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Abstract

In this paper, our main aim is to model both a formulative and elaborate algorithm
to approximately get the number of negative eigenvalues of a 1 dimensional schrédinger
operator. I will hence compare the formulative(theoretical) and the elaborate(computer
program) algorithms and briefly explore the possibilities and limitations of such an ap-
proach. This research, among other uses, helps to determine the behaviour of atoms and
is an interesting study in Quantum Mechanics.
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1 Introduction

In the mathematically rigorous formulation developed by Paul Dirac and John von Neumann,
the possible states of a quantum mechanical system are represented by unit vectors (called
state vectors) residing in a complex separable Hilbert space(called the state space.) The
exact nature of the Hilbert space is dependent on the system; for example, the state space
for position and momentum states is the space of square-integrable functions, while the state
space for the spin of a single electron is just the product of two complex planes.

The time evolution of a quantum state is described by the Schrédinger equation, in which
the Hamiltonian, the operator corresponding to the total energy of the system, generates the
time evolution. Each observable is represented by a densely-defined Hermitian linear opera-
tor acting on the state space. Each eigenstate of an observable corresponds to an eigenvector
of the operator, and the associated eigenvalue corresponds to the value of the observable in
that eigenstate. If the operator’s spectrum is discrete, the observable can only attain those
discrete eigenvalues.

During a measurement, the probability that a system collapses to each eigenstate is given
by the absolute square of the inner product between the eigenstate vector and the state vector
just before the measurement. The possible results of a measurement are the eigenvalues of
the operator - which explains the choice of Hermitian operators - all their eigenvalues are real.

This topic is useful in spectroscopy, where the particle-in-a-box model of quantum me-
chanics is placed in a context of light absorption by materials. It ties together simple ideas
such as the color of material being the complement of that absorbed, with more sophisticated
ideas relating to which molecular motions give rise to absorption in different parts of the
spectrum. It is also useful in electronics, particularly in the electronic structure and resistiv-
ity of copper and copper alloys which can be useful in modern electronics although it farther
requires the implementation of the Quantum Monte-Carlo method. Unfortunately, this study
usually doesn’t give exact results as one can not derive closed formulas for the quantities.
However, we are not going to go as far as spectroscopy and electronics is concerned as this is
more complex than our topic.

Our main goal is to get the eigenvalues of the schrodinger operator with a delta potential.
In order to get an approximate computation of eigenvalues of this 1-D schrédinger operator
2 e . . .
_%2' + V, it is sufficient to compute eigenvalues of suitably chosen operators of the form

—j? +u , where p is a finite linear combination of Dirac measures cf. section 3.



Operators of this form have been discussed in detail in cf.[9]. In [9], a mapping M
with values in the set of N-by-N matrices, has been given such that E is an eigenvalue of
2
—dd? +p  if and only if detM(E) = 0. Here N is the number of Dirac measures occuring in

the representation of y. To achieve a good approximation for the eigenvalues of —% +V,
one has to choose a large N. For the computation of the zeros of detM(E) one needs about
N3computations. This is a very long method and is not easy to compute.

;l“herefore, in this thesis, we shall present a new method to compute the eigenvalues of
—dd? + u where the number of computations only grow linearly in N.

With this foundational explanation of the motivational background, we are now ready for
a reminder of the basic definitions and remarks necessary for this paper.



2 General Theory

Here, we collect various known definitions, remarks and theorems from cf.[2]

2.1 Basic Definitions And Remarks
Let #Hbe the Hilbert Space over C with scalar product (:,:), then:

Definition 2.2 Let H, be a linear subspace of H
Let H : H, — H be linear.
Then H is called an operator in # , H, is called the domain of H ie, D(H).

Definition 2.3 let H be an operator in A and assume that D(H) is dense in H.
Put
DH*)={feMN:3 fe€H VgeDH):(f*g)=(fHg)}
H*f=f% feD(H).
Then H* is called the adjoint of H.

Definition 2.4 H is selfadjoint if and only if D(H) is dense in ‘H and H = H*.

Remark 2.5 If H is selfadjoint then H is symmetric :
(Hf,g9) =(f,Hg) where f,g€ D(H).
Note that selfadjointness implies symmetry but not viceversa.

