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ABSTRACT

In this paper, we study the numerical approximation of a stochastic partial differential equation.
We propose a finite element method, then implement backward Euler method. We show that this
method is stable, derive error estimates and present numerical experiment illustrating the method
and error estimates.

1. INTRODUCTION

A stochastic partial differential equation (SPDE) is a partial differential equation containing a
random (noise) term. The study of SPDEs is an exciting topic which brings together techniques
from probability theory, functional analysis, and the theory of partial differential equations.

Many natural phenomena and engineering applications are modeled by stochastic partial dif-
ferential equations. These have been extensively analyzed. Many interesting numerical methods
for approximating SPDEs have been developed and tested. The main objective of this thesis is to
investigate the finite element approximation of a parabolic stochastic partial differential equation
driven by white noise. This method was proposed and analyzed in [1]. We give alternative proofs
by the technique developed in [2].

Let Q = (0,1) with boundary ', Ry denotes the time interval. The parabolic equation is of
the form
U — QUgy +bu=g¢g, in QX Ry,

(1.1) u(t,z) =0, on T x R4,
u(0,2) =ug, in €,
where u; denotes % and Uz, the %, and u = u(t, z). In this paper we will consider the following
parabolic stochastic partial differential equation,
ut—aum—l—bu:82W—|—g, in Qx Ry,
(1.2) u(t,z) =0, on T'x Ry,
u(0,x) = uo, in Q,

where 9°W denotes gt—aw and 9°W is the mixed second-order derivative of the Brownian sheet.

W = W (t,z) is the Wiener process. We introduce a partition of Q x Ry, let 0 = 1 < a2 <
<zy=1land 0=t <ty <--- <ty =T where z; = ({ — 1)Az and t; = (j — 1)At. Let
h=Ax=1/N and k = At = T/M. A reasonable approximation to dW (¢, z) is

1.3 AT = L [T awdsa
(1.3) _ﬁ/ / sdz,

Let @ = 4(t, ) be the approximation of u given by
Uy — afigy + b= 0*W +g, in Qx Ry,
(1.4) a(t,x) =0, on I'x Ry,
(0, x) = uo, in Q,

where 82W(t, x) is a piecewise constant function

(1.5) O*W(t,x) = Exz%V_m X;(x),

if ti S t S tz+1 1 if Zj S x < Tj+1
. ’ ; = ’ ’ d
otherwise, i(®) otherwise, an

ti1 w]+1

ie., n;; € N(0,1) are independent 1dent1cally dlstrlbuted random variables.
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Let HS denote the space of Hilbert-Schmidt operators from H to H, i.e.,
HS = {v e L(H): Y [bell® < oo}
1=1

with norm

> /
lls = (3 lwed’?)
=1

lv]] = / v2ds,
Q

{e;} is an arbitrary ON-basis for H. Let E denote the expectation. Let ¢(s) € HS, then

/ () (s

where H = Lo(£2) with the norm

can be defined and have the isometry
t t
Bl [ W@ = [ 1o)sds
According to the standard finite element method, based on the weak formulation of (1.4), find

ap(t) € Sy, C H, such that

(itn,t:X) + (D, DX) + b(it, x) = (°W,X) + (9,X), VX € Sp,t >0,
The backward Euler method has the form

(U™ = U1, X) + ka(DU™, Dx) + kb(U™, X) = k(9* W, X) + k(gn, X),

we will discuss the details of this method in the following sections.

2. THE ERROR FOR APPROXIMATION OF THE NOISE

The following is Theorem 2.3 in [1].

Theorem 1. Let 4 be the solution of (1.4) and u be the solution of (1.2). Then

T /1 h?
E/ / (u(t,2) = lt,2))*drdt < (k' + crmis),
0 0

where ¢1 and co are constants independent of k and h, t € [0,00), k and h are timestep, spacestep
respectively.

Proof. We write the proof for a =1 and b = 0 only. We introduce the fundamental solution of

ve(t, ) — Vg (t, ) = 0, in Qx Ry,
v(t,0) =v(t,1) =0, on I x R,
v(0,2) = ¢(x), in Q,

namely Gy¢(z,y) =2 .2, sinnrzsin nmye~ (M’ 5o that

olt,z) = / Gi(, ) (y)dy.

