
I, Ja

(xu; Vv,Vw):/ /XuVU-deth
I Ja

and
H' ={w: /Q(|Vw\2 +w?) dr < oo} (3.91)

and the boundary conditions 0,u = 0 and Jd,v = 0 on 0f2 were used to eliminate

the boundary integral over 0f2 due to the Green’s formula
/Auwdx = Opuwds — / Vu-Vwdz (3.92)
Q o9 Q

We take Q to be a bounded domain in R? and assume the boundary 99 to
be smooth. Let us now construct a finite-dimensional subspace W), C H*. The
domain is discretized by a mesh of triangular elements in the z— and y—directions

by subdividing €2 into a set T, = Kj, ..., K,, of non-overlapping triangles K,

0= K=K UK,..UK,
KeTp,
such that there is no vertex of one triangles lies on the edge of another triangle,

and the mesh parameter

h = max diam(K)
KeT,

diam(K) = diameter of K = longest side of K

We now define W), as follows
W}, = {w : w is continuous on 2, w|g is linear for K € T}

The space W}, consists of all continuous functions that are linear on each triangle
K.

For the Backward Euler method, we replace the time derivative u; by the
difference quotient (u, —u,—1)/kn, see (20). The discretized finite element method
for the original Keller-Segel model reads: Find U, € Wj, and V,, € W), n =
0,1,..., N such that

/Unwdx—i-kn/DlVUn-dea::/Unlwdx—i-kn/xUnVVn-dex (3.93)
Q Q Q Q
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3.5 Finite Element Method

/Vnwd:r—l—kn/DQVVn-dex+kn/ﬁVnwd:r
Q Q Q
:/Vn_lwdac—i-kn/ozUnwdx (3.94)
Q Q

where U,, denotes the value at t = ¢, and U,,_; denotes the value at t = £, 1,
and g(U,) = eU,/(U, + 1). And the finite element method for the modified
Keller-Segel model of equations (3.71) and (3.72) follows

/ U,wdzx + kn/ Di(q(U,) — ¢'(Un)Un) VU, - Vw dz:
Q Q

= / U,_1wdx +kn/ xUnVV, - Vwdz (3.95)
Q Q

/Vnwdx—l—kn/DzVVn-dex—i-kn/5Vnwdx
Q Q Q

eU,
—/QVn_lwdx—l-kn/Q (Un+1w> dx (3.96)
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Chapter 4

Numerical Applications

4.1 Meshing

We take for () the square domain of L x L.

N

Figure 4.1: Domain and reduction by symmetry

By reason of symmetry we consider only a quarter of the domain €2, namely
(L/2,L/2), then the boundary conditions of symmetry 02

g—Z:O on 0f),
@—0 on 0N (4.1)
on o ’

The simulations were performed by the commercial finite element code FEM-
LAB on a PC with processor 1.7 GHz and 256 MB of RAM. The mesh trian-
gulation is generated using Delaunay/Voronoi triangulation. In all numerical
simulations, two meshes have been used in order to see if the spatial discretiza-

tion might affect the transient, as they are shown in figures (4.2) for domain Q
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4.1 Meshing

= square = 1 X 1. The two meshes are different in the growth rate. For the first
mesh we choose its mesh growth rate to be 1.2 and for the second mesh is 1.07.
Each mesh refinement is jiggled two times. We use as small as possible time step,
that is & = 0.0001 from k& = h? where h is the longest side of the smallest element,

for all simulations.

Figure 4.2: Square symmetrical meshes

The first mesh, as shown in the left part of figure (4.2), has 1112 nodes and
2065 elements. And the second mesh on the right side consists of 2230 nodes and
4283 elements.

It has been acknowledged in all literature about the Keller-Segel model, that
the solutions of the nonlinear strongly-coupled equations might result in sharp
gradients (or “spike”) that can pose stability problems in numerical methods.
Or, we consider as “blow up” in the previous section. We will see the sharp
gradients near the area of the center of aggregation in our simulations later. Here
we assume that we already have a priori knowledge of where the aggregations
form, by refining the mesh around the area.

For all simulations in this section, we choose an arbitrarily smooth function
for the initial value of the cells, ug = 0.5 — 0.1y, and about the homogeneous
steady state for the chemical concentration vg. Other physical parameters are
also chosen arbitrarily following the conditions given in inequality (3.41), D; =
0.0001, Dy =0.01, =1, and B = 0.1.
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4.2 Simulations of The Keller-Segel Model

In this part, we take L = [ = 1 length unit. We show the results for equations
(3.10) and (3.11) that yield sharp gradients after some finite time.

Figure 4.4: Bacteria concentration after numerical time t = 50

At initial state ¢ = 0, due to the initial condition of ug, the solutions show
linear increase from the boundary of domain to the center by 0.1 difference. In
the figure (4.4), at ¢ = 50 the solutions on the boundary of main domain tend to
decrease while the solutions near the center increase.

