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Abstract

Many real world problems are multi-objective in nature. There are many
methods that solve this kind of optimization problem. They can be classi-
�ed into two classes: genetic algorithms and classical methods. Instead of
one solution, both methods �nd a whole set of solutions. Genetic algorithms
seem to attract many researchers due to their robustness and also to their
degree of generality, while others prefer methods based on classical optimiza-
tion algorithms. The choice of one approach over another depends much on
the nature of the problem. If we have enough information about the opti-
mization problem, it is better to use methods based on classical optimization
algorithms. If not, it is better to use multi-objective genetic algorithms or
evolution algorithms. In this thesis we consider a design optimization prob-
lem. The task is to design a jet engine by specifying certain parameters such
as pressure ratio in the turbine. We run a �ight simulation in Matlab, which
allows us to calculate the fuel consumption as well as the engine weight for
di�erent input parameters. Here the input parameters are decision variables
while the objective functions are the fuel consumption and the engine weight.
We applied two multi-objective evolution algorithms and one method based
on classical optimization algorithms.
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Background

In this thesis we will study the performance of two sets of algorithms applied
to a multi-objective optimization problem: genetic Algorithms, and classical
methods. The application is the design of an e�cient engine that weighs
less, and consumes less fuel. Thus we have two objectives, with variables
that represent the inlet temperature of the turbine, the pressure ratio, and
the engine diameter.

The �rst part of this thesis introduces the gas turbine theory, and de-
scribes procedures used in a �ight simulation. The second part deals with
multi-objective optimization. It de�nes the general problem, and lists some
techniques and algorithms that solve this speci�c kind of problem. In the
last part of this thesis we make some comparisons between the two methods
based on the results in the last chapter.
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1 Turbojet Engine

The gas turbine engine is based on converting the fuel energy into a high en-
ergy gas stream. Basically, there are �ve components in the turbojet engine:
the intake, the compressor, the turbine, the combustion chamber, and �nally
the exhaust nozzle [?].

1.0.1 The intake

The intake is a critical part of the engine and has a signi�cant e�ect on
both the safety and the e�ciency of the engine. The main task of the intake
is to ensure that the air entering the compressor has a uniform pressure
and velocity in all �ight conditions in order to avoid surging within the
compressor. There are di�erent types of intakes; we could mention the S-
bend shape and the straight-through intake. It was observed that the intake
behaves like the nozzle at low forward speed, while at higher speed the intake
decelerate the air and rise the pressure ratio from the atmospheric pressure
pa to p1 where p1 is the pressure ratio at the compressor inlet.

1.1 The compressor

There are two main types of compressors. The �rst one is called the centrifu-
gal compressor. It consists of a stationary disc containing a rotating impeller
with divergent passages. The center of the disc is called the impeller eye, the
air is sucked into the impeller eye and whirled around at high speed.

Di�usion occurs at the divergent passages, it causes a rise in the stag-
nation pressure ratio and the deceleration of the air speed within the com-
pressor. The centrifugal compressors were used by the early generation of
�ghters and also by the �rst civil transportation aircrafts. Later, centrifugal
compressors were replaced by axial compressors because axial compressors
produce more pressure rise ratio over the compressor. The axial compressor
consists of a series of stages, each stage consists of a row of rotor blades
followed by stator blades. Axial compressors accelerate the working �uid by
the rotor and then decelerate it by the stator this process is repeated in many
stages to yield the desired overall pressure rise ratio. This type of compressor
is more complicated and requires a careful design, especially in designing the
blades of the rotor or the stator.
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Figure 1: Turbojet engine components.

1.2 Performance of a compressor

The performance of a compressor is illustrated by plotting delivery pressure
and temperature versus the mass �ow �xed for various rotational speeds
(Figure 2). We consider a dimensionless analysis technique [?]. To plot the
compressor characteristic, we combine many physical variables that a�ect
the performance of the compressor into a dimensionless group of variables:
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The compressor characteristic is drawn from two parameters; m
√

T01/p01

and N
√

T01. These are equivalent to m
√

θ/δ and N
√

θ respectively where
θ = T01/Tref and δ = p01/pref . The reference is normally corresponding to
the I.S.A at sea level.

In Figure 2 we can see seven curves, representing seven rotational speeds.
We should keep in mind that these curves are obtained from the pressure
ratio rc in the compressor versus the mass �ow m

√
θ/δ. The points that lie

in the extremities of each curve represent a choking point or a surging point.
The choking point represents the maximum delivery at maximum rotational
speed when there is no further increase in the mass �ow.

As stated earlier, for centrifugal compressors the static pressure rise
occurs in the di�user and the impeller eye. When the pressure rise reaches its
maximum any increase in the mass �ow will cause a decrease in the pressure
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Figure 2: Whittle engine Compressor characteristic.

ratio causing a drop in the e�ciency. Another, interesting phenomenon is
called surging where the delivery pressure drops very quickly at some point
causing the �ow to reverse its direction, which may lead to a total breakdown
of the engine. But, still this phenomena is complex and still subject to much
research.

1.3 The turbine

Turbines are like windmills; they are similar to compressors in terms of de-
sign. We could get a turbine by putting a mirror along the compressor,
although turbines need less stages to keep the compressor turning. Axial
turbines consist of a series of stages, each stage consisting of a row of stators
and a row of rotors. The main goal of the turbine is to transform the work
from the working �uid into the turbine rotor in order to keep the compressor
running when linked together by the shaft.
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Figure 3: Turbine characteristic.

