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Abstract

The aim of this project has two parts: a) is to use the method of Nonpara-
metric Regression to estimate the variance of logreturn at time ¢ locally,by
concerning on calculating the weighted average of 72 in the two windows
(whose length is h (scale factor) each) on both sides of the point at time ¢
(expectation of logreturn) based on:

Ty =t € (1)

and check the volatilities of market model and the sample autocorrelations
of —— and |—2—| (Here, i am going to use two different datasets:S&P 500
N/TT) | \/m| ( gomg

and Dow Jones, b) after that, it is to estimate the market model by using
the joint bivariate normal distribution and linearity of the function:

E(Fit|rme) = os + Birme (2)

! (Here,i am going to use these two different datasets (S&P 500 and Dow
Jones) and IBM stock price to calculate 7 and 7,,;)

'We include a tilde()over the symbol to identify a random variable,when we refer to a
specific value of the variable,the tilde is dropped.
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Chapter 1

Introduction

The study of stock market has been popular till now. In studying this field,
we gained a lot of knowledge regarding Nonparametric Regression method
and Non — Stationary Multivariate Model for Financial Returns. In the
real world, actually we have a great amount of data, but we could not use
the whole dataset to do the estimation because it is too expensive and time
consuming, then the Nonparametric regression function emerged:

and the corresponding fucntions regarding kernel function and weight func-
tion and Leave-One-Out method, ct. Here, we need to know a few things
about Smoothing Techniques such as (a) which kernel we use and (b) which
kind of Smoothing we use.

Here we are going to use two different kernels: Epanechnilov kernel and
Normal Kernel and the smoothing method: ¥ — NN. And the next step is
to construct the Leave-One-Out function to get two different A values, then
construct the mean function of variances of daily logreturns (Actually the
expectation of variance of daily logreturns) to check the estimation since we
have to care about two most important factors: (bias and variance) and we
have to balance between these two factors.

In estimating the market model and mastering the regulations and rules of
the stock market, we have to know the behaviors of stock market, which
means we have to know something about the stock market returns(ri;, rm:)
and use the returns(ry) on one security and on the index (7,;) to do the
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multivariate analysis.

We will consider non-linear dynamics of modelling of financial returns here,
usually, the sample autocorrelation functions (SACF) of such time series are
of strong evidence of the non-linear nature. For example, the daily logre-
turns of the closing prices of the S&P 500 from January 1,1988 to November
21,2003 will result in time series of 4009 observations (the same dataset will
be used to estimate the market model). It is obvious that returns show almost
no autocorrelations at all lags, while the absolute returns have higher corre-
lations over several hundred lags (which we call it long memory in volatility)
(see Figure 1.1). From the figure, we see that the SACF of the absolute re-
turns remains almost constant after declining quite fast for the first few lags,
showing the evidence of long-range dependence in the time series of absolute
returns.
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Figure 1.1: SACF of S&P 500 logreturns (Left) and absolute logreturns (Right).
We did not show any confidence intervals for the correlation because
of unknown dependency structure

But, before we start to estimate the market model, we are going to explain
something regarding bivariate normality and linearity between individual se-
curity and index.

Define a new random variable,
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Figure 1.2: SACF of Dow Jones logreturns (Left) and absolute logreturns
(Right). We did not show any confidence intervals for the correlation
because of unknown dependency structure

Y= Zaigi (1.2)
i=1

which is a linear combination, that is the sum of weighted values of 1i,...,1/,.
Assuming that each of linear combination of ¢; is normal (for any choice
of weights (a, ..., a,), then the joint distribution of #i,...,4, is multivariate
normal. There is one property of multivariate normal distribution that we
can use. If the joint distribution of Rj,...,R, is multivariate normal, then
the joint distribution of any two different linear combination of R,...,R,, is
bivariate normal and this implies that the joint distribution of the return on
one security and on one “market” is bivariate normal. Now, we are going to
check the normality of R;(the return of IBM stock) and R, (the return of
two “market” indexes: S&P 500 and Dows), here we will use normality plot
and QQ plot as two techniques. The following figures are plotted based on
S&P 500 and IBM stock price and the last two figures are plotted based on
Dow Jones and IBM stock price.
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Figure 1.3: Normality plots of S&P 500 and IBM stock (top) and QQ plot of
S&P 500 and IBM stock

The rest of the thesis is organized as:

In chapter 2, we present a few equations which are indispensable for the con-
struction of the Nonparametric Regression functions like weight function
and density function, etc.

In chapter 3, we present and introduce the regression model for multivariate
returns.

In chapter 4, we check the fit of the market model by plotting different as-
pects of outcomes.

