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Abstract

In this thesis we consider the deterministic numerical algorithms for electron
beams represented by the Fermi-pencil-beam equation. We consider two
solvers based on a fully discrete scheme using the Standard Galerkin (SG)
and a Semi Streamline Diffusion (SSD) for discretization in the transversal
variable combined with a backward Euler for discretization in the penetration
variable, and two solvers based on characteristic schemes, namely the Char-
acteristic Galerkin (CG), and a stabilized Galerkin finite element method
referred to as the Characteristic Streamline Diffusion (CSD). A common fea-
ture of the mentioned algorithms is exact transport + projection.
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Preface

Scope of the document

This report is written for fulfillment of the requirements of the International
master programme in Engineering Mathematics at Chalmers University of
Technology.

Structure of the document

This thesis report is based on algorithms developed in the papers
e On the Stability of Characteristic Schemes for the Fermi Equation [1].
e On Fully Discrete Schemes for the Fermi Pencil-Beam Equation [2].

Focus is on implementation and presentation of the results from the different
algorithms.

Implementation of the algorithms has been carried out in the open source
package Dynamic Object-oriented Library for FINite element computation;
DOLFIN, a C++ interface of the free software for the Automation of Com-
putational Mathematical Modeling FEniCS'. Visualization of the results is
obtained using Matlab.

This report begins with an introduction to the concepts of radiation on-
cology, and physical properties of electron beams, then it proceeds with a
derivation of the Fermi Pencil-Beam equation and a model problem. Exposi-
tion of the numerical algorithms based on Galerkin Finite Element Methods
are detailed in chapter 2. Chapter 3 is devoted to a discussion of the imple-
mentation. Results are presented and discussed in chapter 4.

lwww.fenics.org
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Chapter 1

Radiation Oncology

1.1 Introduction

The use of radiation in cancer therapy dates back to the end of the 19th
century. Shortly after the discovery of X-rays in 1895, researchers used them
for diagnostic and therapeutic treatment of cancer. Since then, radiation
in the form of high-energy beams of electrons, photons (X-ray), protons,
neutrons and other particles have been used for the same purposes.

Early attempts at radiation were far from optimal and were marked by in-
accuracy and failure. Gradually, as medicine took advantage of new advances
in different scientific and technological fields, radiation therapy become much
more sophisticated. Among the advances, we cite, the availability of new
and better computer controlled accelerators for clinical work, the substan-
tial understanding of the underlying physics, the emerging of computational
algorithms, the development of Computerized Tomography (CT), Magnetic
Resonance Imaging (MRI) and computer graphics software.

The major goal of radiation cancer therapy has been "to maximize the
probability of local tumor control with minimal damage in the neighboring
healthy tissue". This is an optimization problem which is solved by de-
termining a set of beams while providing the necessary dose to each point
in the tumor, minimizes the risk of complication to the neighboring tissue.
this problem is solved iteratively by a sequence of dose calculations obtained
through a series of computed transport calculations that simulate the effects
of beams penetrating the human tissue.

The choice of the form of radiation is subject to clinical considerations.
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Electron therapy is used primarily to treat superficial diseases such as skin
tumors, providing a unique option in this sense. The hardware used to pro-
duce such high-energy electron beams are the so called linear accelerators
often referred to as linacs. They typically deliver 4- to 25 MeV electron
beams. 25 MeV is 25 million electron volts (eV) (1 €V is the energy needed
to move one electron through a potential of one volt).

Passage of radiation through a portion of the body sets in motion a long
series of phenomena which result in biological effects. The question of calcu-
lating the dose, or energy deposited per unit mass, to a patient is a crucial
part in the treatment process. These calculations enable the oncologist to
decide whether a certain set of beams is optimal.

Nowadays, about half of all cancer patients receive radiation therapy [8|,
most of the time in combination with other forms of treatment (such as
surgery, chemotherapy, hyperthermia. .. ). Surely, any improvements to radio
therapy, even small improvements, will benefit a great number of people.

1.2 Radiation Therapy Planning

First, the radiation treatment of a tumor begins with the creation of a three
dimensional image of the tumor and surrounding healthy organs. Using Com-
puted Tomography or MRI and some suitable computer graphics packages.

Next, the oncologist, being able to visualize the geometry and position of
the tumor and neighboring regions on the computer, selects a set of beams
that maximize the control of tumor without affecting the surrounding healthy
tissue. It is worth mentioning here that the oncologist rely on experience and
intuition while performing this step.

After choosing the set of beams, the oncologist performs a 3-D particle
transport calculation in which the dose, or energy deposited per unit mass,
is calculated within each wvowel, which represents approximately 1 mm? in
volume. This step is referred to as dose calculations. Generally, clinical dose
calculations must be performed in less than ten minutes [15].

The dose calculations are then plotted into a graph typically consisting of
dose-volume histograms. The histogram allows the oncologist to investigate
which fraction of the volume of an affected organ receives more than a given
percent of the total dose.

Using this information the oncologist decides whether the original config-
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uration of beams is optimal or not. If not, the oncologist chooses another
configuration and a second dose calculation is performed. This step is car-
ried out iteratively (from two to six times in a typical treatment) until the
oncologist decides that further iterations will not be needed.

As mentioned earlier, the oncologist decides on a configuration of beams
based on experience and intuition. Usually taking certain conflicting factors
into consideration, to name a few

e There may be geometrical uncertainties. For instance, the boundaries
of the tumor are most of the time not easy to observe and determine.
This is mainly due to the difficulties that may arise in distinguishing
between healthy and cancerous tissue. Another factor to consider is
microscopic invasions by the cancer in the healthy tissue. Other sources
that may lead to geometrical uncertainties are patient breathing and
motion, which may lead to inaccurate C'T or MRI images.

e Biological uncertainties may be a source of difficulty for the oncolo-
gist. An example of such uncertainty is the fact that individual organs
have different tolerances for radiation. Also, individual patients have
different tolerances for radiation.

e The probability of tumor control will be low if cold spots, that is voxels
receiving less than the necessary dose, exist in the target volume.

e There should be no hot spots (voxels receiving more than the necessary
dose) within the target volume.

e The oncologist must always keep in focus the purpose of the therapy.
Sometimes the goal is to reduce the size of a tumor prior to surgery or
to irradiate an area from which a tumor has been surgically removed; to
destroy possible microscopic tumors that were not removed by surgery.

The above procedure, once performed, constitutes a radiation therapy plan.
The patient receives radiation therapy accordingly. However, the treatment is
fractionated, that is, delivered in N multiple sessions; often N > 20 (see [8]).
This fractionated treatment is of great importance, healthy tissue repairs
itself from the damage caused by low-level radiation doses more efficiently
than cancerous tissue. And evidently, the cumulative damage is less in a
fractionated treatment than in a single dose treatment.
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To sum up, the radiation therapy is a complex process. The first stage
consists of a treatment planning of radiation therapy, in which the oncologist
performs a sequence of dose calculations using the computer. These cal-
culations simulate 3-D, heterogeneous-media, highly anisotropic-scattering
particle transport processes involving beams of high-energy photons and/or
electrons.

1.3 Electron beams: Physical aspects

1.3.1 Physical Properties

The efficient use of radiation therapy requires a thorough understanding of
the underlying physics. In this section, we outline some of the concepts in
question regarding electron beams.

A beam of electrons is a concentrated and highly charged stream of elec-
trons generated by the acceleration and conversion of electricity using linacs.
Interactions occur while electron beams penetrate a background (a portion
of a patients body and the surrounding air).