Definition 2.6 Let H be an operator in #, and z € C.
z belongs to the resolvent set p(H) if and only if
(H-zI) : D(H) — # is bijective and
(H — zI)~"! is bounded.
z belongs to the spectrum o(H) of H if and only if z € C\ p(H).

Remark 2.7 1. o(H) is closed.
2. If H is selfadjoint, then o(H) C R.

3. In quantum mechanics, the Hamiltonian H
of a system is a selfadjoint operator.

e The probability that the energy of the
quantum mechanical system with Hamiltonian H belongs to RN p(H) is equal
to1l.

In other words, “every measurement of the energy gives a value E in o(H)

bl



e “The energy can have any value inside o(H)”.
More precisely: Let E be an element of o(H),e > 0. Then the system has a
state f such that with probability one, the value of the energy of the system,
in state f, belongs to |E — ¢, E + €.

4. o(H) contains the set of eigenvalues of H.

Definition 2.8 Let H be selfadjoint.
E belongs to the discrete spectrum o4(H) of H if and only if
E is an eigenvalue of H with finite multiplicity and
is also an isolated point of the spectrum of H.
o(H)\o4(H) is called the essential spectrum, denoted by oss(H).

2.2  Schrodinger Operators

In what follows:

H=L*R),(f,9) = [z [(z)g(z)dz.

NOTE: Often one uses another not equivalent definition, i.e
(f.9) = Jg f(z)9(z)dz .

V : R — R such that [ |V (z)|dz < oo .

Definition 2.9 The operator —A + V in L?(R) is defined as follows:
D(—A+V) = {feL?(R) : feC'(R), f'absolutely continuous,
LI ="+ Vel (R)}.
(—A+V)f=—f"+Vf, feD(-A+V).
—A +V is referred to as “schrodinger operator (one dimensional) “
Then the following is known :

Theorem 2.10 a) —A + V is selfadjoint.
b)oess(—A + V) = [0, 00].
c) The number N_(V') of negative eigevalues of —A + V', where every eigenvalue is
counted as many times as its multiplicity, has the following upper bound :

N (V) <14 2hllC Ol @E@ED -y gy and Vo,
N

d) If [ V(z)dr <0, then there exists a negative eigenvalue.
The facts above are well known (cf.[3] for a), b) and d). ¢),has been obtained by cf.[7],
cf.[8], and cf.[4]Theorem 3.5, generalised)

Remark 2.11 1. —A +V is the Hamiltonian for a one dimensional quantum mechanical
particle interacting with the potential V : R — R.

2. The state of the quantum mechanical system, at a fixed time t,
is described by a function f: R — C.
The interpretation of f is as follows:



. f: |f(z)|?dz is equal to the probability that the particle is in [a,b] (“posi-
tion”).

. fcd | f (p)|?dp = probability that the momentum of the particle is in [c, d].

3. fis a bound state i.e,
If the state of the system at time t, t=0, equals f,
then for every € > 0 there exists a compact set C C R, such that for every t €
R, the following holds:
The probability that the particle is outside C at time t is less than e.

4. fis a bound state if and only if f is a superposition of eigenfunctions of H.

5. H (-A+V)f=Efand |f|| =1
then every measurement of the energy of the system in the state gives the value
E (with probability 1, “sharp measurement”).
PS: If one gets the same value E at every measurement,
then E is an eigenvalue.

6. Often one cannot compute the eigenvalue of —A + V explicitly.

We refer to cf.[5], chapter 6, and references given therein for a detailed discussion of the
assertion in this remark.



3 Aim Of The Thesis

Now that we understand most of the mathematical terminology
that we will use in the thesis, we get to briefly explain our goal.
This is to derive, approximately, the

negative eigenvalues of the schrodinger operator .

This in essence is computing the number E, given V : R — R |
such that —u" + Vu = Eu has a nontrivial, square integrable! solution.
These numbers, E, are the energy levels of the

quantum mechanical system with Hamiltonian

H=-% 1v.