Turbines should be designed so that they stand high temperatures be-
cause the inlet temperature at the turbine is the outlet of the combustion
chamber. In our case the temperature is 1050 Kelvin. The design of a turbine
for a turbojet engine is limited by many factors such as the annulus area,
number of blades, height of blades and the overall weight of the turbine. The
performance of the turbine is frequently expressed by plotting m

√
T03/p03

(corrected mass �ow) against pressure ratio rt as shown in Figure 3.

1.4 Combustion chamber

The design of the Combustion chamber is a complex task that involves many
disciplines. The combustion chamber could be divided into three main parts.
The �rst part, or the primary zone is where the air is mixed with fuel in
order to obtain high temperature for a quick combustion. The second part is
where the combustion takes place. In the third zone additional air is sucked
in the combustion chamber in order to decrease the temperature.

Combustion chambers are divided into many cans so that they suit the
centrifugal compressors design. Another way is to use tubes, or tubo-annular
system where individual �ames are spaced around an annular casing. The
performance of the combustion chamber is related to many factors. We could
list some important ones; �rstly the temperature after combustion should be
limited so that turbine does not melt. Secondly, the combustion should be
held at a region where the air velocity is between 30 and 60 m/s. Thirdly,
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the emission of oxide carbon and NOx should be kept low. Finally smoke
should be avoided at the exhaust because it contains the carbon deposits
which can erode the blades and block the cooling air passages.

1.5 The nozzle

The nozzle has the simplest shape in the turbojet engine. In general it is
simply a rounded tube. However, there exist many types of nozzles for di�er-
ent types of engines. The most common nozzle is the convergent nozzle. The
shape of the nozzle might be simple but it has also a major part of the engine.
The main task of the nozzle is to expand the exhaust gas into the ambient
conditions. This process results in a thrust that gives the plane a forward
speed. The nozzle operates on two conditions, a choking and a non-choking
condition. The later one is where pressure ratio is below the critical value,
and the �rst condition is where the pressure ratio is higher than the critical
value. These characteristics of the nozzle are related to the pressure ratio
p04/p05 and

m
√

T04

p04
. The critical pressure ratio is calculated using equation 1,

where ηj is the isentropic e�ciency and γ is the gas constant:

p04

pc

= 1/(1− 1

ηj

)
γ − 1

γ + 1
))γ/γ−1. (1)

2 Design of the jet engine

The design of gas turbine components is a complex and time consuming engi-
neering task that involves meeting several design objectives and constraints.
This task is usually addressed in an iterative process, which is very costly
in terms of computation time. Advancements in the �eld of computation
allowed the design of high performance turbojet engines. In this section, we
will state some methods and concepts used to �nd suitable design parameters
for a jet engine.

2.1 The design process

Usually the design process is decomposed into smaller tasks in order to make
it less complex. The smaller tasks have di�erent features than the main one
and thus we may loose sight of the main problem. Another di�culty with the
design problem is the complexity of function and structure. In other words,
the complexity of the design arises when all the components are assembled
in one structure. This design process is an iterative procedure. In our case
the di�erent components of the jet engine operate at limited conditions when
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they are assembled. There are many classi�cations of design processes. Tong
[?] has made the following classi�cation:

Routine design: We know in advance everything about the design pro-
cess, including the knowledge needed. The solution however may not be
completely known in advance. Due to repetition of similar problem-solving
situations, more and more design tasks are becoming routine. Since subtask
ordering is decided a priori, routine designs are done more e�ciently, and
possibly with better results.

Non-routine design: Problems where a high level of experience is miss-
ing.

Innovative design: Only the knowledge sources are known in advance.
Creative design: Neither the knowledge sources nor the problem-solving

strategies are known in advance.
Redesign: Is concerned with changing prior design decisions. This in-

cludes modifying an existing design in response to changing requirements,
and making changes to decisions already made during the design process. It
can be a result of unsatis�ed constraints. Suggestions about suitable changes,
can be either pre-stored or generated by analyzing the situation.

2.2 Design of the turbo jet engine

It is important to consider the type of the application that will use the engine.
In the case of an airplane it is important to specify the required thrust, fuel
consumption, and engine weight. In case of industrial gas turbines other
physical properties might be more important. In this design procedure we
are using the Whittle engine, which is an early turbo jet engine used during
the second world war.

2.2.1 Design approach

The most common way of designing a jet engine is described in Saravana-
mutto's book [?]. It is very similar to the redesign procedure, where we
have to iterate in order to �nd the right parameter values (pressure ratio,
rotational speed). The �rst step of the procedure is called the design point
performance. The engine is designed according to some speci�c parameters.
The second step is to �nd the performance of the engine at di�erent con-
ditions (di�erent rotational speed of compressors, di�erent altitudes). This
part is termed the o�-design performance. The idea of the o�-design per-
formance is to test the whole system (i.e. the entire engine) at di�erent
conditions.
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2.3 Design point performance

In this step we determine the performance of the engine at speci�ed design
parameters. The parameters include compressor pressure ratio, turbine inlet
temperature, component e�ciency, and pressure losses [?]. We also spec-
ify the engine mass (equation 2) and the engine diameter where δTc is the
temperature di�erence in the compressor.

engine mass = mass �ow(11 + 0.15δTc). (2)

2.4 O�-design performance

This part is the most important part since it is where all the components
are linked together over a wide range of conditions such as speed and power
output. In this step we can also deduce also the power output or the thrust,
and the speci�c fuel consumption. We follow the same method outlined in
Saravanamuttoo [?], which could be summarized in the following steps:

• Select a constant speed line in the compressor characteristic and choose
any point on the line. m

√
T01

p01
, p02

p01
, ηc,

N√
T01

are determined.
• The corresponding point on the turbine characteristics is obtained

from consideration of compatibility of rotational speed and �ow.
• The next step is to design the nozzle using the turbine characteristics

and the diameter calculated in the design phase.
Saravanamutto's method could also be divided into two parts. The �rst

part is balancing the gas generator (turbine, compressor, inlet). It yields
the right pressure ratio in the turbine. The second part is matching the
nozzle with the rest of the engine. It yields the required rotational speed for
equilibrium.