Made up of particles, electron beams are referred to as radiation particles
and the tumor as background particles. Radiation particles interact with
background particles by a variety of elastic and inelastic Coulomb forces.
Consequently, the interactions result in setting up the background particles
in rapid motion, hence becoming themselves radiation particles. The dose,
or energy deposited per unit mass, is an outcome of excitation and ionization
events.

Basically, energy deposition by electrons occurs through two mechanisms,
namely, collisional losses and radiative losses. In collisional losses, electrons
lose energy via interactions with orbital electrons of the atoms in the medium.
This leads to excitations of the atoms or ionization.

The second form of energy deposition by electrons is through radiative
losses or bremsstrahlung, which is an electromagnetic radiation that occurs
when a charged particle undergoes a change in acceleration. The larger the
change in acceleration, the more energetic the bremsstrahlung photon. The
efficiency of bremsstrahlung in elements of different atomic number Z varies
nearly as Z?2 (see [8] for a more detailed discussion).

As the electron beam traverses the patient, because of the collisional and
radiative losses, its mean energy decreases and its angular spread increases.

4
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Furthermore, electrons, being light particles, collide with particles of identical
mass leading to large scattering angles. This results in a track that is very
devious instead of a straight path as in the case of heavy particles.

Besides, electrons are less penetrating than heavy particles of similar en-
ergy. This is why electron beams offer a distinct clinical advantage in the
treatment of superficial tumors. Actually, the lowest energy electron beams
do not penetrate tissues while the higher strength beams do penetrate tissues
to a moderate extent and then their energy drops off rapidly.

The two graphs below illustrate this physical feature of electron beams.
The percent dose depth is the ratio of dose at a given point on the central

axis of an electron beam to the maximum dose on the central axis multiplied
by 100.
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Figure 1.1: percentage depth dose curves in water (a) electron beams with
energies of 6,9,12 and 18 MeV and (b) photon beams with energies of 6 MV
and 15 MV. (Graphs courtesy of [16])

1.3.2 Mathematical models

The mathematical formulations that model the dose, or energy deposited per
unit mass are variants of the Boltzmann transport equation.

The multiple-scattering theory developed by Fermi and others offers a fairly
simple description of the penetration of a pencil beam of electrons through a
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background. Numerical algorithms resulting from this approach are suitable
for implementation in treatment planning computer programmes.

The basic idea of This approach is the following, the incoming radiation is
thought of as composed of a finite number of pencil beams, that is infinites-
imally thin, mono-directional, mono-energetic beams. Mathematically, this
means approximation of the initial data by a finite sum of Dirac delta func-
tions.

In addition to the above mentioned approaches, there are plenty of Monte
Carlo methods applied for the same purposes.

1.4 Algorithms used: Stochastic vs Determin-
istic

Motivated by accuracy and fast performance, the determination of doses is
approached by two different families of algorithms. Mainly, stochastic and
deterministic. While there are pros and cons of applying each set for a certain
purpose. The determination of doses remains computationally challenging.
In this section we state some of the used algorithms and we refer to the
literature for more detailed approaches about the subject.

In current day clinical work, dose calculations are governed by using semi-
empirical methods based on a combination of analysis and laboratory experi-
ments. A typical procedure for radiotherapy planning based on this approach
can be found in [13]. However, current efforts are being made to develop al-
gorithms from both families.

To begin with, Monte Carlo methods are well suited in the presence of
physical and geometrical complexity. With arbitrarily high accuracy, Monte
Carlo methods have long been used for solving medical physics problems [15].
Some commercial Monte Carlo packages such as EGS, GEANT, MMC, VMC,
and TIGER are used among others [15]. However, the use of these codes
is mostly restricted for benchmarking and for determining dose deposition
kernels. There is a severe limitation for their use clinically, mainly due to
the fact that the solution of dose calculation problems with small statistical
errors requires these codes to be run about 1000 times (while considering
individual voxels) than the desired 10 minutes [17].

On the other hand, deterministic algorithms are fast. Recent publications
in radiation oncology show that the future of the field will be governed by




Numerical Algorithms for Electron Beams

variants of deterministic algorithms. A mathematical study of the complexity
of deterministic and Monte Carlo dose calculation methods advocating this
can be found in [6].

A survey and a detailed discussion about the use of algorithms from both
families can be found in [6], and [13].

Present day deterministic algorithms include finite difference (FD) or finite
element (FE) discretization of one of the following models

e The Fermi pencil beam equation

e Generalizations of the pencil beam methods such as the Fokker-Planck
equation

e A system of linear Boltzmann equations describing photon/electron/positron
transport using six-dimensional phase space grid.

e Phase space time evolution or the PSTE method.

Again, there exist variants of the use of discretization techniques to handle
each model, depending on the type of the numerical method used. These
methods have had varying degrees of success.

Because of their deterministic nature, the above FD and FE methods are
free of statistical errors. However, some of them are not used clinically on a
wide scale mainly because of the computational cost.

The algorithms dealt with in this thesis are deterministic algorithms based
on the variants of General Galerkin or the G2-method which uses piecewise
polynomials in space-time. The algorithms are developed in two papers by
Asadzadeh in [1]|, and Asadzadeh and Sopasakis in |2].

In [1] using Characteristic Galerkin and Characteristic Streamline diffusion
methods. In [2] using Fully discrete schemes based on Standard Galerkin and
a Semi-Streamline Diffusion in (y, z) combined with a Backward Euler in x.

According to [12], "G2 is regarded as FEulerian if the space-time mesh
is oriented along the space and time coordinate axis, Lagrangean if the
space-time mesh is oriented along particle paths in space-time, and arbitrary
Lagrangean-FEulerian or ALE if the space-time mesh is oriented according to
some other feature such as space-time gradients of the solution. We also refer
to Lagrangean variants as Characteristic Galerkin, ALE-methods as oriented
Galerkin, and Fulerian variants as SUPG and Streamline Diffusion-methods."

Generally, the algorithms presented here can be classified as a combination
of Eulerian, Lagrangean, and Eulerian-Lagrangean G2.




Chapter 2

Algorithms for Electron Beams

Clinical dose calculation algorithms for electron beams are usually based on
a mathematical model, originally formulated by Fermi. Fermi derived the
model in his research concerning cosmic rays [11].

Fermi model describes the broadening of a narrow pencil beam of particles.
The particles in the beam undergo scattering events in which their directions
change only slightly, then the directions of flight of the particles will slowly
(with respect to a mean free path) "diffuse" away from the initial direction,
and the width of the beam will slowly increase with depth. The mathemati-
cal problem is to determine quantitatively the broadening of the beam as it
penetrates into the system.