At numerical time ¢ = 100, we see the solutions near the center start to
oscillate. This is when the numerical instability starts to grow. And peaks or

sharp gradients are distinct when the solutions reach time ¢t = 174 for the first
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Figure 4.5: Bacteria concentration after numerical time t = 100

mesh (on the left side) or at t = 173 for the second mesh (on the right side)
of figure (4.6). Here we see the solutions oscillate and reach negative values.
The negative might be due to the difficulty of the numerical software to meet

integration tolerances and it requires smaller step size to cope with.

Wax: 128
Ma: 8514003
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2000

Figure 4.6: Very high sharp gradients after numerical time t = 174

Cross section views of the solutions at ¢ = 50,7 = 100 are as seen in figure
(4.7) and (4.8). The solutions continue to evolve in a manner leading to the
disappearance of number of peaks. At ¢ = 174 the peaks collapse into one or two
peaks which continue growing. The cross section for the chemical attractant at

the same numerical time is shown in figure (4.10)
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Figure 4.9: Cross section view of the sharp gradients of cell concentration equation at t =
174
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Figure 4.10: Cross section view of the chemical attractant at numerical time with peaks
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4.3 Simulations of the Modified Keller-Segel Model

With similar domain as in previous section, here we show the results of the modi-
ified Keller-Segel equations (3.71) and (3.72) using Allee effect and Michaelis-
Menten kinetics. Arbitrarily, with the same parameters for diffusive coefficients,
we pick € = 0.1 for the Michaelis-Menten kinetics equation of the chemical at-

tractant.

Figure 4.11: Bacteria concentration simulation with modified Keller-Segel equations after
numerical time t = 100

Figure 4.12: Bacteria concentration simulation with modified Keller-Segel model after nu-
merical time t = 500

At time ¢ = 100, the solutions slightly move from the initial condition. And
after t = 500, we can see slow increment of the solutions, which indicates the

starting of the inequality in equation (3.41). The solutions at numerical time
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t = 1000 are shown in figure (4.13). Here, at the center of aggregation, the cell
concentration moves up in such a way of not to cause overcrowding or peaks of

solutions.
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Figure 4.13: Bacteria concentration after numerical time t = 1000 (left figure), and the cross
section view (right figure)
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Chapter 5

Review of Chemotaxis Models

The Keller-Segel model that underlies chemotaxis has been studied and analyzed
from both microscopic (stochastical) approach and macroscopic approach. The

basis equations, or classical Keller-Segel equations,

ug = V- (Di(u,v)Vu) =V - (x(u,v)uVv) + f(u,v)
vy = V- (Dy(u,v)Vv) + a(u,v)u — B(u,v)v (5.1)

is a system that has a rich dynamics and possible behaviours of the solutions
include convergence to time independent solutions and the formation of finite
time blow up. The blow up is widely reckoned to depend on space dimensions,

in radially symmetric and nonsymmetric solutions.

5.1 Reviews from The Macroscopic Approach

Schaaf in (5) in 1985 discussed the following forms of chemotactic sensitivity as
function of chemical: (1) x(v) = x = constant, (2) x(v) = 1/v known as log form,
and (3) a receptor-kinetics form x = 1/(k + v)?, where k > 0.

Post in (33) studied chemotaxis using Lyapunov function by assuming the
chemotactic sensitivity in the form of ¥(v) = xS'(v) and §(v) = §S'(v) where
S'(v) denotes the first derivative of S (sensitivity funtion) with respect to v.

Rivero, also cited in (5), in 1989 discussed the dependence of diffusion coeffi-
cient on chemical attractant D(v).

Some models consider v; to be equal to zero by borrowing the results of bio-

logical experiments in semisolid agar, where the diffusion of bacteria is founded
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5.2 Reviews from The Microscopic Approach

slower than attractant diffusion, as modelled by Brenner and Betterton in (2),
Brenner et. al. in (3), Marrocco in (23), Chalub et. al. in (4), Herrero and
Velazquez in (10) (9), Herrero et. al. in (9), and Nagai and Senba in (27).

This macroscopic approach using continuum reaction-diffusion has been mod-
ified for blow up prevention. Such as the quorum sensing mechanism proposed by
Hillen in (15), new formulation to a model similar to quasi-Fermi level in semi-
conductor modelling by Marrocco (23), modification of attractant secretion using
Michaelis-Menten kinetics by Maini et. al. in (22) and by Grindrod in (5).

5.2 Reviews from The Microscopic Approach

Wolgang Alt in (1) discussed chemotaxis in stochastical models using turning fre-
quency and turn angle distributions, and estimated error using energy functional.

Othmer et. al. in (30) gave two stochastic processes for modelling biologi-
cal dispersal related to chemotaxis, by position jump process and velocity jump
process.

Hillen in (17) and (12) analysed chemotaxis in hyperbolic model of one di-
mension by employing turning rate for individual movement patterns. In other
articles (13) and (14), Hillen and Othmer studied diffusion-limit expansion of
transport equation to describe the motion of individual organisms governed by
Poisson process.

Coupling of kinetic model of chemotaxis to Poisson equation also was studied
by Chalub et. al. (4), where it is shown that finite time blow up does not occur

in the kinetic model under certain assumptions on the turning kernel.
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Correction
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Page 20: In this equation we can see the domination of chemotactic flux (second
term) ....

Page 20, equation 3.49:
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Page 32, equation 3.95:
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