In chapter 5, we make a conclusion regarding what we do and employment
of the methodology and acknowledge some things



Normal Probability Plot

‘ ‘ ; 0.2
4t
0.999 01f .4 1
0.997
0.99 of ]
0.98
0.95 01} i
0.90 3
+
075 -0.2f E
2 8
= £
8 050 g 0.3 i
<] o
o >
0.25 —04l i
0.10
0.05 —05¢ 1
0.02
0.01 -0.6 b
0.003
0.001 o7t T g
—08 ‘ ‘ ‘
-0.05 0 0.05 201 -0.05 0 0.05 0.1
Data X Quantiles

Figure 1.4: Normality plot of Dows 500 (left) and QQ plot of Dow Jones and
IBM (right)



Chapter 2

Nonparametric Regression
Equations

Here, the major regression smoothing method is to be given in the following
and we are going to use a few corresponding equations.
First of all, we use Epanechnikov kernel which is:

K(u) =0.75(1 — u*)I(ju] < 1) (2.1)

The corresponding weight function and density function are the following:

Ky, (v) = hy 'K (u/hy) (2.2)
fr(x) =n"" Z Ky, (z — X;) (2.3)
Wai(z) = K, (& = X)/ fr, () (2.4)

Since we know the kernel function and the corresponding weight function and
the density function, we are going to construct the Leave-One-Out expres-
sion based on those and use this expression to construct the cross-validation
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function with the modified smoothers.
The jth observation in the whole dataset is left out:

i (X5) =07 ) Wii(X;)Y (2.5)
1£]
The cross-validation function is:

CV(h)=n" Z[Yj — 1 (X)W (X;) (2.6)

We minimize the above CV (k) to get the optimal value of A in order to con-
struct Nadaraya — Watson estimator, finally the regression function is:

i n~' YL Ki(z — X))V,
"o Z?:l Ki(z — X;)

(2.7)

The shape of the kernel weights is determined by K, whereas the size of the
weights is parameterized by h.
The regression relationship can be modeled as the following:

Y; = m(XZ) + Gi,i = 1, .y n, (28)

In equation 2.8, Y; represents square of logreturn and m(X;) represents the
expectation of square of logreturn.
Then we use the Normal Kernel:

K(u) = (27) %° exp(—u?/2) (2.9)

For the weight function and density function of Normal Kernel, we have
the similar forms as the ones displayed above, we will not display them here
once more,please refer to the previous equations.



Chapter 3

Regression Model For
Multivariate Returns

As we assumed above, we could use the bivariate normal distribution of R
and Rmt and the linear relationship between R,-t and Rmt to construct the
matrix form of the multivariate analysis.

Denote R; the m x 1 dimensional vector of returns at time ¢, and we concen-
trate on the models with constant mean yu:

(Re—p) —o(Re 1y — p) = U (3.1)

Where ¢ is a diagonal matrix of auto-regressive parameters and (U,) is the
sequence of innovations.

We assume (U;) to be a non — stationary sequence of independent ran-
dom vectors. The distribution of U; is characterized by a changing covari-
ance structure which is embodiment of complex market conditions. Here, we
choose to model the covariance as a deterministic, smooth function of time
and the approach leads to the following model:

U= S(t)e, t =1,2,..n,where (3.2)

S(t) is an invertible, lower-triangular matrix and a smooth, deterministic
function of time,



€; is iid sequence of random vectors with mutually independent coordinates,
such that F(e;) =0, Var(e) = Iy,

We should emphasize that random effects play role in volatility dynamics
and this modelling approach only reflects both recent past and close future
returns are embodiment of the same unspecified, exogenous economic factors.
In our model, the economic factors are of the unconditional variance and our
methodology quantifies the expression of these economic factors in the recent
past (due to moment ¢) prices.

In order to fit this regression model to a time series of returns, we obtain the
estimated innovations:

U =(R —R) —¢(Ri.1—R),t=1,2,...,n (3.3)

Where 7; = n~1 Z?:l 7i+ is the natural estimator for the mean ;1 and qg is the
m x m diagonal matrix whose non-zero entries are the auto-regression coeffi-
cients estimated-wise. Note that the estimated innovations U, are supposed
to be independent with covariance matrix S(¢)S’(t), a smooth function of ¢
and the function S(t)S’(t) can be estimated by the standard non-parametric
regression method by using the series Utf]t’, t=1,2,...n.