2.1 Derivation of the Fermi Pencil Beam Equa-
tion

In this section, we sketch the derivation of the pencil beam equation. We start
from the steady-state, monoenergetic transport equation in a homogeneous

slab Q := [0, L] x R x R, given by

W wa(x,w) + Ut(X)¢(X,W) = / Us(Xaw ) w’)ﬂ’(’@“) dwl in Q X 521
52
(2.1)
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and associated with the boundary conditions

w(L,y,Z,w)ZO if € <0, 25
(0,5, 7,0) = £0(1 - d)o(z)  if € >0, (2:2)

with x = (z,1,2) € Q,w = (§,1,¢) € 52, describing the spreading of a
pencil beam of particles normally incident at the boundary (0,y, z) of the
slab Q. Here 1 is the density of particles at the point x moving in the
direction of w. oy is the total cross section, whereas o is the scattering cross
section. Assuming forward peaked scattering, the transport equation (2.1) is
asymptotically approximated by the following Fokker-Planck equation

0 0 1 9?
. x FP — — (1= 2\ 7 - FP 2.
WVt 0[85( §)a£+1_€2(%,2w : (2.3)
where 1 is the azimuthal angle with respect to the z-axis and
1 1
0= Jou(x) = / (1— &)oy(x, ) de, (2.4)
-1

is the transport cross-section for a purely scattering medium.
Assuming further simplifications, and approximations which can be found in
detail in [7]. The following Fermi equation is derived from (2.3):

wy - Vxp¥ = UAndﬁFa
P70, y,2,m,¢) = 6(y)o(2)6(m)s(¢),  if&>0, (2.5)
wF(L’y’Z7TI7C):O’ if§<0’

here wy = (1,7, (), where (7,{) € R x R and A, = 8%/9n* + 9*/0C.

The operator Ly on the right hand side of (2.5) is related to the Fokker-
Planck operator Lpp on the right hand side of (2.3). Geometrically, the
equation (2.5) corresponds to projecting w € S?% in the equation (2.3), along
w = (&,7m,¢), on the tangent plane to S? at the point (1,0,0). In this way,
if one applies the Laplacian operator (multiplied by o) in the spherical coor-
dinates (r,n,7) to a function that is independent of r and then sets r = 1,
the resulting expression reduces exactly to Lr. Hence, except for the factor
o, the Fokker-Planck operator is the Laplacian operator defined on the unit
sphere, and the Fermi operator Ly is just the Laplacian operator defined on
the tangent plane to the unit sphere at the point £ = 1,7 =( = 0. Thus, Lg
should be a good approximation to Lrp for small n and (.
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2.2 A model Problem

The equations (2.3) and (2.5) are formulated for the flux 1, a measure of
interest to nuclear engineers. Medical physicists are mainly concerned with
the dose (energy deposited per unit mass). The dose is related to the current
function

J=&y. (2.6)
Now, we consider a two dimensional version of (2.1)-(2.5) leading to the
Fokker-Planck problem below. Detailed treatment of this equation can be
found in [3] and [4].
For 0 <z < L and —o0 < y < o0, find ¢¥pp = Ypp(z,y,d) such that

w- VP = ouht. 0 (~n/2,7/2),
PP(0,y,6) = L6(1 — cos(6)3(y), €S, (27)
P (L, y,0) =0, 6 e St,

where w := (£,7n) = (cos(f), sin(f)), S} =w e S': £ >0and ST =S5\ SL.

Using the scaling substitution
z = tan(6), 0 e (—m/2,m/2), (2.8)
now, we introduce the scaled current function J as

j(z,y, tan™12)

T (2.9)

J(z,y,2) =

Note that z corresponds now to the angular variable . Below, we shall
keep 6 away from the poles +7/2, and correspondingly formulate a problem
for the current function J, in the bounded domain @ = I, x I, x I, =

[0, L] X [—vo, Yo] X [—20, 20]:

Jy + 2J, = €Al (z,z,) € Q,
J(x,y,+2) =0, for(z,y) € I, x I,
J(@,£y0,2) =0, Tz \ {suppf},
J(0,z1) = f(z1),

(2.10)

where FE = {(z,z,) € 0Q : B-n < 0}, B = (1,2,0), z; = (y,2) is the
transversal variable and m := n(z,z,) is the outward unit normal to I" at

10
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(x,x2,) € I'. We have also 2¢ = oy.(x,y), oyis the transport cross section, a
small positive decreasing function of (z,y) indicating energy deposit due to
particle collisions. Further, we have replaced the product of é-functions (the
source term) at the boundary by a smoother Lo-function f. The diffusion
operator in (2.10) is

A = 0%/07°, Fermi, (2.11)
A- = 0/0z[a(2)0/0z(b(2)-)], Fokker-Planck, (2.12)

where a(z) = 1+ 2% and b(z) = (1 + 22)%/2.

In this thesis, we study the Fermi equation. Detailed studies of both equa-
tions using the streamline diffusion method can be found in a series of papers,
notably in [3]| and [4].

The corresponding Fermi equation is modeling the penetration (in the di-
rection of the x-axis) of a narrowly focused pencil beam incident at the
transversal boundary of an isotropic slab entering to the domain at the point
(z,y,2) = (0,0,0). While considering an isotropic background media, we
may assume that all involved functions are symmetric, i.e, even in y and z.

Our model problem corresponds to a forward-backward (z changes the
sign), convection dominated (e is small), convection-diffusion equation of
degenerate type (convection in (z,y) and diffusion in z).

In section (2.3) we deal with the discretization of this equation using
fully discrete schemes. In section (2.4) we introduce a corresponding non-
degenerate equation and apply characteristic schemes. Throughout the re-
port, C will denote an absolute constant not necessarily the same at each
occurrence, unless otherwise explicitly stated.

2.3 The fully discrete scheme

We now consider the semidiscrete schemes where the model problem is dis-
cretized in the transversal variable z, := (y, z) using the Standard Galerkin
(SG) and the Semi-Streamline Diffusion (SSD) finite element methods. Be-
cause of the structure of the equation, the penetrating variable z is inter-
preted as a time variable and treated by usual time discretization such as
backward Euler, Crank-Nicolson..etc. leading to a fully discrete scheme. It
should be noted here that the SSD method is performed only on the z, vari-
able, whereas the usual streamline diffusion (SD) finite element method is
applied also on the x variable. The full SD is considered in [3].

11
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We recall the model problem

Uy + ZUy = €Uy, (z,2,) € Q,
u,(z,y, £20) = 0, for(z,y) € I, x I,
u(z, £y0,2) =0, Tz \ {suppf},
U(O,.TL) = f(xJ-)a

where Fg ={(z,2.) €0Q:B-n <0}, B=(1,20), and 2, = (y, 2) is the
transversal variable. Further, n := n(z,z ) is the outward unit normal to "
at (z,z,)€el.

(2.13)

2.3.1 Standard Galerkin

Discretization
First, we introduce a slab of thickness L, z € I, := [0, L], with a symmetric
cross section I, := I, x I, := [—yo, yo] X [—%0, 20], for (yo,2) € R2Z. The

physical domain I, X I, is now three dimensional. Next, we discretize in
xy = (y,2) using a finite element approximation based on a quasi-uniform
triangulation of the rectangular domain I, = I, x I, with a mesh size h.
We also consider adaptive meshes with refinements in the center. We let
B = (z,0) and define the inflow (outflow) boundary as

I, ={z, €T =0l :n(zL) B <0(>0)} (2.14)

where n(x ) is the outward unit normal to the boundary I" at z; € I'. Now,
we introduce a discrete, finite dimensional, function space V, 3 C H é(I 1)
with,

Hy(I)={ve H'(I.):v.(+2) =0 and v=0 on Ty}, (2.15)
such that, Vo € Hy(I,) N H" (1),

inf ||v—x|; <Ch*I|Jv]la, =01 and 1<a<r (2.16)
XEVh,g

’

|| - ||s, with s being a positive integer, denotes the Ly based Sobolev norm of
functions that are square integrable along with all their partial derivatives of
order < s. An example of such V}, 5 is the set of sufficiently smooth piecewise
polynomials P(z,) of degree < r, satisfying the boundary conditions given

12
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in (2.13).
We then seek uy, € Vj, g, such that

{ (uh,za X)J_ + (’zuh,an) + (euh,za XZ)J_ = Oa VX € Vh,ﬂa (2 17)
up(0,7L) = fa(xL), '

where fj, is a finite element approximation of f. The mesh size h is related
to € according to:
h? <e<h. (2.18)

Here,
(u,0)1 = / w(r () dz,,  and  |lullg = (W)
I
Stability

In this part, we prove a stability estimate in the inner product (-,-),. We
restrict the scope to the case of the semi-discrete SG case. more detailed
stability analysis can be found in [2].