Hence, we have

at,x) = /01 Gt(:v,y)uO(y)der/ot /01 Gt—s(:v,y)dW(say)+/Ot/oth—s(w,y)g(say)dyds,
u(t,x) =/01 Gt(:v,y)uO(y)der/ot /01 Gt—s(:v,y)dW(&y)+/Ot/Oth-s(w,y)g(say)dyds,
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and we define

(2.1) F(t,) //atsxydwsy //GtsxydW(sy)

Thus e(t,z) = u(t,x) — a(t, ) = F(t,x). Taking expectations of both sides and letting

E/o /O F2(t, z)dxdt
and G;_(z,y) = 237 | sin(nmz) sin(nry)e™ "™ (=9) e get
g :E/OT/OlFQ(t,;v)d:vdt
_E/OT/Ol [/Ot /01 Gts(x,y)dW(s,y)—/ot /01 Gt,s(x,y)dvi/(s,y)]zdxdt
N tr 1 ¢ ol t; 1
:EZ/t / {[/ / th,s(x,y)dW(s,y)—/ / thfs(x,y)dW(s,y)}

/ / Gi—s(x,y)dW (s,y) / / G, —s(z, y)dW (s, y)]
// G (,y)dW (s, y) — /t/ Gt,sxydW(sy)]}dxdt

=I+1I+1I1.

We estimate I:
] 1 M

I— EZ / " / Sy / " /x + G, (@, 2)dW (1, 2)

=1 =1

Jj— t; 1 tiy1 Tit1 2
_ZZ/ / Gtrs(x’y)ﬁf dw (r, z)dsdy} dzdt
0 t Ti

=1 i=1 ! /
tiy1 Tit1 tiy1 Tit1
/ / kh/ / (Gt —r(,2) = G, —s(x, y))dsdy} dxdtdrdz

tj+1
LoLx

1 N e N ACE E Qi e 2(nm)?t; (nm)*r
/ /0 / / _h / sin(nmx) I (sin(nmz)e

- sin(nwy)e("”) ) dsdy} dxdtdrdz

i1 b1 pTit1 ] tiga i1 ®
= Z/ / / / / / 2Zs1n (nmax)e 2(nm)*t i (sin(nmz)e (nm)*r

- s1n(n7ry)e("”) S) dsdydtdrdzdx

tit1 tit1 pTid1 ] tiya I1+1 5 R
= E / / / / / / s1n (nmx)e™ 2™ (sin(nmz)e"™ T
t 0 t;

— sm(nﬂ'y)e("”) 2dsdydtdrdzdx

N o rtin
SN
j=1"*%

+ sin(nwy)(e("”) r_ )’ $\2dsdydtdrdz
=1 + Is.

1J1M

llzl
_]1]\{[

N
j=1
N
=1 =1 i=1

1J1M

1J1M

=1 i=1

JlM o0

tiy1 Tit1 | tiy1 Tit1
/ / / / 22 —2(nm)* % (sin(nmz) — sin(nwy))?e 2(nm)*r
t

1=1i=1""
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Here we have,

N tiv1 M 1 tj  rxitr ptipr pxigr 2
I = Z/ Z T / / / / 2 Z e 2nm)7 (L 7T)(sin(mrz) — sin(nmy))?dsdydrdzdt
=17t i 0 Jai K i n=1
N tj1 M tji—1 T X 2
B oy
j=1"7% i=1"0 T n=1

o0

N tit1 M tj Tit1 )
+3 / > / / 23 e 20 G0 drdzdt
j=17% =1 /ti—1Jm n=1

N tip1 M Tit1 1
/ Z/ W(e*“‘(”’”z’“ — 2 (nh)dzdt
X t: im1 i 7’L7T)

<>

=1 J

N tip1 M Tit1 1 .
1— e 2 kY4 dt
)R gt
e ol e—2(n7r)2k

=G Z e 2 kp2 4 0y Z 2(nm)?

n=1 n=1
2

<

h
S Cl + 02]{31/2.

L1/2

N tiv1 pty M pmiga 1 tig1 pTiv1r O 5
I, = Z/ /0 Z/wl {m /tl /wl gsin2(nﬁy)e_z("”)2(tj_r)(1 — e("”)2(s_r))dsdy} dzdrdt

j=1 t; =1 n=1
N o ptien pty Mo pwign 5
< Z/ Z/ 2672("”) =) (nr) k2 dzdrdt
j=1"t 0 j=1Jzi p=1
tj—1 X t; o©
S Cg/ Z 672(7177)2(15]-77“) (nﬂ_)4k2d,’, 4 04/ Z 672(n77)2(t]‘7'r‘) (nﬂ_)4k2d,’,
0 n=1 ti-1 p—1
o © _ ,—2(n7)%k
_ 212/ —2(nm)’k _ _—2(nm)%t;_ l—e
=Cs ;(mr) k(e e 1)+C4; 22
< Ck1/2