2.5 Aerodynamics of the plane

A �ying plane is subjected to four forces; the thrust T produced by the
engine, the drag D, the lift L, and �nally the weight W . The value of the
lift is related to a coe�cient called the Lift coe�cient CL while the drag is
related to the drag coe�cient CD.

CL =
L

q∞Sw

(3)

CD = K1C
2
L + K2CL + CD0 (4)

q∞ =
1

2
ρV 2 (5)
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where Sw is the wing planeform area while K1, K2 and CD0 (Zero lift drag
coe�cient) are functions of Mach number that is the plane speed. From
equations 4, 5 and 6 we can see that the lift and the drag are related to each
other by the lift and the drag coe�cients. m is the mass of the plane. We
will study the behavior of the engine only in a horizontal �ight. In that case
the angle of attack α is equal to zero, hence we have the following equations
as:

d2x

dt2
=

(T −D) cos α

m
− L sin α

m
= 0,

d2y

dt2
=

(T −D) cos α

m
− L cos α

m
= 0,

T = D,

weight = L,
dm

dt
= −fuel �ow.

weight = mg.

The weight of the plan decreases along the mission, which a�ects the lift and
the latter a�ects the value of the drag in return.

2.6 Implementation

The above procedure is implemented using Matlab. There are two main
procedures; the �rst one balances the gas generator, and the second one
balances the overall engine. We follow the procedure outlined in [?] for the
gas generator to �nd the appropriate compressor pressure ratio. The Matlab
built in function fminbnd is used in order to minimize the error between
T3/T1 from �ow and work compatibility. The same Matlab function is used
for balancing the nozzle with the other parts of the engine. The output of
this procedure is the mass �ow and fuel �ow in addition to the pressure ratios
of the compressor and the turbine. The next step is to calculate the thrust
generated according to equation 6 where Ca is the speed of the airplane, m
is the mass �ow and A5 is the area of the nozzle. If the resulted thrust does
not match the required thrust we call the o�-design routine again until we
get the required thrust.

T = m(C5 − Ca) + (p5 − pa)A5 (6)

2.7 Simulation

In order to test the performance of the engine, we created a simulation of
a �ight mission. In our case we only consider a horizontal steady �ight, or
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cruise. The design parameters are: the design point pressure ratio in the
compressor, the design point temperature at the turbine inlet and the engine
diameter. The reason why we only pick these three parameters because they
are related to other variables. Thus we have fewer variables, which makes
the optimization problem simpler. The engine weight is calculated in the
design phase as a function of the mass �ow and the temperature rise in the
compressor according to equation 2. The mission is divided using time steps.
At each time step we calculate the fuel consumed, the distance traveled, and
the thrust required to overcome the drag.

3 Multi-objective optimization

Many real world problems have many goals to optimize simultaneously. Of-
ten they are con�icting with each other. Consider an example where we have
a student room with a small space and a set of objects. We want to put the
maximum number of objects inside the room and at the same time keep a
maximum free space. This is certainly a multi-objective optimization prob-
lem where the space and the number of the objects are con�icting with each
other. In this chapter we will discuss the special features of multi-objective
optimization. We will also discuss the di�erent methods used in order to
solve these kind of problems.

3.1 Formulation

Multi-objective optimization contains a set of objective functions that have
to be minimized or maximized at the same time. The objective functions
are sometimes in con�ict with each other, as when if one objective function
decreases the other increases and vice versa. The general mathematical def-
inition of a multi-objective optimization problem is described below, where
g(x) represents the inequality constraints while h(x) represents the equality
constraints. The set X represents the decision variables set, while the set Y
represents the objective function space.

min / max y = (f1(x), f2(x), f3(x), f4(x), ..., fn(x)),

s.t g(x) = (g1(x), g2(x), ..., gm(x))T ≤ 0m,

h(x) = (h1(x), h2(x), ..., hl(x)) = 0l,

x = (x1, x2, ..., xk)
T ∈ X,

y = (y1, y2, ..., yn)T ∈ Y.

The usual optimization methods are unable to �nd a solution for such
categories of problems. In single objective optimization problems the feasible
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set is an ordered set. Definition : Let us suppose an objective function
space Y spanned by the objective function f . For given x1, x2 we have either
f(x1) ≤ f(x2) or f(x2) ≤ f(x1) thus the objective space is an ordered set.

In the case of multi-objective optimization, the objective function space
is not an ordered set. There is a need for a new way that evaluates all the
objectives at once and indicates the quality of the solution. In other words,
we need to order the set of objective functions. One way is to assign to each
vector in the objective function space (f1(xi), f2(xi), ..., fn(xi)) a �tness value
or rank, that determines the order of this vector in the objective space set.
The resulting set is the space spanned by the objective functions. Generally
multi-objective optimization algorithms are classi�ed into three categories
[?]:

Decision making before search: In this case we know beforehand what
objective is the most important to optimize; the algorithm aggregates all
the objectives in one objective and includes a weight that re�ects the rela-
tive importance of each objective. Such methods are also called preference
methods.

Search before decision making: This method is the opposite of the previ-
ous one. It performs the search without any available preference information.
It has certain characteristics that make the sequence of iteration vectors con-
verge to many points instead of only one. The user has to choose among the
solution points in order to decide the optimal solution that suits her/his own
goals.

Decision making during search: In this method the search is done �rst
without any preference and then the user interferes to decide which direction
the search should go at the next iteration. It is a guided search method.