The last step is to model the distribution of the estimated standardized in-
novations which are defined as:

& =St )U,t=1,2,..,n(3.4)

In our case we have the following model:

R =X (3.5)
Rt = o (t)em(t) (3.6)
Ry = B(t)om () em(t) + os(t)es(2) (3.7)
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R,,; and R, here represent the standardized returns on market and on one
security at time ¢, and $(¢) is the correlation coefficient between R,,; and Ry
at time t,t =1, 2, ...,n,where

B(t) = Cov(Ro, Ryr) /0% () (3.8)

Because:

Cov(Tmt, 7st) = Cov (o (t)€me, B(t)Om(t)€me + 0s(t)€st)

= Cov(om(t)emt, B(t)om(t)em(t) + Cov(om(t)eme, 0s(t)€st)
= o, (1)B(t )+0m( Jos(t)

o (1) B(2)

(3.9)

So,we can estimate expectation of RR? since we already know that e is iid,

E(RR") = E(Zec"Y7) = BE(ee” )Y = 287 (3.10)

Through matrix calculations it is interesting to see that:

v omt)? p(t)om (t)?
= ( Bt)om(t)? | B(t)?om(t)? + os(t)? )

As we found in (3.8), the relationship between R,,(t) and Rs(t) is nicely
explained, the top right element divided by the first entry on the diagonal
is just the S,(¢) which can be interpreted as the risk of security s measured
relative to the risk of the index m at time ¢,7 = 1,2, ..., n. We will estimate
Bs(t) and analyse f,(¢) in the next chapter and it is also our point.
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Chapter 4

Modelling Returns of S&P 500
and Dow Jones

4.1 Modelling Returns of S&P 500

In this chapter, we will apply the method we introduced in the previous
chapter to the time series of daily returns of S&P 500 and Dow Jones from
January 1,1988 to November 21,2003 (4009 observations). See figure 4.1 and
4.2.

L L L L L L L L
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Figure 4.1: Log Returns of S&P 500 from 01/01/1998 to 11/21/2003
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Figure 4.2: Log Returns of Dow Jones from 01/01/1998 to 11/21/2003

Here, we only use the one-sided evaluation weighted (Nadaraya-Watson)
estimator to display the time-varying standard deviations:

&Q(t) _ Z1gi§t Kh(i - t)RiQ
' Zlgigt Kh(i - t)

(4.1)

4.1.1 Estimation Based on Epanechnikov Kernel

Due to equation(4.1), Ku(-) = h71K(-/h) and K is the Epanechnikov
Kernel with band width parameter h = 20, where R; is defined as:

Rt = Xt - Xt—l (42)

with X; = n~1 Z§:1 X; being the natural estimator for the mean p based
on returns up to day ¢ and 62(-) being an estimator of the unconditional
variance o2(-) based only on the past information.
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Figure 4.3: Estimated volatilities of index S&P 500 returns using one-sided
smoothing based on Epanechnikov Kernel

The volatilities depicted in figure 4.3 reflect consecutive fluctations of be-
ing high, low and high which are less obvious from figure 4.1.
In the following picture 4.3, there displays 3(t) at time ¢,¢ = 1,2, ...n which
interprets the risk of security s measured relative to the risk of index m or
is interpreted as the market sensivity of the return on security s, we will see
that the estimated values of 3(t) differ mostly between 0 and 2, with few
exceptions which are quite large.

Let us have a look at the market model as follows:

E(Rit|Rmt) = 0 + BiRoms (4.3)

Again, we are going to show the estimated volatilities of security s in figure
4.5

Compared to figure 4.3, it is quite clear to note that the estimated volatili-
ties of IBM stock are quite smaller than those of index S&P 500 at the most
of the time range, only with a few exceptions in several short periods, from
this, we get the feeling like IBM stock is safer than the whole index.

Based on our previous assumption that the innovations e are of standard
normal distribution with E(e) = 0,Var(e) = I,,, we need to have a look at
SACFs of innovations to see the correlation relationship between them, since
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Figure 4.4: Estimated risk of security IBM measured relative to the risk of index
S&P 500 based on Epanechnikov Kernel

we already know the innovations are independent theoretically.

In these two figures 4.6 and 4.7, we have a confidence level at 5% to mea-
sure the feasibility of the market model. Noting that SACFs of the market
model vary mostly in the confidence interval which is from -0.0311 to 0.0311
(the boundary values of the interval are the same because € belongs to stan-
dard normal distribution with mean zero), we might say the innovations are
almost uncorrelated with this confidence test at 5%,let us review the market
model which is:

r = e (4.4)
The market model suits the data fairy well.