Lemma 1 For uy € Vi g, satisfying (2.17) we have

Sup [|un(2, Moy < o) (2.19)

Proof: If we choose x = uy, in the first equation of (2.17), we get

1d

5@”%(% Moy + (Zung, un) s + 1€ un 27,0, ) = 0. (2.20)

Integration by parts in y yields

1 1
(cungyun)s = 5 [ =) = ui(-w)) do =5 [ (- Bpiar. (221
I rt
Inserting (2.21) in (2.20), we get
1d 2 1 2 1/2 2
5%”“}1(% My + 3 F+(n Bup dU + € Fupe[[7,,y = 0. (2.22)

B

13
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Now, since %frg(n - B)uz dT > 0, then by (2.22), %%Huh”i(u) < 0. There-

2 . . .
fore [lup|7,(;, ) is decreasing in z and hence,

lun(@, MLy < N0,y Yo €0, L] (2.23)

The next estimate, which we state without proof, concerns the continuous
version of lemma 1. The proof follows the same setup. The starting point is
to consider the continuous variational formulation.

Corollary 1 The solution u of (2.13) satisfies the stability relation

sup [[w(z, )| o1y < W f Moy (2.24)

xely

Convergence

For convection dominated problems, being hyperbolic, the standard finite
element schemes would have convergence rate of the same order as the asser-
tion in the theorem below, which is the known optimal convergence rate for
purely hyperbolic problems. However, this convergence rate is not obvious
when degeneracy and type change are included. We state the theorem and
a sketch of the proof.

Theorem 1 Foru € H" (), satisfying (2.13) and with uy, being the solution
of (2.17), there is a constant C = C(Q, f) such that

lu — un||Ly0) < Ch™H|ul|- (2.25)
proof: This follows trivially from applying Poincare’s inequality,
[ = unllz, < Cll(w— up)el|z,- (2.26)
Using the following result from [2]
€2 (u = un)2llz. < CR™Y2|lulls, (2.27)

and since € ~ h, the result follows.

14
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2.3.2 A Semi Streamline Diffusion Method

Basically, the Streamline Diffusion Method is obtained by multiplication with
test functions belonging to a space which is different from the space of trial
functions where the discrete solution is sought. Such a method, where the
test functions are different from the trial functions is referred to as a Petrov-
Galerkin method. More generally, The Streamline Diffusion is also considered
as an Fulerian G2 method, see [12].

Below, we introduce a semi Streamline Diffusion approach with diffusion
generating test functions in the y, z directions. This scheme is strongly stable
(see [14]). Its smoothing properties are seen in the numerical implementation
in section 4. The convergence rates are at least as good as those of the SG
method, we refer to 3] for the complete analysis in the full SD case.

It is worth mentioning here that by using the SSD, we obtain a non-
degenerate type convection dominated, convection-diffusion equation, with
somewhat improved regularity. Yet, our test functions have the form v+ dvg.
Such test functions automatically add up the extra diffusion term §(vg, vg)
to the variational formulation, which combined with (v, —ev,,) = (ev,,v,)
leads to a non-degenerate fully diffusive equation (z is interpreted as a time
variable). If § > € the diffusion term is of order e. We assume that ¢ ~ h.

Discretization

The test function has the form v + dvg with § > €, § = (2,0), vg = -V, v
and V, = (0/0y,0/0z), and v satisfies the boundary conditions in (2.13).
Multiplying the differential equation in (2.13) by v+ dvgz and integrating over
I, yields,
(Ug + Ug — €Uy, v+ 6V8) | = (Ug, V)1 + 0(Ug, v8) 1L + (ug, V)1
+0(ug,vg) 1L + (eus, vy) 1L + 0(€euy, (vg),) L =0.  (2.28)

Stability

Our aim is to derive a stability estimate, we let v = u in (2.28). This gives

ld
2dx

1
Jull, + 8z ughr, + 5 [ (0 Bt ar
r)

+olluslly, + lle?usll7, + 8(eus, (ug):)r, =0.

15
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The inner product in the last term can be expressed as

(eus, (zuy)2)r, = (€uz, 2uys)r, + (€us uy)r, (2.29)
1d 1d
= §d_y(/u ezu? dy dz) — §d—y(/1L ey2u’ dy dz) + (euy, uy), -

Now, using the symmetry assumption, u is even in y and z, and so is u?.
Therefore the integrands above are odd functions in z. Hence, their integral
over the symmetric interval are identically zero. (2.29) is reformulated as

1d 1
5 7l + 0(ues ug)r, + 5 /r;(n - B)u? dT
+6llugll?, + 1€ ?ul7, + (eus, uy)r, = 0. (2.30)

We multiply the differential equation in (2.10) by du,, integrate over I, and
perform an integration by parts to get

Ollugl7, + 6(us, up)r, + 6(eus, uzy)r, = 0. (2.31)
Note that
1d 1
(€Uzy Ugz)r, = 9 ds . eu?dr, — 5 /IL €u’de ) . (2.32)

Adding (2.30) and (2.31) and using (2.32) we get,

1d 1
§£||u||i + Ollua +ugll, + 5 /F+(n Bt dl + [|€/u, |7, + (ews, uy)r,
8
0 d 0 d
—— | euldr, — —— | euidr, =0. (2.33)
2dx /| 2dx /|

Using the following trivial inequality
1 1
(eus, )i, < 52w, + 3l 2, 1. (2:34)

We make an additional symmetry assumption on the transversal plane viz,

1/2

€2 uzllr, ~ 1€y Iz, (2.35)

¢ = $04,(2,y) ~ 1/1, where the mean free path [ is an increasing function
of x and y. This agrees with the physical fact. Actually, our model starts

16
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with dense collisions which gradually, towards the penetration direction z,
transfers to a particle distribution with rarefied character on leaving the
physical domain, see [2]. Thus € is decreasing and ¢, < 0, therefore

/ euldr; <0. (2.36)
I,
Inserting (2.34-2.36) in (2.33), we get,
1d 9 9 1 9
-2 - : r
de(“u“h —i—(S/IL €;u; dr) ) + 5 /F;r(n Blu”d
+6[ug + ugll7, + (1 —8)|le'*u.]|7, < 0. (2.37)
Thus for sufficiently small §(~ \/¢)
d 2 2
%(HuHIL +4 . exusdzy ) <0, (2.38)

and hence ([|lull7, +9 [, €;ufdz.) is strictly decreasing in . Consequently,
we have V' € [0, L],

Ju(z’, ')||%2(1L) + 5”61/2%(35', ')||%2(1L) < {Ju(0, ')||2L2(1L) + 5”61/2%(35', ')||%2(1L)
(2.39)
and in particular, we have the following result, which we state as a lemma.

Lemma 2 Assuming (2.35) and with 6 > € we have the stability estimate

lw(Ly o,y + Ol 2Ly )y S W,y + 0ll€ foll,0,y. (2:40)

2.3.3 The Fully Discrete Problem

In this section we derive the algorithms corresponding to the SSD scheme
for I, combined with backward Euler(BE) method for the penetration inter-
val I,. The motivation behind treating the discretization in the z variable
separately is to efficiently determine the beam intensity at different cross sec-
tions. In this way, we consider the penetration variable x as a time variable
in similar time dependent problems.