But we know it is almost impossible to compute this explicitly.
We thus work with an approximate operator called the Hgy,.

o Definition of Hpp
We begin by stating that the domain of Hgp, is given by :
D(Hgpp) = {f € L*(R) : f is absolutely continuous ?, f’ € L*(R),
f! is absolutely continuous on R\ {z1,z2,......, zN },
SO @) Pz + [ (@) P+ e + [TV (@) Pdz + [0 |7 (2)]Pdz < oo,
f(@e+) = f'(zr—) = My f(zk) }-
Hyppf(z) = —f"(z) a.€® on R\ {z1, 72, ..., TN }.
We know that
Hyppf = dz2 + Zk 1 M0z, f in the dlstrlbutlonal sense

and so for this reason Hgy, is also denoted by —m + Zk:l M6,

3.1 The Mathematical Structure Of Quantum Mechanics

We had mentioned earlier that every system in quantum mechanics
is described by a selfadjoint operator, the Hamiltonian H, in a hilbert space .
Now, consider just one particle on the real line. Then H = L2(R).
In Quantum Mechanics one does not know the position of the particle
but can give the probability P(a,b) that the particle is inside
(a,b) forall —oo<a<b< +oo.
Here the state f: R — C refers to:
= [, 1f (@)PPda
1 = P(—00,00) = [, |f(2)2dz =1

Now, if f = g a.e, then
fab |f(z)|2dz = f: lg(x)|?dz  for all a,b.
Infact, f and g describe the same physically. In addition,

! f z)|?dz < oo

2 R — R is absolutely continuous,if there exists h:R — R
1ntegrable over bounded intervals such that g(z) = f h(t)dt

3almost everywhere



(fLHfy= [, f(@#)Hf(z)dz equals the mean value for the energy.
In particular, if H = —d‘f +V, then

(f,Hf) = [ | (@)Pde + [ |f(z)[PVda.
Integrating by parts we get:

oo N
FHp) = [ 17'@)Pdz + Y M) )
—x k=1
Since
00 N
| 1t@Pvas~ 3 Ml @)
> k=1
for suitably chosen My, My, ..... My, x1,Z2,....,xx (consider the riemann sum),

this leads to the idea that H = —% +V
can be approximated by operators of the form

L2
Hupp =~ + > My, (3)
k=1
In fact, this was proven in cf.[1]. It states that:

e Theorem([1], theorem 3): Let un,n € N, and gy be finite radon measures on
R.  Supposse that p, — p weakly. Then the operators —A + u,
converge to the operator — A4 pu in the norm resolvent sense.

3.2 Integrating The Theorem Proved By Brasche, Figari and Teta

It follows from the mentioned results by Brasche, Figari and Teta and by cf.[6],
theorem viii.23, that for given V, one can choose families

(T1(n)> To(n)s weeere s TN (n) )1 and

(Ml(n), Mg(n), . MN(n))%ozl such that,

d2 d2 N
E]_(_W + V) = limn—)OOEj(_w + Z Mk(n)(szk(n))' (4)
k=1

where, Fy(H) < Ey(H) < ..... <E(H)<0
are the negative eigenvalues of H.
Note that for every V € L!(R) their exists measures p, of the form

My = Z/ZC\]:(T) My (n)0zy(n) converging weakly to Vdz.



4 Theoretical Problem

One may wonder why we dont use the positive eigenvalues.
Thus, in this section we want to show why we

choose only the negative eigenvalues.We have seen

that the approximate schrodinger operator is of the form:

2 N

d
Happ = = + > Myba, (5)
k=1

for numbers —c0 < 21 < T3 < ... < Ny < 00

andMy, Mo, ........ , M given.

One can see from (5) that this is a schrodinger operator

where the potential is a finite Radon measure in R'.

We want to determine, for fixed E, the functions u, from R — R, satisfying:

1. —u"(z) = Bu(z) for z +# {z1,79,....,zN}.

2. u is continuous on R .

3. U (zx+) — v/ (zk—) = Myu(zy) for k=1,2,.....N.
4. [% |u(z)|*dz < oo .

Note that E is an eigenvalue of Hgy, if and only if

u(satisfying 1-4) can be chosen such that u is not equal to zero.
We start off by doing a theoretical investigation

with very trivial mathematics so as to clearly understand.