For I1, we have

N o ptipr gl t; 1 ,
17 < EZ/ / |:/ / (ths(x,y) — thfs(x,y))dW(s,y)} dxdt
j=17t 0 0 Jo
N tjit1 1 t rl 9
+EZ/ / [/ / Gi, (way)dW(S,y)} dxdt
j=17% 0 t; Jo
ST LA N ptipr pl opt el
:Z/ / / / (ths(za y) - thfs(za y))zdydsdﬁcdt -‘rZ/ / / / fosdydsdzdt_
j=1"% o Jo Jo =/, o JuJo
I,

11y
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Here we have,

N tjt+1 1 tj 1
L = / / / / (Gi—s(,y) — G, —s(z,y))? dy ds dz dt
Pl o Jo Jo
N o ptjpr pty; O ) R
_ Z/ / (e 2mm =) _ o= (ti=))2 g it
j=17% 0 n=1
N ti+1 1 2 2 2
:Z/t Z S (2t _ 1) (e= ()t _ o= (nm)ty )2
j=1v% n=1
N t; 0o
:Z/ “Z 1 2(1_62(n7r)2tj)(1 e~ (A1) Y2 g
j=1"t  n=1 2(n)
N tjy1 1 )
< 1— 2(nm)%k th
_Z/t Z 2(nm)? (1-e )
J=1v"J n=1
> 1
< Nk 1 — 2(nm)“k\2
< Ck/?

Note that (1 — e2("™°%) < 1. We also have

N o ptiyr el
=Y / / G2 (x,y)dydsdxdt
j=1 t; 0

N tiv1 pt 1 2
_ - —2(n7r)2(t—s)
= Z/t /t > Z e dsdt

j=1"% J n=1
N ts 0o
=3 [T et
=y 2m)?
= 1 2
< Nk 1— e 2nmk
<NED s )
n=1
< Ckl 2
The proof of Part III are similar. Thus, we draw the conclusion of the theorem. O

3. NUMERICAL METHOD

3.1. Numerical Method for Parabolic Differential Equations. Firstly, we present the finite
element method for (1.1). Let S denote the continuous piecewise linear functions which vanish
on I' and let {¢; ;‘il be the standard basis of S,. We pose the approximate problem to find
Ui (t) € Sp, for each t, such that

(3.1) (Un.t,v) + a(DUy, Dv) + b(Up,v) = (g,v), Yo € Sy C H},t > 0.

Then, we introduce the backward Euler method in time. Let 0 =ty < t; < ty--- <ty =T be a
partition of the time interval I = [0, 7] (each time interval I,, = (tn—1, tn]).

Un_Unfl
() +a(DU", Do) + H(U",v) = (ga,v)
(U™ = U1 0) + ka(DU™, Do) + K(U",v) = K(gn,v)

(U™, v) + ka(DU", Dv) + kb(U™,v) = (U”fl, v) + k(gn,v)
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In terms of the basis {¢;}11,, we can pose

M
U(tv .’L‘) = Z g(t)(b] (‘T)v
j=1

from (3.1), we can get

M M M M
S (i) +ka S (Db, D) + kDS €My 00) = > €8N, 01) + klgns 64)

j=1 j=1 =1 5=1

where n =1,2,...,M and i = 1,2,..., N. This is a linear system,

(3.2) ¢ = (B+kA) (B + Gn)

where A;; = a(D¢;, Dg;) + b(¢j, ¢;) is the stiffness matrix, B;; = (¢;, ¢;) is the mass matrix,
Gn.i = k(gn, ¢;) is the load vector.

3.2. Numerical Method for Stochastic Parabolic Differential Equations. The weak for-
mulation of (1.4) has the form

(3.3) (@0, ¢) + a(Da, D) + b(a,v) = (9*°W, ) + (g, ¢)

Sp, denotes the continuous piecewise linear finite element space, u € S, C H}. We than pose the
approximate problem to find 4 (t), belonging to Sy for each t, such that

(34) (itn.1X) + a(Din, DX) +b(@, ) = (W, x) + (9, x),  ¥x € Snst > 0.
Using the backward Euler method

fjn _ fjn—l R R
(3'5) (T7X)+G(DUW7DX)+17(U”7X) = ( L =X)+(ng)'

The backward Euler method is considered of the linear system form

(3.6)

Mo M Mo Mo .
=1 1=1 =1 =1

where U™ (z) = Z?il (7]"¢J(x) fori=1,2,..., M.