We split the SSD variational formulation (2.28) as follows:

a(u,v) = (ug,v)r, +6(eug,ug)r, + (€uy, vy)r, + 0(euy, (vg).)r,, (2.41)
b(u,v) = 6(u,vg)r, + (u,v)r,, (2.42)

17
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and rewrite the problem as

: |
{ find a solution u € Hg(I,) such that (2.43)

b(ug,v) + a(u,v) =0, Vv € Hy(11).

We use the finite dimensional subspace, Vg of Hg(I1) and replace the
discrete solution u, with the "space-time-discrete" ansatz

w(@,y, 2 Z@ )$i(y, 2), (2.44)

where M ~ 1/h. We replace v by ¢; for j =1,---, M, and insert (2.44) into
the semidiscrete counterpart, of (2.28). This gives the discretization method

M M

D G@)b(gi, ) + Y &(@aldi, é5),  j=1,-, M.

=1 =1

Or in matrix form,

BE(x) + Agi(z) = 0. (2.45)

where B = (b;;) with entries b;; = b(¢;,¢;) and A = (a;;) with entries
a;; = a(¢i, ¢;). At this stage, we also discretize in the x direction using
backward Euler to get the fully discrete scheme,

BU — UM ) + k, AU = 0. (2.46)

Other fully discrete schemes can be obtained depending on the choice of the
discretization method in x, e.g; Crank Nicolson, or discontinuous Galerkin.

2.4 Characteristic Schemes

The main feature in this section is the idea of exact transport + projection. To
illustrate, we consider a homogeneous infinite slab, (y,z € R, Q = (z,y, 2)
of thickness L, (0 < z < L). Let = be the penetration direction of a charged
particle beam, {z,} an increasing sequence of discrete points indicating colli-
sion sites and {V, } a corresponding sequence of piecewise polynomial spaces
on space meshes {7,} on the transversal variable z; = (y,z). Given the
approximate solution (current) J®" € V, at the collision site z,,, solve the
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pencil beam equation exactly on the collision free interval (z,, x,.1) with the
data J"" to give the solution J™" ' at the next collision site z,1, before
the collision. This is an exact transport procedure. Now, one may compute
Jhntl =P, J_h,n+ 1, with P, being a projection into V,,;. J»"t! is
the post collision solution at the (other face of collision) z,1. In this way,
we have an algorithm of type exact transport + projection.

The domain @ := I, x I, x I, subdivided into slabs S, := I x I, x I,
with I? := (z,—-1,2,], n = 1,2..., N, corresponding to collision-free paths
in the z-direction and I, and I,, bounded symmetric intervals representing
the transversal domain of = . Each slab S,, has its own incident-transversal
finite element mesh T Consequently, at each collision site z, we have two
transversal meshes 7'* = 7n | x, and 7'+ = Toi1 | x,, respectively. In
general 7.~ # 7.+ and the passage of information from one slab to the next
is performed through a modified (built-in) Lo-projection.

Again, and as in the previous section, x is treated as a time variable, the
transversal variable mesh is dealt with as a space mesh as in similar time-
dependent problems

To proceed, we recall the model problem

Jp+ 2dy = €J,,, (z,2,) € Q,
J(x,y,+2) =0, for(z,y) € I x I,
J(@,£y0,2) =0, T7\ {suppf},
J(OaxJ-) = f(xJ-)a

where @ is a bounded domain @ = I, x I, X I, = [0, L] X [—yo, Yo| X [—%0, 20],
F; {(z,z,)€dQ:B-n <0}, B=(1,20), 2z, = (y,2) is the transversal

variable and n := n(z,z ) is the outward unit normal to I' at (z,z,) € I

(2.47)

As mentioned earlier, our model problem is a forward-backward, convection
dominated convection-diffusion equation of degenerate type. A correspond-
ing non-degenerate equation reads

L) =T+ B-ViJ—eA J=0, (2.48)

where € &~ Co. A := 0?/0y*+ 0?02 is the transversal Laplacian operator,
and from now on § = (z,0).

we introduce the change of coordinates (z,Z,) = (z,z, — zf5). If we set
J(x,%,) = J(x,z.), we reformulate (2.48) as

Jy— €A =0, in [0,L] x I, x I, JO0,z,) = f(z). (2.49)
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Since g—i = %J(x,fm +20) = ‘Z—‘; + B-V,J. If € =0, then the solution of

(2.49) is given by

J(z,21) = flzL — 2p).
The characteristics of equation (2.48), in the case of ¢ = 0 are given by
) + B > 0, and in this case the solution J(x,Z ) is constant along the
characteristics.

Once and for both methods below, let {z,}, n =0,1,..., N, be an increas-
ing sequence of z values with zy = 0, and let for each 0 < n < N, {z,},
{T.} be a corresponding sequence of triangulations 7, of {z, } x I, x I, into
triangles K and let V,, be the space of continuous piecewise linear functions
on Ty, ie. V, ={v € C(l, x I,) : v is linear on K, K € T,}. C(€2) denotes
the set of continuous functions on (2.

2.4.1 Characteristic Galerkin

In the case of € = 0, the characteristic Galerkin (CQG) is formulated as follows:
Forn=1,2...N

find J»" € V, such that: (2.50)
fIyx]z Mz )v(zy) dey = fInyz Jh Nz — hpB)v(zy) doy, '
where h, =z, — 2,1 and J*° = f. In other words
Jhm =P, T, J"" 1, (2.51)

where P, : Lyo(I, x I,) — V), is the Ly projection defined by (P,w,v) =
(w,v), Yv €V,, where (-,-) denotes the inner product in Ly(I, x I,), and
Ty =v(z, — hyB)v(zy).

2.4.2 Characteristic Streamline Diffusion

In this part, we formulate the Streamline Diffusion (SD) method, and the
Characteristic Streamline Diffusion (CSD) for (2.48). CSD is a special case of
SD obtained with oriented phase-space mesh elements. For n =1,2,..., N,
let 7, = {K} be a finite element subdivision of the slab S, = I? x I, x I,
I = (xp_1,xy), into elements K andlet V, bea space of continuous piecewise
polynomials on 7, of degree at most k. For £k = 1 and small ¢, the SD-method
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may be formulated as follows: For n = 1,2,..., N, find J" = J*|S, € V,
such that

/ (4 BV M) (0 + 6(vs + B+ V1v)) dada

n

+ / eV J" -V vdeds, (2.52)

+ / Jhmot do, = / Jrt e, Vo eV,
I,

I,

where v (x1) = limago v(z £ Az, z), € = max(e, F(Ch*R(J"))/M,, with
R(J") = [} + 8- VLJ" +]|[J"]|/h.

F(v) is the element-wise average of v, [v"] = v —v", § is a small parameter in
general of order ~ h. M, = maz,, |J""™(z,)| is a normalization factor. The
streamline diffusion modification is given by é(v, + 8-V v) and the degen-
erate shock-capturing modification by é. If 8 is approximated by piecewise
constants on each slab, the streamline diffusion modification will disappear
in the CSD-method.