3.2 The Pareto fronts

The Pareto concept was �rst introduced in the 19th century by the French-
Italian economist and sociologist Vilfredo Pareto. He established the concept
of optimality based on a multi-criteria objective. The Pareto front is a set
that contains decision variables that constitute the best trade o� among all
the other variables, i.e. decision vectors which cannot be improved in any
objective without degradation in other objectives. The best points are called
non-dominated points. In general non-dominance could be de�ned as follows:
if x ∈ X we say that x is non-dominated if and only if for every y ∈ X we
have:

∀i ∈ {1, 2, ..., n} fi(x) < fi(y). (7)
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Figure 4: The dominance concept for maximization problem. The point A
is not dominated by any points in the shaded area.[3]

This is called the concept of strong non-dominance. The concept of weak
dominance is de�ned similarly as follows:

∀i ∈ {1, 2, ..., n} fi(x) ≤ fi(y) ∧ ∃j ∈ {1, 2, ..., n} fj(x) < fj(y). (8)

In other words, this de�nition says that a vector x is Pareto optimal if only
and only if there exists no feasible vector of decision variables y, which would
decrease some criterion without causing a simultaneous increase in at least
one other criterion [?].

3.3 Methods of generating the Pareto front

The question now is how to get the Pareto front. This issues is the subject
of many papers. We could also identify two classes of methods: The �rst one
is based on classical algorithms for a single objective, and the second one on
the evolution strategies algorithms.

3.4 Algorithms based on classical optimization

Classical algorithms for multi-objective optimization are based on algorithms
for a single optimization problem. In general, the multi-objective is trans-
formed into only one objective and then any classical method is used for
a single optimization problem. There are many classical methods. We list
below some of them.
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Figure 5: The weighted sum approach with one objective bigger than the
other one i.e all the Pareto points are located in one side.

3.4.1 The weighted sum approach

This method creates one objective function from a convex combination of
several objective functions; each objective function is multiplied with a weight
that represents the importance of the objective function. Then we apply an
ordinary optimization algorithm.

maximize y = wT f(x).

s.t

n∑
i=1

wi = 1.

wi ≥ 0.

We get the entire Pareto front by generating an optimal solution for every
possible choice of weight vector. This algorithm might be good in the case
of a convex Pareto front, but sometimes it is not reasonable to sum all the
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Figure 6: The weighted sum approach[3].

objective functions in one because they may represent di�erent properties
and thus the values of the objective functions will di�er. For example let
us consider a multi-objective minimization problem f = (f1, f2) such that
f1 � f2. From Figure 5 we notice that all the Pareto points are concentrated
in the extremity of the lower valued objective function. The other problem is
that the weighted sum approach does not lead to a Pareto front in case of a
non-convex Pareto front [?]. Since each of the objective functions is the basis
for the objective function space their linear combination must be convex,
leading to a convex Pareto front. Geometrically, if we consider the above
maximization problem, we could see that the problem could be reformulated
as maxf2(x) = w1

w2
f1(x) + y

w2
. Finding the maximum for the latter problem

is equivalent of moving the line with the slope w1

w2
that pass trough the point

y
w2

upward into the extremity of the feasible region. From Figure 7 we could
see that the points B and C will never maximize f . If the slope is increased,
D achieves a greater value of f (upper dotted line); if the slope is decreased,
A has a greater f value than B and D (lower dotted line) [?].

3.4.2 Target vector optimization

The main idea is to achieve a target that is speci�ed beforehand. This can
be achieved in two ways; the �rst one is to minimize the distance to the
vector yg in the objective space min s(x) =‖ f(x) − yg ‖ (note that x must
be feasible) where ‖ . ‖ is the Euclidian distance. The second one is goal
attainment; this method allows the objectives to be under- or overachieved.
The problem is formulated as below, where w represents the weight vector
while F ∗ represents the goal to attain. The set < and Ω represents the
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objective function set and the decision variable set respectively.

minimize
y∈<, x∈Ω

γ.

s.t fi(x)− wiγ ≤ F ∗ i = 1, 2, ...,m.

The term wiγ introduces an element of slackness to the problem. The value
of γ is minimized so that Fi(x)−wiγ is less than or equal to the target vector
of the feasible set. These methods require some knowledge about the goal
functions. In addition they are unable to �nd the Pareto front in the case of
a non-convex Pareto front.

3.4.3 ε-Constraint Method

This method was designed in order to solve problems having a non-convex
Pareto front. The main idea of this method is to optimize one objective and
to put all the others in the constraint space by restricting their values to be
below a target value µm. Sometimes this method is used together with other
heuristic methods. We should have accurate values of εm, otherwise we will
be outside the range of the Pareto front Figure 7. We could �nd the range of
the Pareto front by just �nding the minimum for each individual function.

minimizefµ(x)

s.t fm(x) ≤ εm, m = 1, 2..., M and m 6= µ, µ ∈ 1, 2, ...,M

gj(x) ≥ 0, j = 1, 2, ...n;

hk(x) = 0, k = 1, 2, ..., K;

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, ..., n.

3.5 Multi-objective evolution algorithms

Multi-objective optimization using evolution strategies could be classi�ed
into two main sets of algorithms. The �rst one is a non-Pareto based method;
as it does not use the concept of dominance directly, it is easy to implement.
However, it is unable to produce a complete Pareto front especially when it
is non-convex. The second set of methods is termed Pareto based methods.
These methods use the concept of non-dominance.