4.1.2 Estimation Based on Normal Kernel

In this section, we are going to use another kind of kernel which has different
kernel weight function and corresponding density function, here, we are going
to plot the volatilities of IBM stock and index S&P 500 again to see whether
the model still suits the data by using another kernel, namely, whether we still
have nice plots of SACFs of €. As we did before, we still use the multivariate
analysis based on the normal relationship and linearity between the stock
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Figure 4.5: Estimated volatilities of IBM returns using one-sided smoothing
based on Epanechnikov Kernel

and the index.
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Figure 4.6: SACFs of innovations:the left one is of IBM stock, while the right
one of index S&P 500 based on Epanechnikov Kernel

Where bandwidth A = 24 and kernel K = 27 %%exp(—u?/2). Now,
we have checked the market model by using two different kernels based on
index S&P 500, through the figures from 4.3 to 4.12 which describe several
features of the market model, we surprisingly can find that there is no big
difference between features of market model based on two different kernels,
and regarding separate feature of market model, we have small values of
volatilities and small SACFs, which means we have a good estimate and the
market model suits both indexes.

4.2 Modelling Returns of Dows

We have the estimates of market model based on dataset S&P 500 in the
previous section, again, we are going to test the fit of the market model by
using another dataset which is Dow Jones by using the same period of time
period (the same number of observations) as we did before. Similarly, we
will present plots of volatilities and 3, SACFs of innovations as well.

4.2.1 Estimation Based on Epanechnikov Kernel

We have seen the estimated volatilites regarding Epanechnikov Kernel by
using S&P 500, this time, as well,we are going to use the same Kernel to plot

17
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Figure 4.7: SACFs of absolute innovations:the left one is of IBM stock, while
the right one of absolute innovations of index S&P 500 based on
Epanechnikov Kernel

what we want to see, especially the dependency structure of innovations.
Because of different dataset and kernel, we will use h = 22 here which is
calculated based on Nonparametric Regression function.

4.2.2 FEstimation Based on Normal Kernel

This section again, includes several figures based on normal kernel, and the
corresponding value of bandwidth is A = 26 here.Still, we can have a look at
the plots and check the dependency structure of the innovations and check
the fit of the market model to the dataset.
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Figure 4.8: Estimated volatilities of index S&P 500 by using the one-sided
smoothing based on Normal Kernel
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Figure 4.9: Estimated risk of IBM measured relative to index S&P 500 based on
Normal Kernel
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Figure 4.10: Estimated volatilities of IBM stock based on Normal Kernel
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Figure 4.11: SACFs of innovations of index S&P 500(left) and IBM stock(right
based on Normal Kernel
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Figure 4.12:

Figure 4.13:

SACFs of absolute innovations of index S&P 500(left) and absolute
innovatons of IBM stock(right) based on Normal Kernel.
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Figure 4.14: Estimated risk of IBM stock measured relative to index Dow Jones
based on Epanechnikov Kernel
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Figure 4.15: Estimated volatilities of IBM stock based on Epanechnikov Kernel
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Figure 4.16: Estimated SACF's of innovations of index Dow Jones and IBM stock
based on Epanechnikov Kernel
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Figure 4.17: Estimated SACFs of absolute innovations of index and IBM stock
based on Epanechnikov Kernel
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Figure 4.18: Estimated volatilites of index Dow Jones based on Normal Kernel
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Figure 4.19: Estimated volatilites of IBM stock based on Normal Kernel
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Figure 4.20: Estimated risk of IBM stock measured relative to index Dow Jones
based on Normal Kernel
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Figure 4.21: SACFs of innovations of IBM stock and index Dow Jones based on
Normal Kernel

25



0.05 T 0.12
0.04f 0.1
0.03 0.08
0.02 0.06
0.01 0.04
0 0.02
-0.01 b 0
-0.02 q -0.02}
-0.031 b -0.04 l |
|
-0.04 » L —-0.06
0 50 100 150 0 50 100 150

Figure 4.22: Estimated SACF's of absolute innovations of index Dow Jones and
IBM stock based on Normal Kernel

26



Chapter 5

Conclusions and
Acknowledgements

We have employed two different kernels: Epanechnikov and Normal and
two different datasets: S&P 500 and Dows to test the market model by
plotting several aspects of the outcomes, especially concerning the SACFs
of innovations of IBM stock and these two datasets (Please check figures
4.5,4.9,4.13,4.17, we found that most estimates of SACFs are within the
confidence interval [-0.0311,0.0311] which indicates the dependency structure
of innovations and also matches the original assumption that innovations are
independent. We also checked the plots of volatilities of the datasets and
the security, we could see the fluctuation of volatilities due to the one-sided
evaluation weighted estimator (see equation 2.7). In general, we could say
the original assumptions of the market model are reasonable and the assumed
market model fits the data quite well by checking the dependency structures
of innovations.
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