4. ERROR ESTIMATE

Denote Ay, : S, — Sy is the discrete Laplacian, defined by

(4.1) (Anth, x) = a(D, Dx) +b(¢, x), VX € Sn
Denote Py, : Ly — S}, is the orthogonal projection, defined by
(42) (th7X) = (faX)vaG Sh.
(4.3) iy + At = 0*W,
(4.4) Qe+ Apti, = PLo*W,
The mild solutions of (4.3) and (4.4) have the following form
t
(4.5) a(t) = E(t)ug + / E(t — 5)0*W(s)ds,
0
t —
(4.6) ﬁh(t) = Eh(t)Phuo + / En(t— S)Pha2W(S)dS,
0

where E(t) is the solution operator of

ug + Au =0, u(0) = uo,
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and E},(t) is the solution operator of

Upt + Auyp, =0, uh(O) = Pyug.

We recall the following lemma from [2]:

Lemma 1. Let Fy(t) = E,(t)P, — E(t). Then

(4.7) ”FhUHLm([O,T];H) < Ch6|v|g, for wve Hﬁ, 0<p<l,
and
(4.8) |\Fhv||L2([07T];H) < Chﬁ|v|5_1, for wve Hﬁil, 0<pB<1,

where |v|g = ||A?/%v|| for € R.

We now prove the following theorem.

Theorem 2. Let i be the solution of (1.4) and Gy be the solution of (3.4). Then

VE([[an(t) — a)[?) < Ch°(Juols + AP~V ns) < OBP,

when 0 < 8 < %, t € [0,00).

Proof. Let

é(t) = Ep(t)Prug — E(t)ug —I—/O (Enp(t —s)P, — E(t — S))&QW(S, )ds .

é1 (t)

éa(t)

By (4.7), we have

(4.9) lex@®) < Ch?luols.
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Let Fp(t —s) = Ep(t — )P, — E(t — s) and Ky_g(x,y) = Ghi—s(x,y) — Gi—s(z,y). Thus

Blleol’) = £ ( [ / [ Ko, sy a)
1
- (/0 £ 1/11 , Kemeloy W”“dyds) vdr)

/ / Kt 5( )dyds) dJ7
X y
0 klh I [J

J =1 j=1

1
/ / / K2 (e, y)dydsds
o Jo Jo
t 1ol
:///Kfﬁs(:v,y)dydwds
0o Jo Jo

t
= [ U= o)
t oo
:/ SO UE(t - )eil|ds
0 =1
0t
:Z/ 1 (s)edl|2ds
1=1"0
< Z Ch25|el|%,71

=1

=) CR*P| AP e |2
=1

IN

= Ch?P Z HA(ﬁ*l)/Qel &
=1

= CRP| A=V

where

oo

PSS Wi

j=1
= (im0,
j=1

ei(z) = V2sin(lrx) and N = (Ir)2. Thus, |AP~D/2|2,4 < 0o if B < 1/2. We complete the proof
of the theorem. g

Theorem 3. Let U™ and i(t,) be the solutions of (3.6) and (1.4), respectively. We have

VED™ = a(ta)l?) < CHY2 + WY1+ Juolg), for 0<8<1/2

Proof. We have

U™ = E}, Pyug +Z EIT P, 0P W (s, -)ds,
tj 1
and \
a(ty) = Eto)ug+ | E(t, — 8)0*W (s, -)ds.
0
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Denoting & = U™ — a(t,) and F,, = E}, P, — E(t,,), we write

11

= F uo+Z/t Fp_j10°W (s ds—i-z ttj tn —tj-1) — E(t, — 5))0*W (s, -)ds,
-1 i1
1 T

where

Foji1=EL7T — B(t, —t; +1).
Thus,

™l < CUTI -+ LI + [LLLT1]).
For I, we have, (by Lemma 4.1 in [2])

Il = | Fauoll < C(EY2 + h7)luols,

which implies that ||I|| < C(k%/2 +h%)|ug|g. Ae; = \ie; where e;(x) = v/2sin(lnz) and N, = (7).

For II, we have, by the isometry property

n t; R

20> [ Fea W sl
<3 / 1Py s

=k Z Z | FnjiredllFrs

=1 j=1

Z F 4 WOPerl3

oo

< C(k° + h?7) Z |e[|%_1

=1

= C(k7 + %) Y A0 D /|
=1

= O+ n) Y I e ?
=1

<CKP+n2)> N1
=1

C(k* + 1) (in
=1

Thus, I is bounded when g < %
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For 111, we have, by the isometry property,

B [ (Bl = ty2) = Bl = 5)0*W (s, s’

(=

< / |E(tn —tj—1) — E(tn — 5)||7rsds
=17k
n t;
- Z/t 1Bt — 5)(E(s — t;_1) — I) | %sds
=17t