3.6 Simple genetic algorithm

The idea behind genetic algorithms is the theory of evolution by Charles
Darwin. He claims that species have to adapt to their changing environment
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Figure 7: ε-Constraint method we notice that the Pareto front is obtained by
moving the line f1=r upward and �nding the �nding the minimum of f2[3].

by inquiring knowledge. This knowledge is embodied in their chromosomes.
In terms of optimization genetic algorithms are stochastic methods that can
be perceived as a search through a potential set of points. These points are
seen as individuals (genotypes), and the whole set is called population. There
are many ways to represent individuals depending on the problem. One way
is through the binary representation the other way is through �oating points.
The general components of a genetic algorithm are:

-Initialization: Where we have to initialize the �rst generation.
-Evaluation: Where we have to measure the �tness or the rank for each

individual. The �tness, in absence of constraints, is generally just the value
of the objective function in a minimization problem. It is the inverse of the
objective function in a maximization problem.

-Selection: After initializing the �rst generation we need to produce the
next generation. We do that by using genetic operators. First, we select
the parents Parentt from the actual generation t. There are many selection
methods. We could mention here tournament selection, proportionate selec-
tion and ranking selection. In the �rst one two solutions are randomly chosen
from Parentt and then they are compared to each other. The best one is
placed in the mating pole. Individuals could compete more than once so
that we make sure that we have the best of the individuals in Parentt. Pro-
portionate selection makes an analogy with the roulette game. A roulette
wheel is divided according to the average �tness value of the individuals.
The bigger this value is the greater portion it takes on the roulette wheel. A
randomly chosen number is generated between 0 and 1.

-Crossover: It is performed after selection. Selected individuals mate
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to produce the next generation or the o�spring. There are many types of
crossover, the most common ones are single point crossover, SBX crossover.

-Mutation: The �nal stage of a GA is mutation. It changes the indi-
viduals slightly. When mutation is used without crossover, the algorithm is
called an evolution strategy.

3.7 Techniques used in MOEA

Multi-objective evolution algorithms or genetic algorithms are just an exten-
sion of the simple GAs. GAs converge to a single optimum, while MOEAs
produce several non-dominated solutions (i.e. vectors on the Pareto front).
MOEAs extend the simple EAs by improving the selection of the individuals
and keeping a more diverse population. The selection in a simple EA is based
on only one objective. On the other hand, so we consider all the objectives
in the selection in case of MOEA. The most common way is based on the
Pareto dominance concept. The �rst step is to assign a rank of one to the
non-dominated individuals and then �nd the individuals that are dominated
only by individuals in the previous non-dominated set and assign the rank
of two to the second layer. We obtain several layers. Individuals in the same
layer have the same rank.

The diversity among individuals can be achieved by applying many tech-
niques, which can be divided into niching and non-niching techniques. The
main idea behind the niching techniques is to allow only parents with a
certain distance to mate. Cavichio [1] suggested a non-niching method of
preserving diversity by applying a preselecting operator: When an o�spring
is created its �tness is calculated and then compared with that of its par-
ents. It is replaced with the worst parental �tness, thus in this way we allow
multiple important solutions into the population.

Goldberg and Richardson [1] suggested another evolutionary niching
technique: �tness sharing. The main idea behind this technique is that
the �tness value of each individual is computed with respect to each point in
the neighborhood interval. If a point is located in a crowded region (there
are many vectors located in a small interval in the objective function space)
it has a low �tness value. Among the parameter that this method uses is the
niche shared σshare. It usually represents the radius of the neighborhood. If
we consider a problem where we want to get q solutions in a multi-objective
problem we assume the q � M where M is the population size. The sharing
function is computed according to:

sh(d) =

{
1− ( d

σshare
)α, if d ≤ σshare,

0, otherwise.
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dij =

√√√√|front1|∑
k=1

(
xj

k − xi
k

xm
k ax− xm

k in
)2. (9)

The shared �tness is calculated by the below formula where d(i, j) repre-
sents the Euclidian distance between two individuals in the objective space.
The indices i and j represent arbitrary individuals:

si =
fi∑

j sh(d(i, j))
. (10)

Another niching technique was proposed by DeJong [1]. He used a crowd-
ing method within the EA. This model tries to balance the population in the
objective space. Basically, only a proportion of the population is permitted
to reproduce. The resulting o�springs replace individuals that are similar to
them.

3.8 EA algorithms used in multi-objective optimization

3.8.1 Vector evaluated GA

The �rst multi-objective EA was suggested by David Scha�er in 1984. It
is called the Vector Evaluated Genetic Algorithm (VEGA). As the name
suggests, this algorithm evaluates an objective function vector instead of a
scalar [1]. In fact, it is just an extension of a simple genetic algorithm, the
only di�erence lies in the way the selection operator is constructed. At every
generation the population is randomly divided into M equal subpopulations.
Each subpopulation is assigned a �tness value based on one objective func-
tion. Then the selection operator is applied and the best solutions are placed
in a mating pool ready for crossover. Thus in this way each subpopulation
emphasizes one objective function. We could summarize the whole algorithm
as follows:

Step 1: Set an objective counter and de�ne q = n/M .
Step 2: For all the solutions j = 1+(i−1)∗ q, assign �tness as the value

of the objective function fi.
Step 3: Perform proportionate selection on all q solutions.
Step 4: If i = M , go to Step 5, otherwise increment i by one and go to

Step 2.
Step 5: Combine all mating pools, perform crossover and mutation on

the population P to create a new set of individuals.
The main strength of this algorithm is its simplicity. VEGA however has

a tendency to �nd extreme values for each objective function; the whole pop-
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Figure 8: Vector Evaluated Genetic Algorithm procedure[3].

ulation may converge to the extreme points of each objective, which a�ects
the diversity of the solutions.