Determine the solution with:

1. —u"(z) = Eu(z) on (—o0,x1).
Working this out we get that the solution can only be
u(z) = CfeV % 4 Cye V- E=
which is the general solution with Cat an element of the complex number
set arbitrary, provided F # 0.

2. Now consider [%_|u(z)?dz < co.
We will determine the solution by varying E from —co to 400

— when E <0
In this case /—FE is greater than 0 and therefore
eV=F? 50 as 15 -o00 and eV EFT 500 as 1 — 0.
Thus we get that u(z) = CS’ eV=E% g the general solution satisfying
5 |u(z)?dz < oo, with E < 0.

10



4.1 Intervals

We will now determine the integral on each unique interval:
($1,$2),(l‘2,$3), """ ,(iEn,OO)-

As earlier noted, the general solution of —u"(z) = Fu(z) on (zg, Tgi1)
is given by

u(z) = C,;"e‘/TE“ + Ck_e*‘/T%,

for k = 1,2,....; N-1, N where zy;11 = cc.

We may put CSL =1.

4.1.1 First interval: connecting (—o0,z1) and (z1,z2)

Connecting both intervals (—oo,z1) and (z1,x2), we get that
u(z) should be continuous on (—o0, z3).

u(z—) = eV~ Fo1

u(z1+) = Cf'e‘/T‘“ + C’l_e*‘/Tclcl

which finally gives,

Cl+€\/—Ez1 + Cfe_‘/_Eml — eV—Ex1

We also know that

u'(z1+) — v/ (z1—) = Myu(zq)

u'(z1—) = V—EeV Em1

and,

u'(z1+) = V—EC{ eV Fo — \/TEC[ eV Em

which finally gives,

\/ij'eV —Ez1 _ mee_V_E“ — V/—EeV—Eri = pfeV-FEar

Rewriting this in matrix form gives us

Va1 e—V—Fu1 o oV =F
V=EeVFR  _/~FeVFn X{ o ] T | MeVTER 4 mEeVER

4.1.2 Second interval: connecting (z1,z2) and (z2,x3)

Now we consider the interval (z9, z3).

The general solution for —u"(z) = Eu(z) on (z2,z3) is,
u(z) = C;'e‘/m + C{e“/TEI.

Connecting the intervals (z1,z2) and (z2,z3) gives us:
u(zg, —) = CffeV—E22 4 O e VB2

u(zg, +) = Cf eV=F%2 4 C5 e~V Ew2,

which finally gives,

CyeV Pr2 y Cre vV Eez = Cffev B2  Ore V- Eoz,
We also know that

u'(zo+) — U/ (z2—) = Mau(xs)

u(wo—) = Cf /—EeV~F% _ Oy e VP

u (zo+) = Cf V—EeV~E® _ Oy \/—FEe V~F72

which finally gives us,

11



Cyv/—EeV P22 — Cy\/—Ee~V - Be2 — Ct\/—EeV Fo2 — O e~V P22
= My(CjreV=0%2 4 Oy e~V —E22)

Rewriting this in matrix form gives us

eV —E2 e~ V—Ex2 cy
= Nl
Cf’e‘/T“ + Cl_e_‘/T“
| My(CfeV BT 4 Cre Vo EBR) — Cre VBT 4 OfF/—EeV Eo2

4.1.3 Third interval: connecting (z2,z3) and (z3,z4)

Now we consider the interval (z3,z4).

The general solution for —u"(z) = Fu(x) on (z3,x4) is,
u(z) = C;'e‘/TM + C?,_e*‘/*—Ew

Connecting the intervals(zy, z3) and (z3,z4) gives us:
u(zs, —) = Cf eV —F% 4 O e~V

u(zs, +) = Ci eV E% 4 Oy eV Eas,

which finally gives,

CyeV=rrs 4 CpeVHe = CfeV=Fs 4 Oy eV —F2s,
We also know that

u'(z3+) — u'(z3—) = Mzu(zs).