The CSD-method is obtained through making a special choice of the finite
element subdivision 7, = {K} of S, and the corresponding finite element
space V,. Let 7, = {K} be a subdivision of S, given by the prismatic
elements oriented along the characteristics

an{(x,:il—i-(:c—xn)ﬁ):a‘uEKEﬁ,xelg},

where T, = {K} is a triangulation of I, given above, and let V, be defined
by

Vo ={0€C(Sy) : 0(z,2L) = v(al — (x — 2,)B),v € Vo },
with V), the space of continuous piecewise linear functions on 7, as above.
So V, consists of the continuous functions O(z,zL) on S, such that o is
constant along characteristics z; = T, + xf parallel to the sides of the

prismatic elements K,. With this choice, we notice that if v € lA/n, then
% + B -Vi0v = 0. The SD-method is then reduced to the following: For

n=1,2,...,N, find J* € V, such that

/ eV J" -V vdedz, + / Jym dry = / TP dy, Y€V,
n I I
: B (2.53)
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where € = maz (e, F(Ch*(|[J"]|/hn)) /My, and h(z, z1) = hp (@1 — (x—20)5);
hn(x1) gives the local element size of 7,. If € is small, then (2.53) can be
stated as:
/ €VLJA_’£’" -V, vdxdz, + / j_’,l_"v de, = / JV da | Vo €V,
I, 1, I,

X A (2.54)
writing J*" = Jh" since JM" = T, J"" 'we can restate (2.54) as follows:
Forn=1,2,...,N, find J*" € V, such that
/ eV IV vdedr, + / JMM day = / T, J"" tvdzy, Vb€V,

I, I, I,
(2.55)
where J*0 = f and é = F(Chg|J*" — T, J""*|)/M,. If we introduce the
operator P, : Lo(I1) () Loo(IL) = V, defined as

(Pow,v) = (6V_ Pow, V1v) = (w,v), Vo € P,.

This time, € = F(Ch®|Pyw — w|/maz|P,w|), and (-,-) denotes the Ly(I,)™
inner product with m = 1,2. We can reformulate (2.55) as

Jh,n — ﬁnTnJh,n—l_

P, may be viewed as a modification of the usual L, projection, obtained by
adding the artificial viscosity term with coefficient ¢ as defined above.
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Chapter 3

Computational Implementations

As outlined in Chapter 2, we split the discretization procedure into two steps.
For the fully discrete schemes SG and SSD, we first discretize the domain
I, =1, x 1, using continuous Galerkin approximation with piecewise linears:
¢G(1), and then step advance in z using the Backward Euler (BE) method.
In the characteristics schemes CG and CSD, we discretize I, using ¢G(1)
and we step advance in x using discontinuous Galerkin approximation with
piecewise constants: dG(0). The ¢G(1) basis functions have the form 1—y—z.

3.1 Exact Solution

The model problem (2.10) has a closed form exact solution, in some special
cases(for € = €(z) := o(x)/2, see [13]), given by

T(z,y,2) = V3 a2 —a /D) (o) (3.1)

Tex?

This allows us to compare the computed solution with the exact one and
derive errors in various norms. However, the comparisons are limited because
of two reasons. First, the closed form exact solution is a limited case which
displays singularities near the origin. Second, the initial conditions used
in the numerical experiments are not the same ones considered in deriving
(3.1). As a matter of fact, we can not numerically provide an initial data of
the form of a Dirac ¢ function. For comparison purposes, we consider three
types of initial conditions that approximate the ¢ function in the L; sense:
Mazwellian, Hyperbolic, and modified Dirac.
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14

20.

Figure 3.1: The closed form exact solution at x
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Figure 3.2: The closed form exact solution at x
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Figure 3.3: The closed form exact solution at x=>50.

3.2 The Fermi pencil beam Solver

3.2.1 DOLFIN

The code included in Appendix A, and discussed below uses the free and open
source library DOLFIN (Dynamic Object oriented Library for FINite element
computation) a C++ interface of the free software for the Automation of
Computational Mathematical Modeling FEniCS. DOLFIN is implemented
in the department of computational mathematics at Chalmers University of
Technology and Go6teborg University.

DOLFIN is implemented in C++, and licensed under the GNU/GPL!. It is
structured on Object-Orientedness notions and concepts. It can be used ei-
ther as a stand-alone solver, or as a tool for development and implementation
of new methods.

Dolfin is organized into three levels of abstraction, namely, the user level,
the module level, and the kernel level. Through the user level, we specify the
geometry, boundary conditions, and equations parameters.

lwww.gnu.org
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At module level, the developer has access to DOLFIN classes, objects,
and building blocks. A typical DOLFIN module is composed of two classes:
Problem.h, in which we specify the variational formulation, and a Problem-
Solver.h. Both classes are used by ProblemSolver.cpp; the backbone of the
solver which includes the algorithm for the problem.

The kernel space contains the code for all the basic tools that are available
in the module level such as preconditioned iterative method, GMRES. . . etc.
A more detailed discussion is available in |9]

3.2.2 The Fermi Pencil Beam Solver as a Module in
DOLFIN

The solvers SG, SSD, CG, and CSD are named FermiSG, FermiSSD, Fer-
miCG, and FermiCSD respectively. Each solver is composed of four files.
Three in the module level and one in the user level. For instance Solver Fer-
miX contains the files FermiX.h, FermiXSolver.h, and FermiXSolver.cpp (in
the module level) and a main.cpp (in the user level).

e The class FermiX.his derived from the abstract class PDFE.h, it contains
the variational formulation for the problem.

e The class FermiXSolver.h is derived from the abstract class Solver.h.

e The file FermiXSolver.cpp is the main part of the solver. In this file,
we set the formulae for initial data, time stepping, assembling, etc.

The tasks performed in main.cpp are the following:

e Reading the geometry (mesh), which should be in a separate XML file.

e setting the functions for diffusion and convection coefficients € and S,
respectively.

e setting the boundary conditions.

e setting the time step, final time. ...
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Machine used

The algorithms considered in this thesis were implemented and tested on
a computer with the following characteristics: PI1,130,612K BRAM The
operating system

Machine :1686

Processor :1686

HW-platform 11386

Operating System :GNU/Linux

Version :2.4.21-27.0.2.EL

Release :1 Wed Jan 12 23:46:37 EST 2005
DOLFIN :0.5.1

Using the benchmark in Dolfin

-Assembling 100 times 2.76
-Matrix/vector multiplication 100 times 1.06
-LU factorization 4.85
-Krylov solve 2.43
Totaltime: 12.52
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Chapter 4

Results

4.1 Mesh

The meshes used in the numerical experiments are shown in Figure 4.1. The

finest mesh used has a step size of h

a step size k£ = 0

d

0.0625 in the y and z variables, and

iable, corresponding to 8198 nodes in two

in the z var

005

11N ensions.

mesh refined uniformly

mesh refined in the center

777777777
AN AAAAZAZZZINNNNNNNNNNNNNNY

— e} o ) =y
S <) !

mesh refined uniformly

0.5

-0.5

-1

0.5

mesh refined in the center

0.5

0.5

-0.5

-1

0.5

-0.5

0.5

-05

Non-

symmetric refinements (2 top figures).

symmetric refinements (2 down figures)

: Meshes used:

Figure 4.1
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The refined meshes were obtained using DOLFIN.

4.2 Initial Data

We use three types of initial data to approximate the Dirac § function;
Maxwellian, hyperbolic and a modified Dirac (Figure 4.2)

s Dirac initial condition I s Dirac initial cordition 11
% 10 % 10
4
2
- s 1
0
-1
Maxwellian initial condition Hyperbalicinitial condition

Figure 4.2: Types of initial conditions used.