3.8.2 Non-dominated sorted genetic algorithm

This method was implemented by Deb and Srinvas in 1994 [1]. It is based on
the non-dominated sorting presented by Goldberg. This algorithm sorts the
population according to their level of dominance. It produces many layers
corresponding to the level of dominance. The individuals in the �rst front
are the best, so they are assigned the rank of one. The individuals that are
in the �rst layer are assigned a �tness of the population size M , and for the
second layer we assign M − 1 and so on. To preserve diversity in NSGA, the
�tness of individuals that are in a crowded region is degraded by lowering
their �tness value.

First the distance between the decision variables is calculated, and then
the sharing function is calculated from equation 10. Any solution that has
a distance greater than σshare contribute nothing to the sharing function.
The second step is to calculate the shared �tness, which will lead to the
degradation of the �tness of the solution in the crowded regions. The selection
operator is based on the roulette wheel selection method.

4 NSGA-II

The Non-dominated sorting II algorithm is a multi-objective evolution strat-
egy. It was developed by Deb Kalyanmory and his student in 2002 [5]. NSGA-
II is an improvement of the NSGA algorithm created by the same author.
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Figure 9: NSGA result in dividing the population into layers[3].

The latest method was subjected to much criticism such as the lack of elitism
and the long computation time. However, Deb claims that this method is
able to �nd much better spread of solutions and better convergence near the
true Pareto front [5]. He claims that the strength of this method relies on
the diverse solution that it provides. In this chapter we will describe the
di�erent parts of this MOEA.

4.1 Elitist non-dominated sorting genetic algorithm

In addition to the general components of the genetic algorithm there are two
additional functions of this algorithm. The �rst one is Fast Non-dominated
Sorting that ranks individuals. The second one is the crowding distance func-
tion [5]; which is used to calculate the euclidian distance between individuals
in a speci�c rank.

4.2 Fast non-dominated Sorting Approach

This part of the algorithm ranks the population into di�erent levels or layers,
so that the �rst layer contains the non-dominated individuals and the second
layer is dominated only by vectors in the �rst layer and so on (see Figure 9).
The individuals in the population are equipped with two variables: The set
of dominance Sp (the set of point dominated by the individual p) and np (the
number of individuals that dominate p). So if a point p is not dominated by
any solution, its count np will be equal to zero, and thus it will be ranked
in the �rst layer. The count can not be greater than N − 1 where N is the
number of individuals. The procedure is presented below, the input is the
whole population and the output is a set of layers or fronts.
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for each p in P
Sp := empty;
np=0;
for each q in P

if p dominates q
Add q to Sp;

else
increment the domination counter of p;

if np:=0
rankp:=1;
add p to F1;

i = 1;
while Fi is not empty

Create an empty set Q;
for each p in Fi

for each q in Sp

nq := nq - 1;
if nq := 0;

qrank := i+1;
put q in Q;

i = i + 1;
Fi = Q;

Table 1: The fast non-dominated sorting algorithm.

4.3 Non-crowding distance assignment

In the traditional NSGA, diversity is maintained through the sharing function
that depends strongly on σshare, which is set by the user. In NSGA-II the
sharing function approach is replaced by the crowding distance. The method
estimates the density of points around a speci�c solution i in every layer.
Initially the solutions in the fronts are sorted according to their objective
function values, then the perimeter of the rectangle formed by the nearest
neighbor is calculated. Finally idistance the crowding distance in each front
is calculated. The extreme individuals (lower and higher objective functions
values) are given the highest crowding distance i.e.in�nity.

The crowding distance is used by the crowded-comparison operator, that
is de�ned by ≤n. It helps the selection operator in building a well spread
and diverse population. Initially two individuals are compared with respect
to their rank. If they belong to the same front, their crowding distance is
compared. The solution that has bigger crowding distance is then chosen.
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the ≤n is de�ned by:

j ≤n i if(irank ≤ jrank) or if ((irank = jrank) and(jdistance ≤ idistance)).

4.4 The Algorithm

As any GA algorithm we �rst generate a random initial population P0 and
assign each individual a �tness based on its level of non-dominance. The
individuals are selected based on binary selection, which compares two indi-
viduals based on their level of dominance and crowding distance. The �rst
generation Q0 is created by mating the individuals. The procedure for the
next generations di�ers; we usually compare the new generation with the
previous one to identify the best individuals.

The Fast Non-dominated Sorting is applied in order to sort out the fronts
according to the non-dominance level. If we want to construct N parents for
the next generation we take all the individuals that are in the �rst level of
non-dominance. If we still need more individuals we get them from the other
front in order of non-dominance. In that way we make sure that the non-
dominated solution remains in all the future generations.

combine parent Pt and o�spring Qt int Rt

F:=fast-non-dominated-sort(Rt);
until the parent population is �lled

crowding-distance-assignment(Fi);
include Fi into the parent of next generation Pt+1;
i:=i+1;
Sort(Fi,≤n) choose the �rst (N -Pt+1) element of Fi;
Qt+1:=make-new-population(Pt+1); t:=t+1; go to next generation

Table 2: The main loop.

4.5 SBX-crossover

We chose the bounded Simulated Binary Crossover (SBX), which was pro-
posed by Deb and Agrawal. It contains a certain degree of mutation in the
crossover phase. The SBX operator introduces a factor β called the non-
dimensional spread factor. If β is less than one the distance between the
children will be bigger than the distance between the parents. In this case
the crossover is contracting. On the other hand, if β is bigger than one,
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the distance between the children is smaller than the distance between the
parents. For more details the reader could refer to [?] or [?].