u'(z3—) = Cf V—EeV~F2s _ Oy e~ V=Fas

u'(z3+) = Cf V/—FEeV E% — Cy\/—FEe vV P2s

which finally gives us,

C;'\/je" —Ezs _ C:;\/je*" —Ezs _ C;'\/jev —Ez3
—C’;e“/T‘”3 = M3(02+e\/T“3 + C{e‘m)

Rewriting this in matrix form gives us

eV—FExs e~V ~—FEz3 C:},"
SrerEn v | < 6
_ C;e\/T“ + C{e*‘/T“
Mg(C’;’eV —Ezs Cye™V —Exzs _ Cye™V —Exs 4 C;'\/jev —Euxs

We continue in this way and arrive eventually at the,

4.1.4 Last interval

As we continue from interval to interval, we realise the recurrence of the matrices and can
thus predict the final interval (zx,o0) to be:

e\/*ESL‘N e*\/ —FExn C]‘{']
B e | %] &

_ Cy_ieV "o + Oy _jemv= e
= MN(CZ_}V_vile,/—Ez‘N + C]T[,le_v_EwN) _ C;fﬁle—\/—EzN + C]—\’},l _Ee\/—E.’,CN

12



Since u(z) = C']\L]e‘/*—E‘C + C;,ef\/f—Ew for zxy <z <oo the condition(4) is satisfied if
and only if Cf; = 0.ThusE < 0 is an eigenvalue of Hyy, if and only if C; = 0 (note that
the numbers C,;t depend on E, C’,;t (E). For notational purposes, we have surpressed this
dependence). With the help of MATLAB, we will solve the matrix

o- [

when £ =0

In this case, u(z) = C;” + Cj z is the general solution, where C’at are constants.

So we see that [“_|u(z)|?dz < oo is satisfied if and only if Cf =0 = Cj .

By mimicking the reasoning forE < 0, we get that C’,;t = 0 for all k. Thus u(z) =
0 and FE =0 is not an eigenvalue.

when E > 0

In this case vV—F = iVE.

Thus we get u(z) = C’(;Fei‘/E_ac + C’O_e_i\/E_‘”.

Again, [*!_|u(z)|?dz < oo implies that C” = 0 = Cj . As before, if we follow the reasoning
for £ < 0, we get that £ > 0 is not an eigenvalue.

Proving that we can only work with negative eigenvalues.

13



5 Particle In A Box

Imagine that a very small, particle like an electron is trapped in a box. The
principles of quantum mechanics tell us that the total energy of the particle
in this box must change in fixed, discrete (quantum!) leaps.

Assume that the boundaries of the box are perfectly reflecting and that there
are no forces acting on the particle. The motion of the particle is described by
the time-dependent schrodinger equation supplemented with the boundary
condition that the wave function at the edge of the rectangular area is zero.
The wave describing the quantum particle is reflected at the boundaries, a
phenomenon analogous to the reflection of light by a mirror.

In this case one gets infinitely many eigenvalues.

The situation we are looking at is different. This is when the box has only
finite depth. Here,[4]theorem 3.5 mentioned earlier, tells us that there are
only finitely many eigenvalues. We are now going to describe how to calculate

them.
The box potential V(z) for a,h > 0, is expressed as:
—h, f0<z<a;
Viz) = { 0, otherwise. (7)

which is the expression for the potential of the particle-in-a-box, where a is
the width of the box and h the depth of the box.

The domain of H is,
D(H) = { f E/ Li : f 62 C'(R), f' absolutely continuous;
L7 e LA
and, Hf =-f(x) +V(x).
Let, Hf = Ef ie,
Hf = -7(x) +V(x)f(x) = Ef .
Here, remember that E;0.

Now substituting V(x), we get :

Hf = —f"(a) —hf(x) = Ef on [0,d]. (8)

Hf =—f"(z) =Ef on (—00,0)N (a,oc0). )

The eigenvalues E can be determined by solving for (9), which gives us

f(:c):e‘/T% on (—00,0). (10)

14



f(a:):Ce_\/T% on (a,00). (11)

We now compute the solution to equation(8), the bounded region [0,a], which is:
flE — 6\/—(h+E)I and f2E _ e—\/—(h-{—E)z

giving us the general solution as:

f=Ciff+Coff on [0,q] (12)

We now want to get the constants C; and Co.