[
M=

tj
/ |‘A6/2E(tn_S)A_B/2(I—E(S—tj—l))H%ISdS

17/t-1

<.
Il

M=

tj
/ AP E(t, — )3 A/2(1 = E(s — t;_))|?ds

tj71

<.
Il
—

IN

ti—1

n t;
CrPY [ 1A~ 9)sds
=17t

ti—1

n t;
< CRPAC Vg S [ 4B - 5) P
J=17""%

ti—1

n t;
<c® Y [ AV E(, - ) [rsds
j=1"%

According to the Lemma 2.2 and Lemma 2.3 of [2], we obtain
II11))? < CRP | AP=D/2) 12,
Then, we conclude the proof. 0

5. NUMERICAL EXPERIMENTS

The numerical method described in the third section is computationally tested. The experiments
of the numerical method are described in this section.

Choosing g(t,x) = 10(1+b)z2(1—x)%e! —10(2—122+122%)e! with b = 0.5 and a = 1. The exact
solution of (1.1) would be u(t, ) = 10e’z?(1 — x)2. Now trying to get the approximation solution
of (1.2). In the finite element methods, a system is solved for each time step. For each time step
computation with the different scheme the results of 20 runs for different Wiener processes were
averaged whereas 20 runs were averaged for each computation with the finite element methods.
In the numerical experiments, we used a fine mesh to get the approximation of the exact solution.
(fine mesh: h =1/512 k = 0.001 N = 20 where h is the space step, k is the time step and N is the
run time for different Wiener processes). Datum reported in the Table 1 are the results of error
estimates when we choose different meshes. The computational results in Table 1 indicate linear
rates of convergence which is in agreement with the theoretical results. Figure 1 is the result of
(1.2) with different meshes.
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(a) Space step=1/256 (b) Space step=1/128

(c) Space step=1/64 (d) Space step=1/32
FIGURE 1. One dimension case

TABLE 1. Computation result of one dimension case

time step k space step h error(with random) error (no random)
0.001 1/256 0.1021 4.1285x107°
0.001 1/128 0.1507 1.6513x10~1
0.001 1/64 0.2192 8.1171x10~ 1
0.001 1/32 0.2933 0.0034

6. Two DIMENSIONAL PROBLEM

6.1. Numerical Method. The parabolic equation in two dimension is of the form

U — aAu + cu = g, in Qx Ry,
(6.1) u=0, on I'x Ry,

u(0,x) = uo, in Q.

The parabolic stochastic partial differential equation is of the form

3
Uy — aAG + bl = afaf(;y—i—g, in Qx Ry,
(6.2) a(t,z) =0, on T xR.,
(0, 2) = uo, in Q,
where Q = [0,1] x [0,1] is a bounded domain in R? with smooth boundary T, @& = a(t, z,y).
W = W(t,z,y) is the approximation of Wiener process. % denotes the mixed third-order

derivative of the Brownian sheet.

We employ the finite element method, S}, denotes the continuous piecewise linear finite element
P 3
space, 0°W denotes the (3?6—%1}, find (), belonging to Sy, for each t, such that

(@n,1, X) + a(Van, VX) +b(a, x) = (*°W,x) + (¢,X), Yx € Sh, t>0.
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TABLE 2. Computation result of two dimension case

time step space step error(with random) | error (no random)
0.01 refine mesh two times 0.8383/0.8058 1.8380x107°
0.01 refine mesh one time 1.3145/1.1824 5.5096x 10~
0.01 refine mesh zero time 1.4127/1.7806 4.4182x1077

Using the backward Euler method, let U € S), C HE.

gr—on! - - W(tn) — W (tn_
63 (=T b a0, v 4007 = (=) ) g,
The Backward-Euler method is considered of the linear system form

(6.4)

M M M M
ST U6, d0)+kay UV, Vo) +kb Y U (e, 01) = > UT (b5, 00)+(AW™, ¢1)+k(gn, 61)
=1 =1

=1 =1
where U™ (z) = Z]]Vil (7]"451(36) fori=1,2,..., M.

6.2. Numerical Experiments. In this section, I chose different meshes to compute the error.
Firstly, we created a initial mesh in PDEtool, then, refined mesh three times. In the numerical
experiments, we used a fine mesh to approximate the exact solution. We got the fine mesh by
refining initial mesh three times. And then calculating error estimates with different meshes. The
initial value of (6.2)is up = sin(nz1)sin(nzz). Let g = 0, b = 0 and a = 1, implementing solver
for two dimension case. Datum reported in the Table 2 are the results of error estimates when we
choose different meshes. Figure 2 is the result of (6.2) with different meshes.

(a) initial mesh (b) Refine one time

(c) Refine two times (d) Fine mesh

FIGURE 2. Two dimensions case
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