5 The Strength Pareto Evolutionary Algorithm

The SPEA algorithm was �rst proposed in 1998 by Eckart Zizler [?]. It has
the following property:

-It stores the Pareto-optimal solutions found so far externally.
-It uses the concept of Pareto dominance in order to assign scalar �tness

values to individuals.
-It performs clustering to reduce the number of non-dominated solutions

stored without destroying the characteristics of the Pareto front.
-The �tness of the individuals depends on the solution stored in the

external Pareto front.

5.1 The algorithm

The basic idea of the algorithm is to conserve all the Pareto solutions in a set
called the external Pareto front so that we do not loose any Pareto point. On
the other hand, we put restrictions on the size of the Pareto set. In addition
the external Pareto solution serves to evaluate the �tness of the individuals
outside the external Pareto set.

The �tness of an external Pareto vector is computed as the number of
individuals that it dominates divided by the total individuals in the current
population. The �tness of an external Pareto front is also called the strength.
Diversity within the Pareto front is obtained by distributing the population
uniformly in the Pareto front so that each Pareto point covers an equal
amount of points [?]. The �tness of an individual outside the external Pareto
set is calculated by summing up the �tness of the external Pareto vectors
that cover the individual. We add one to the resulting value so that it will
be always higher than the �tness in any individual in the external Pareto
set. The equation used to calculate the �tness of external individuals and
the other individuals is illustrated in below. Si represents the strength while
Fi represents the �tness.

Si =
ni

N + 1
. (11)

Fi = 1 +
∑

i∈Pareto

Si. (12)
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5.2 Pareto clustering

In this part of the algorithm the size of the Pareto front is reduced if it is
above a certain limit. The reduction of the pareto front is necessary due to
the following reasons [?]:

-Presenting all Pareto solutions found is useless.
-In the case of continuous Pareto fronts, it is not desirable to keep all

generated points.
-The Pareto Front could reach the population size resulting in a reduction

of the selection pressure causing to slow down of the optimization process.
-A huge Pareto front could lead to an unbalanced distribution in the

population for the next generation, since the �tness of each individual de-
pends on the Pareto point that covers it. A huge Pareto set could lead to an
unbalanced distribution.

The goal of clustering is to �nd the best representative set which main-
tains the characteristics of the original set in a way that encourages diversity
of the Pareto front. The general idea is to create a cluster for each point.
Then a joining mechanism is used to join the clusters that have the minimum
distance(we use the Euclidian distance). The scaling is done by using the
maximum and minimum values for each objective in each generation. The
points that are close to each other are joined. We keep doing this until the
number of clusters is equal to the limit of the external Pareto set vectors.
The last part of this algorithm chooses one point from each cluster; it chooses
the closest point to the centroid of the cluster. We �nally have the Pareto
front reduced to the desired size.

d(1, 2) =
1

| C1 || C2 |
∑

i∈C1,j∈C2

d(i, j). (13)

5.3 Main loop

The �rst step in SPEA is to initialize a population of size N and then �nd
the non-dominated solutions and put them in an external Pareto front. After
that, we check if the Pareto front is within the limited size by applying
the second main part that is calling the Pareto clustering function. Then
we calculate the �tness according to the strength of the individuals in the
external Pareto set. The selection operator is used to select the mating parent
in the crossover. For the crossover we used the SBX crossover again.
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6 Results and Conclusion

In this section, we discuss and compare the results that we get from NSGA-
II, SPEA and the weighted sum algorithms. We begin by applying our algo-
rithms to a simple test problem that is often used in the multi-optimization
literature.

6.1 Scha�er�s Test problem

A very simple test function for multi-objective optimizers is called Scha�er
problem (SCH) [3]. The multi-objective optimization problem is presented
as follows:

min {x2, (x− 2)2},
s.t x ∈ [−100, 100] .

We have applied three algorithms to the test problem. The running time
of the three methods di�er. The fastest method is actually the weighted sum
method, followed by NSGA-II and �nally SPEA is the slowest. The weighted
sum is fastest because the algorithm does not need any �tness evaluation or
any ranking mechanism that both NSGA-II and SPEA use. In addition,
both objective functions are di�erentiable, so it is an easy task to �nd the
minimum using any ordinary optimization method. For the test problem,
both NSGA-II and SPEA give nearly the same Pareto front. The �gures
below show that two MOEA with the same crossover operator may lead to
the same result. Indeed, the crossover is the most important operator in a
GA or MOEA.

6.2 Engine optimization problem

Finally, it is time for take o�. Here, we consider two objective functions that
are in con�ict with each other (engine weight and the fuel consumption). The
two objectives are con�icting because if we have a smaller engine weight, we
need more fuel in order to produce a speci�c thrust, while if we have a heavy
engine it uses less fuel in order to produce the same thrust.

In order to solve this problem we will use the previous three algorithms.
We should mention that this type of optimization is called simulation op-
timization because both simulation and optimization are integrated trying
to �nd the best set of parameters in the design. Our two objectives for the
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Figure 10: Pareto front resulted by applying NSGA-II.
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Figure 11: Pareto front resulted by applying Spea.
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Figure 12: Pareto front using Weighted sum approch.
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problem are:

minf1(rc, Tt, dengine) =

∫ t

0

fuel�ow(rc, Tt, dengine).

minf2(rc, Tt, dengine) = mass �ow(11 + 0.15δTc).

s.t rc ∈ [3, 6].

Tt ∈ [1042, 1046].

dengine ∈ [0.5, 1].

where rc is the pressure ratio in the compressor, Tt is the temperature at
the inlet of the turbine and dengine is the diameter of the engine. In fact,
we should not limit the range of Tt to only [1042, 1046]. The problem was
that the engine model crashes if the temperature is less than 1042. But,
sometimes with a high engine diameter it works. In consequence we may
miss some individuals.