We know that f must be continuous and so is f’.

So we check, for given E, whether the constants Ciand Cy can be chosen
such that(10),(11)and (12) describe a continuously differentiable function.
This means that the following conditions are met:

i) V=50 = C1fF(0) + C2f§(0) and,

i) eV, o = L[C1fE(0) + Coffloo

The solution of this is

B_q_ WE o B (&)
Cl = ]. \/m Whlle C2 1+ \/m .

Thus,E is an eigenvalue if and only if we can choose a “c” such that :
i) CPfP(a) + CF f5(a) = ce™ VP9, and
ii) %(ClEflE + CQEfQE)m:a = %Ce' 7E(wia)x:a

You will notice again, that there are finitely many eigenvalues E1, Eo, ..., Exy < 0.

15



6 Numerical Solution

We now use mathematical modelling. This is by creating a program that directly gives us the
position of the eigenvalues. We continue to assume that the particle is moving in a potential
described by(7).

The first Matlab file we formulate, is one to help us find ALL the eigenvalues (solve (6)).We
seek to interprete our results into a language understandable by the computer. Thus, we note
that, ,

H=-% —h-1p4,
1 1 if0<z<a
0.0)(®) = { 0 otherwise .
h'l[O,a} ~h- Z;VZI %(5% = Z;vzl %(5%
and therngore,
Hr =z = Y5 ?v_h‘s%
For the computer, this gives,
M; :%,j =1,2,..,N
T =§
With all this in view, we create an m-file with the following input data:
and
clear
fc=(0);
a=1; width of the box
h=0.1; depth of the box
N=2"7;
M=(-h#*a)/N; mass of particle
X=0:a/N:a; position of particle
for E=-.01:.0002:-.00009
c=[1;0];
for j=1:N

A=[exp(sqrt (-E)*X(j)) exp(-sqrt(-E)*X(j));sqrt(-E)*exp(sqrt(-E)*X(j))
-sqrt (-E)*exp (-sqrt (-E)*X(j))];

B=[c (1) *exp(sqrt (-E)*X(j))+c(2)*exp(-sqrt (-E)*X(j)) ;M*(c (1)
*xexp(sqrt (-E) *X(j))+c(2) *exp(-sqrt (-E) #*X(j)))+c (1) *sqrt (-E)
*xexp(sqrt (-E)*X(j))-c(2 *sqrt(-E)*exp(-sqrt (-E)*X(j))]1;

c=A\B;

end

fe=[fc,c(1)];
end
fc=fc(2:1length(fc));
plot(-.01:.0002:-.00009,fc)
grid
and

16



If we run this program, it gives an interesting curve with the values of E at the x-axis and
the fc at the y-axis, where fc is the matrix of all the ¢™’s which we call c1. Our main interest
however, is to get the exact values of E when the fc = 0.

Figure 1: The curve with a=1 and h=0.1

1 T T T T T T T T T

25 I I I I I I I I I
-0.01 -0.009 -0.008 -0.007 -0.006 -0.005 -0.004 -0.003 -0.002 -0.001 0

By just looking at the figure, we see that there is an eigenvalue between -0.003 and -0.002
but it is impossible to determine the exact value.

This brings us to a point where we have to create another program to help us solve this
problem.This is not an easy task and so we employ a couple of mathematical facts :

Remark From the theory,
e The smallest E > —%.
Where E is the energy eigenvalues

e By [4]theorem 3.5, the number of E’s is less than 1 + hT“Q

e For negative u, there exists at least one negative eigenvalue.
Thus,

17



e to get exactly one eigenvalue,
it is sufficient that a =1 and h < 2.