4.3 Computed Solutions

The computational parameters used rely on the theoretical results discussed
in chapter 2. For instance € must be chosen small, and § ~ h. The computed
solutions in the figures were computed using ¢ = 0.002, and h = 0.175
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(h = 0.0625 in the finest mesh). The value for § in SSD and CSD is taken
as 0 = h/2. The value for x is set to x = 1, and the norms are calculated at
this value.

At z =1 the "exact" solution is shown in Figure 4.3.

600 —
500
400
300
200 —
100 + !
0.5
0 0

VT e <
-05 05

Figure 4.3: Closed form exact solution at x = 1.

The computed solutions for the Dirac initial conditions using CSD and
SSD are shown in Figures 4.4 and 4.5 respectively.
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Figure 4.4: Computed solution at x = 1 with Dirac Init.cond. using CSD.

600

500

Figure 4.5: Computed solution at x = 1 with Dirac Init.cond. using SSD.
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In the characteristic schemes, the time step (z is interpreted as time) was
chosen as £ = 0.01. While in the fully discrete schemes, it was set to k£ =
0.005.

Using SG and CG, and as we step advance in z, the computed solutions
explode. In the case of the SG method, this happens through the formation
of layers and in the CG method through an oscillatory behavior. On the
other hand SSD and CSD are more stable. However, in some cases, the SSD
and CSD lose the stability feature. We notice, in the SSD, that choosing
large time steps results in the formation of sharp layers (as in the SG, see
Figures 4.6 and 4.7). Whereas, some initial conditions (non smooth) in the
CSD as well as the SSD scheme lead to an oscillatory behavior. This is more
apparent in the case of a hyperbolic initial data (Figure 4.8).

layers associated with large steps in x

Figure 4.6: formation of layers in a solution with Maxwellian i.c at x = 0.66

This behavior can be eliminated by modifying the L, projection as men-
tioned in chapter 2.

For a smooth initial condition the usual L, projection would not produce
such oscillations. In Figure 4.9, a solution with Maxwellian initial data is
shown.
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layers associated with large steps in x

Figure 4.7: formation of layers in a solution with Maxwellian i.c at x = 0.85

Figure 4.8: Oscillatory behavior of a solution with hyperbolic i.c
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Figure 4.9: Computed solution with Maxwellian initial condition (three pro-
jections have been performed).

In the tables, 4.1, 4.2, and 4.3, we compute the L, L, and Ly, norms of

the errors between the "exact" and computed solutions for the three used
initial conditions at z = 1.

In order to calculate the L; and Ly errors we use the vertex quadrature of
the form.

[ECEE SIS

j=1

where a’. denotes the vertices of a triangle K, and we denote by |K| the
area of K. Therefore

3 3 1/2
1 . 1 .
|wllz, = gz K> w(dl), and ||, ~ (5 > IK] Z(w(a’KW) :
K j=1 K

=1
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‘ L H Dirac  Hyperbolic Maxwellian ‘
CSD || 47.6325 0.6878 0.6521
SSD || 48.2734 0.6135 0.6521
CG 47.2871 0.6046 0.623

Table 4.1: The L., based norm for the errors between the "exact" and com-

puted solutions

‘ Ly H Dirac  Hyperbolic Maxwellian ‘
CSD || 32.5463 0.1378 0.2912
SSD || 33.4347 0.1535 0.2821

CG 36.1862 0.1546 0.3234

Table 4.2: The L, based norm for the errors between the "exact" and com-

puted solutions

We also use the midpoint quadrature formula to get a weighed L as follows:

iz, (%Z\K\ >
K

1<=1<j<=3

. 12
(w(a}%)z)> ,

where a% denotes the midpoint of the side connecting the vertices a%, and

a%, and |K| is the area of the triangle K.

Errors in the EQ are shown in table 4.4

‘ L, H Dirac  Hyperbolic Maxwellian ‘
CSD || 27.1325 0.1176 0.2031
SSD || 27.1488 0.1135 0.2087

CG | 31.9271 0.6036 0.2247

Table 4.3: The L, based norm for the errors between the "exact" and com-

puted solutions
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‘ L, H Dirac  Hyperbolic Maxwellian‘

CSD || 11.4339 0.1138 0.1342
SSD | 11.2743 0.1155 0.1373
CG 12.7643 0.1264 0.1422

Table 4.4: The Ly based norm for the errors between the "exact" and com-
puted solutions

4.4 Conclusions

We have considered 4 deterministic algorithms for electron beams based
on variants of General Galerkin or the G2-method , namely, the Standard
Galerkin (SG), a Semi-Streamline Diffusion (SSD), a Characteristic Galerkin
(CG), and a Characteristic Streamline Diffusion (CSD). We have developed
the discretization schemes from a model problem, and showed stability for
SG and SSG.

Computational Implementations were carried out to illustrate the appli-
cability of the different algorithms for different types of initial data. To
begin with, SSD and CSD are more stable and accurate than the SG and
CG in all the three canonical forms of the initial conditions approximat-
ing the ¢ function. We have also noticed that differences in initial condi-
tions affect the convergence estimates. In this sense, solutions with modified
Dirac initial conditions are suited in both approaches CS and SSD. However,
Maxwellian initial conditions produce accurate results in the CSD scheme,
whereas the hyperbolic initial conditions produce more accurate results in
the SSD scheme.

The resulting oscillatory behavior, while considering non smooth initial
data, can be eliminated by modifying the Lo-projection. The formation of
layers can be avoided by taking small steps in the penetration variable. How-
ever, a better approach to deal with this phenomenon is through adaptive
refinement.

In general, for problems that are similar to our model problem (convection
dominated convection-diffusion problems of degenerate type), streamline dif-
fusion approaches such as SSD and CSD are more stable and accurate.
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Appendix A
Code

An example of a solver is presented in this appendix, namely, the Semi
Streamline Diffusion solver. Comments are incorporated in the code.

A.1 FermiSSD

A.1.1 main.cpp

Below is the main programme.

// Copyright (C) 2005 Samir Nagos.

// Licensed under the GNU GPL Version 2.
#include <string>

#include <iostream>

#include <stdlib.h>

#include <dolfin.h>

using namespace dolfin;

//--Diffusion
real epsilon(real x, real y, real z, real t)

{
return 0.002;

}
//--Convection

real beta(real x, real y, real z, real t, int i)

{
if (i==0)
return y;
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else
return 0.0;
}
//--Boundary conditions
void mybc(BoundaryCondition& bc)
{
//--u = 0 in the inflow boundary
if ( bc.coord().x == 0.0)
{
bc.set (BoundaryCondition: :DIRICHLET, 0.0);
}

if ( bc.coord().y == 1.0)
bc.set (BoundaryCondition: :NEUMANN, 0.0);

else if ( bc.coord().y == -1.0 )
bc.set (BoundaryCondition: :NEUMANN, 0.0);
else

bc.set (BoundaryCondition: :DIRICHLET, 0.0);
}

int main(int argc, char **argv)
{
//--Check arguments

if ( argec '= 2 )

{
dolfin_info("Usage: dolfin-FermiSSD n");
dolfin_info("");
dolfin_info("where n is one of");
dolfin_info("");
dolfin_info(" 1 - the Maxwellian");
dolfin_info(" 2 - the Hyperbolic");
dolfin_info(" 3 - Modified Dirac I");
dolfin_info(" 2 - Modified Dirac II");
return 1;

}

int n = atoi(argv[1]); // Get the number of the initial condition
Mesh mesh("mesh2s.xml"); //--Read the mesh

unsigned int refinements = 2; //--refine mesh

for (unsigned int i = 0; i < refinements; i++)
mesh.refineUniformly();

//--Define and solve the problem

Problem fermiSG("fermiSG", mesh);

fermiSG.set("initial data", n);

fermiSG.set ("boundary condition", mybc);

fermiSG.set("final time", 1.0);
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fermiSG.set("time step", 0.001);
fermiSG.set ("diffusivity", epsilon);
fermiSG.set ("convection", beta);
fermiSG.solve();

return 0;

In the file FermiSSD.h, we assemble the right hand side and the left hand
side as specified in the variational formulation.