6.3 Results and Conclusion

Before commenting on every method,we would like to draw some conclusions
concerning the turbojet engine part of this thesis. First, the simulation
model is an integral part of the optimization algorithm. Second, running
a simulation in Matlab made the running time for the simulation plus the
optimization algorithm very long. The total run time needed is three days.
As described earlier the simulation consists of an engine model that runs
during the �ight. The engine model was the slowest part in the simulation.
Usually when several subsystems are integrated in the modelling, we should
have e�ective tools and methods. The department of Thermo and Fluids
Dynamics at Chalmers uses GESTPAN, a generalized system for the design,
steady-state and transient simulation of gas turbines systems. In fact, the
most complex part in this thesis is to implement the engine model since we
have to consider many other subsystems. It would have been easy if we could
use to GESTPAN.

The population for both MOEA's contains 50 individuals. NSGA-II is
computed for 100 generations while SPEA is computed for 133 generation.
The same crossover operator SBX is applied for both SPEA and NSGA-II.
It has crossover probability 0.9. Mutation is induced in the crossover [?].
Finally, we had used a weight factor equal to 0.05. If we suppose that W is
the weight vector, each time we �nd a Pareto solution we increment W1 by
0.05 and decrement W2 by 0.05.

The range of the Pareto front resulted from the weighted sum algorithm
is greater than the range of NSGA-II and SPEA. The maximum engine weight
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Figure 13: Pareto front resulted from NSGAII algorithm.
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Figure 14: Pareto front resulted applying SPEA algorithm.
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Figure 15: Pareto front resulted from the weighted sum approach
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is 1180 Kg and the fuel consumption is 285 Kg. In Both Spea, and NSGA-
II the range is 850 Kg for the engine weight and approximately 284 Kg in
the fuel consumption. Usually, MOEAs need many generations in order for
individuals to converge to the real Pareto front. I did not have time to run
my MOEA more than 150 generations. On the other hand from the �gures
above we could see that NSGA-II and SPEA give a better spread of solutions
along the Pareto front than the weighted sum approach. We could conclude
that MOEA produce a front where the solution are distributed more evenly
in one run.

In the weighted sum approach (Figure 15) the two extreme solutions and
many of the solutions are concentrated near the maximum fuel consumption.
The reason is that the fuel consumption is smaller than the engine weight, so
minimizing the weighted sum of the two functions yields a solution with more
fuel and less engine weight. So many points will converge in one extreme side
that has the smallest objective value. So we will not have a well spread Pareto
front. In fact the outcome of the weighted sum algorithm depends very much
on how the objectives are aggregated. So for this case we could use a scaled
weighted sum. The idea is to calculate the extreme point �rst, then divide
the weights by the extreme values for each objective before optimizing the
sum. This may lead to a better spread but on the other hand this requires
extra computation time.

The other observation is that NSGA-II and SPEA yield nearly the same
Pareto front. Why do we have this similarity? It is natural since we want to
get a Pareto front at the end so we must get similar results. I believe that
the reason for this similarity is that we used the same crossover operator for
both methods. On the other hand the solutions are more spread along the
Pareto front in NSGA-II better than SPEA. NSGA-II is considered to have a
better diversity mechanism that is based on the crowding distance operator.

The main di�erence between NSGA-II and SPEA is in the computa-
tion time: NSGA-II is a faster method than SPEA. NSGA-II has a to-
tal complexity of O(MN2) for fast non-dominating sorting function, a to-
tal of O(M(2N)log(2N)) for crowding distance assignment and a total of
O((2N)log(2N) for the comparison operator ≤n where M and N represent
the number of objective and population size respectively [2], while the total
complexity of SPEA is O(MN3) [2].

As expected the weighted sum is a faster algorithm than the other two.
We used fmincon in order to solve the weighted objective function. It took
almost 100 function evaluations for each point. This means two generations
in MOEA for only a single point. But we only need to get around 20 points
which means it takes the same time as 40 generations in a MOEA. On the
other hand if we wanted to generate 50 solutions, it will take us the same
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time as 100 generations in NSGA-II or SPEA. But still the weighted sum
will be faster because it does not use any other function to preserve diversity
or to produce a new generations. We could also deduce that the weighted
sum approach is less expensive in terms of computation time. In addition,
MOEAs need more memory in order to store the data structure of every
population.

Now the question to answer is: What is the best method for multi-
objective optimization? In general our results and also those of other authors
readings suggest using MOEAs in the case of engineering design. It is easier
to solve a multi-objective optimization using MOEAs. They are more gen-
eral for di�erent kind of design problems in engineering, especially if we lack
information about design problems. They could handle both continuous and
discrete parameters although they need a lot of computation time, memory,
and even produce an incomplete Pareto front. But, if we have some knowl-
edge about the objective functions, classical methods are preferred since they
generate a smooth and complete Pareto front in less time and require less
storage of data. In real life problems we do not have any knowledge about
the range of the Pareto front or even about the objective function them-
selves. In that case we should not hesitate to use MOEAs in order to �nd
the Pareto front or at least aquire knowledge about the problem before doing
any further optimization with classical methods.

In this thesis we focus our e�ort on solving a problem with two con�icting
objectives. In other problems one might have more than three objective
functions, which may have con�icting relationship. In that case the Pareto
front may be di�cult to visualize for the decision maker. In this kind of
problems we are more concerned with getting one optimal solution rather
than many (Pareto front).

In summary, we would say that Genetic algorithms for multi-objective
optimization are very useful for design problems. But more research should
be carried out into this �eld especially on the crossover operator, because
individuals are generated based on special parameters, so that we reduce the
number of generations and computing time. Of course, if we have a well
de�ned problem it is better to use classical methods because they produce
complete and smooth Pareto front.
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