Our matlab file to determine the negative eigenvalues, looks like this

and
E1=(-hx*a)/2;E2=-0.00009;
a=1;
h=0.1;
N=2"7;
M=(-h*a)/(N+1);
X=0:a/N:a;
E=E2;c=[1;0];
for j=1:N+1
A=[exp(sqrt (-E)*X(j)) exp(-sqrt(-E)*X(j));sqrt(-E)*exp(sqrt(-E)*X(j))
-sqrt (-E) *exp (-sqrt (-E)*X(j))]1;
B=[c(1)*exp(sqrt (-E)*X(j))+c(2)*exp(-sqrt (-E)*X(j)) ;M*(c (1)
*exp (sqrt (-E)*X(j))+c(2) *exp(-sqrt (-E) *X(j)))+c (1) *sqrt (-E)
*exp(sqrt (-E)*X(j))-c(2)*sqrt (-E) *exp(-sqrt (-E)*X(j))];
¢=A\B;
end
c2=c(1);
for m=1:10
E=(E1+E2)/2;c=[1;0];
for j=1:N+1
A=[exp(sqrt (-E)*X(j)) exp(-sqrt(-E)*X(j));sqrt(-E)*exp(sqrt(-E)*X(j))
-sqrt (-E) xexp(-sqrt (-E)*X(j))];
B=[c (1) *exp(sqrt (-E)*X(j))+c(2)*exp (-sqrt (-E)*X(j)) ;M*(c (1)
*xexp (sqrt (-E) *X (j) ) +c (2) *exp(-sqrt (-E) *X(j)) )+c (1) *sqrt (-E)
*xexp (sqrt (-E)*X(j) ) -c(2) *sqrt (-E) *exp(-sqrt (-E) *X(j))];
c=A\B;
end
cl=c(1);
if c1%*c2<0
E1=E;
else
E2=E;c2=ci;
end
end
E
and
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Where we set E1 = (—h % a)/2 because this is the smallest E possible. We could also use
this in the former program as the lower bound for E.
If we run the program as it is, we get that there is only one eigenvalue existing. The value of
this is given as E = -0.0025 which is not possible to determine by just looking at the figure.
We will now take different examples in order to test our programs.

6.1 Further Examples

We want to find out the number of eigenvalues we get when we vary the parameters and also
to figure out if the facts, discussed earlier on, concur with our results.
We start off by:

6.1.1 wvarying h

Our first choice is a value of h < 2 with a = 1. We choose h = 0.1, which gives us the
curve in the previous page.We see from the figure that only one eigenvalue exists.
Taking another example, we choose our h = 1, which gives us:
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Figure 2: The curve showing the eigenvalue with a=1 and h=1

1 T T

-15 ' :
-15 -10 -5 0

This also gives us only one eigenvalue E = -0.0500.

20



Now we try some examples with h > 2.
The first example will be to set A = 3. After running the programs,
we get that there is only one eigenvalue, -1.1704 .

Figure 3: The curve showing the eigenvalues with a=1 and h=3

1 T T T T T T T T T

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
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In this example, we use a much larger h, A = 10, and notice that there is still only one
eigenvalue.

Figure 4: The curve showing the eigenvalues with a=1 and h=10
0.6 T T

0.4f : : -

-0.8 | |

-15 -10 -5 0
These examples clearly show that the conditions =1 and h <2

are not necessary in order to get exactly one eigenvalue.
For sure, we can get one eigenvalue even with a much larger value of h.
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6.1.2 wvarying a

We work with the same values of h and change the value of a. Starting with h=10 and a=3.
Here, we see that there are 3 eigenvalues.The positions are -3.6415, -7.0295 and -9.1931.

Figure 5: The curve showing the eigenvalues with a=3 and h=10
0.01 T T

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

-0.07

-0.08 * :
-15 -10 -5 0

According to the second fact, there should be less than 46 eigenvalues, which is true. Also,
according to the first fact, the smallest eigenvalue is greater than -15.
We have thus shown that the facts are all true.
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Now we use h=3 and a=3 and it gives us another interesting curve

Figure 6: The curve showing the eigenvalue with a=3 and h=3
1.2 T T T T T T T T

0.8

0.6

0.4

0.2

02 I I I I I I I I
-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

Here, we see that there are also 2 eigenvalues. One at -0.9302 and the other at -2.4258.

6.2 Limitations

We have seen how effective this programs are but we also realise that a number of errors can
occur in the running of this program. Mostly , it is due to the choice of E1 and E2 since they
are determined by the user of the program. It is possible to choose an E1 and E2 that lie on
the same side of the curve before any change of sign happens.

This leads to a wrong formulation.
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