A.1.2 FermiSSD.h

#include <dolfin.h>

// Copyright (C) 2005 Samir Nagos.

// Licensed under the GNU GPL Version 2.
#ifndef __FERMISSD_H

#define __FERMISSD_H

#include <dolfin/PDE.h>

namespace dolfin {

class FDS : public PDE {
public:
FDS(Function& uprevious,
Function& diffusion,
Function::Vector& convection)
PDE(2) ,beta(3)
{
add (up, uprevious);
add(epsilon, diffusion);
add(beta, convection);
dl = h/2.0;
d2 = h/2.0;
}
//--The left hand side of the variational formulation
real lhs(const ShapeFunction& u,const ShapeFunction& v)

{
A = (beta,grad(u))*vxdx + dil*(beta,grad(u))*(beta,grad(v))*dx
+ epsilon*ddy (u) *ddy(v) *dx + dl*epsilonx*ddy(u)*ddy((beta,grad(v)))*dx;
B = dix(beta,grad(v))*u*dx +u*v*dx;
return (B + k*A);
}

//--The right hand side of the variational formulation
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real rhs(const ShapeFunction& v)

{
C=d2*(beta,grad(v))*up*dx + up*v*dx;
return C;
}
private:
ElementFunction::Vector beta; // Convection
ElementFunction epsilon; // Diffusion

ElementFunction up; // value at left end-point
real d1,d2,A,B,Abar,C;

};
class Projectionfds: public PDE {
public:
Projectionfds(Function& actual) : PDE(2)
{
add(ul, actual);
}
real lhs(const ShapeFunction& u,const ShapeFunction& v)
{
return 0;
}
real rhs(const ShapeFunction& v)
{
return sqrt(ul*ul*vxdx);//--weighted L2
return sqrt(ul*ul*dx); //--L2
}
private:
ElementFunction uil;
};
}
#endif

A.1.3 FermiSSDSolver.h

// Copyright (C) 2005 Samir Nagos.

// Licensed under the GNU GPL Version 2.
#ifndef __FERMISSD_SOLVER_H

#define __FERMISSD_SOLVER_H

#include <dolfin/Solver.h>

namespace dolfin {

class FermiSSDSolver : public Solver {
public:
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FermiSSDSolver (Mesh& mesh) ;
const char* description();
void solve();
real 12error(Mesh &mesh, Vector &dofs);
};
}
#endif

A.1.4 FermiSSDSolver.cpp

// Copyright (C) 2005 Samir Nagos.

// Licensed under the GNU GPL Version 2.
#include <fstream>

#include <string>

#include <iostream>

#include <stdlib.h>

#include "FermiSSDSolver.h"

#include "FermiSSD.h"

using namespace dolfin;

[ == e m e -
FermiSSDSolver: :PoissonSolver (Mesh& mesh) : Solver (mesh)
{
dolfin_parameter (Parameter: :REAL, "final time", 1.0);
dolfin_parameter (Parameter: :REAL, "time step", 0.001);

dolfin_parameter (Parameter::FUNCTION, "diffusivity", 0.002);
dolfin_parameter (Parameter: :VFUNCTION, "convection", 0.1);
dolfin_parameter (Parameter: : INT, "initial data", 0);

const char* FermiSSDSolver::description()
{

return "FermiSSD";

void FermiSSDSolver::solve()

{
Matrix A;
Vector x0, x1, b, bb, d, Xexact, diff;
Function Uexact (mesh, Xexact);
Function u0(mesh, x0);
Function ul(mesh, x1);
Function epsilon("diffusivity");
Function::Vector beta("convection", 3);
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FDS fds(u0,epsilon,beta);
Projectionfds projectionfds(ul);
KrylovSolver solver;

File computed_file("fermi.m");
File exact_file("exact.m");
std::ofstream file("norm.m");

0.0, eee= 0.0;

real T = dolfin_get("final time");

real k = dolfin_get("time step");

int ¢ = dolfin_get("initial data");

real t

int counter = 0;
switch (c) {
case 1:
dolfin_info("Solving with Maxwellian initial condition.");
for (NodeIterator n(mesh); 'n.end(); ++n)
{
x0(n->id()) = exp(16*(-((n->coord().x)-k*(n->coord().y))

* ((n->coord() .x)-k*(n->coord() .y)) - (n->coord() .y)
* (n->coord().y)));

break;
case 2:
dolfin_info("Solving with hyperbolic initial condition");
for (NodeIterator n(mesh); !'n.end(); ++n)

{
x0(n->id()) = 1/(100*((n->coord() .x)*(n->coord().x)
+ (kxk+1)*(n->coord() .y)*(n->coord() .y)
- 2xk*x(n->coord () .x)*(n->coord() .y))+1) ;
}
break;
case 3:

dolfin_info("Solving with modified Dirac I");
for (NodeIterator n(mesh); 'n.end(); ++n)
{
x0(n->1d()) = 1/(sqr(n->coord() .x)*0.5+sqr(n->coord().y)*0.5+0.000001) ;
}
break;
case 4:
dolfin_info("Solving with modified Dirac II");
for (NodeIterator n(mesh); 'n.end(); ++n)
{
x0(n->id()) = 2.0e-9(1/sqrt((sqr(n->coord() .x)+sqr(n->coord() .y)+DOLFIN_EPS))) ;
}
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break;
default:
dolfin_error("No such Initial conditions");

}

//--Save initial value

u0.rename("u", "temperature");

mfile << u0;

//--Compute exact solution
for(NodeIterator n(mesh); 'n.end(); ++n)

{
Xexact (n->id()) = (2.0*sqrt(3)/(3.14%0.002x20.0%20.0))
xexp (-4.0* (3% (sqr(n->coord() .x)/20.0) -3
*((n->coord() .x)/20.0)*(n->coord() .y)
+sqr (n->coord () .y))/(0.002%20.0)) ;
}

exact_file << Uexact; //--Save exact solution to the file
//--Assemble matrix
fds.k=k;
FEM: :assemble(fds, mesh, A);
int i = 0;
//--Start a progress session
Progress p("Time-stepping");
//--Start time-stepping
while ( t < T ){
i++;
//--Make time step
t += k;
//--Assemble load vector
fds.k = k;
fds.t = t;
FEM: :assemble(fds, mesh, b);
solver.solve(A, x1, b); //--Solve the linear system
diff = x1;
diff -= Xexact;
file << diff.norm(0) << std::endl;
if ((counter % 11 == 0 ) && (counter <= 33))//--the projection step
{
projectionfds.k = k;
projectionfds.t = t;
FEM: :assemble(projectionfds, mesh, bb);
x1=bb;
}
x0=x1;
ul.update(t); //--Save the solution
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computed_file << ul;
p=t/T; //--Update progress
dolfin::cout <<"finished iteration"<< i <<dolfin::endl;
}
}
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