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Chapter 1

Thesis Environment

1.1 INRIA

The national institute for research in computer science and control,
operating under the dual authority of the Ministry of Research and the Ministry
of Industry, is dedicated to fundamental and applied research in information and
communication science and technology (ICST). The Institute also plays a major
role in technology transfer by fostering training through research, diffusion of
scientific and technical information, development, as well as providing expert
advice and participating in international programs. By playing a leading role
in the scientific community in the field and being in close contact with industry,
INRIA is a major participant in the development of ICST in France.

Throughout its six research units in Rocquencourt, Rennes, Sophia Antipolis,
Grenoble, Nancy and Bordeaux-Lille-Saclay, INRIA has a workforce of 3,500,
2,700 of whom are scientists from INRIA’s partner organizations such as CNRS
(the French National Center for Scientific Research), universities and leading
engineering schools. They work in 130 joint research projects. Many INRIA
researchers are also professors whose approximately 950 doctoral students work
on theses as part of INRIA research projects.

INRIA develops many partnerships with industry and fosters technology trans-
fer and company foundation in the field of ICST - some sixty companies have
been founded. Startups are financed in particular by INRIA-Transfert, a sub-
sidiary of INRIA that supports four startup funds, I-Source 1 and I-Source 2
(information and communication technology), C-Source for multimedia and T-
Source for telecommunications. INRIA is participating in such standardization
committees as the IETF, ISO or the W3C of which INRIA was the European
host from 1995 to 2002. INRIA maintains important international relations and
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1. THESIS ENVIRONMENT

exchanges. In Europe, INRIA is involved in ERCIM which brings together 18
European research institutes. INRIA is partner in around 40 actions selected in
FP6, mainly in the IST field. INRIA also collaborates with numerous scientific
and academic institutions abroad (joint laboratories such as Liapunov, LIAMA,
etc., associated research teams, training and internship programs).

INRIA has an annual budget of 135 million euros, 20% of which comes from its
own research contracts and development products.

The Institute’s strategy closely combines scientific excellence with technology
transfer. INRIA’s chief goal for 2003-2007 is to achieve major scientific and
technological breakthroughs in the following seven priority grand challenges:

• Designing and mastering the future network infrastructures and commu-
nication services platforms;

• Developing multimedia data and multimedia information processing;

• Guaranteeing the reliability and security of software- intensive systems;

• Coupling models and data to simulate and control complex systems;

• Combining simulation, visualization and interaction;

• Modeling living structures and mechanisms;

• Fully integrating ICST into medical technology.

Some figures:

Budgetary Resources

• State contribution: 135 M Euros WT (January 2005);

• Own resources: 1/5.

Human Resources

• 3,500 persons, including 1,800 remunerated by INRIA;

• 2,700 scientists including 950 doctoral candidates and 500 post-docs and
engineers;

• 1,031 INRIA permanent positions (468 researchers, 560 engineers and tech-
nicians);

• 300 trainees.

Scientific Activities (January 2005)
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1. THESIS ENVIRONMENT

• 124 project-teams and 1 development project;

• 2,600 scientific publications;

• 25 international conferences organized and co-organized by INRIA (4,360
participants including 3,200 from abroad);

• 11,500 hours of teaching.

Industrial Relations (January 2005)

• 750 active research contracts;

• 175 active patents numbered;

• 120 free software licenses (freely available on INRIA’s site or by CD-Rom)
and commercial software licenses;

• Around 80 companies stem from INRIA, starting with Ilog which is now
listed on Nasdaq to the most recent - 12 in 2000, 4 in 2001, 3 in 2002, 7
in 2003 and 7 in 2004.

Indicators

• Active contracts bringing in revenues: over 800;

• Contracts bringing in revenues signed in 2004: over 300.

1.2 Project Team Opale

OPALE: Optimization and control, numerical algorithms and integra-
tion of complex multidisciplinary systems governed by PDE

Opale is a joint project-team with JAD (CNRS and UNSA) located in Rhône
Alpes and in Sophia Antipolis. It has several objectives: analyze mathemati-
cally single or multi-disciplinary coupled systems of partial differential equations
arising from physics or engineering in view of their optimization or control (ge-
ometrical optimization); construct and experiment efficient numerical approxi-
mation methods (coupling algorithms, model reduction) and optimization algo-
rithms (gradient-based and/or evolutionary algorithms, game theory); develop
software platforms for the distributed parallel computation of the related dis-
crete systems. Application problems include multi-disciplinary optimum shape
design of an aircraft wing (in collaboration with Dassault Aviation), functional
optimization of a rocket system (in collaboration with CNES), and optimiza-
tion of antenna systems (in collaboration with France Télécom). Opale also has
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a strong implication in several European networks involved in aspects of code
validation.

Research themes

• Numerical algorithms for multi-disciplinary optimization of PDE systems;

• Geometrical optimization;

• Software platforms for distributed parallel computing.

International and industrial relations

• Pôle Scientifique Dassault Aviation / Université Pierre et Marie Curie
(Paris VI);

• CNES (Evry);

• France Télécom (La Turbie);

• Thales (Bagneux).

Participation in several European projects :

• FLOWnet, Thematic Network (database for pre-industrial code and flow
validation);

• INGENET, Thematic Network (database for genetic algorithms);

• MACSInet, Network of Excellence (MAthematics, Computing and Simu-
lation for Industry).
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Chapter 2

Introduction

A reflector is a kind of antenna among others used in telecommunications. One
important related problem is to manage exactly its radiation. Indeed, there are
international norms that reflectors must satisfy. For example an antenna should
cover a specific geographical area and avoid others. In other words the shape of
a reflector has to be optimized w.r.t. some criteria.

First, in order to understand how the shape can be optimized, we consider the
so-called reconstruction problem. That is, we want to optimize a reflector so
that the radiation fits a measured diagram. This is an inverse problem for which
we are certain there exists a solution since the measured diagram comes from a
known reflector. This inverse problem reads as a minimization problem.

However such problems involve difficult numerical matters. Here we compare
two different methods for solving the optimization problem, one is analytic and
the other parametric. Moreover we consider axisymmetric reflectors.

In a first part we present the direct problem. We detail how the diagram is
computed from a known geometry. Then we formalize the inverse problem and
define the cost functionals corresponding to each method. At last we conduct a
numerical case study and provide some interpretations.
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Chapter 3

Direct Problem:
Computing the Electric
Field

The direct problem consists in solving the equation of electromagnetics for the
unknown electric field given the geometry and the incident wave. We recall
from [1] a few results in electromagnetics and we use the work in [4] for the
application to the axisymmetric case.

3.1 Generalities and Notations

We find in Table 3.1 and Figures 3.1 and 3.2 the geometrical notations used in
the following sections. Table 3.2 presents the notations in electromagnetics.

We recall that in the Cartesian basis, ~R, ~θP and ~ϕP are given by

~R =

 sin θP cos ϕP

sin θP sinϕP

cos θP

 , ~θP =

 cos θP cos ϕP

cos θP sinϕP

− sin θP

 , ~ϕP =

 − sinϕP

cos ϕP

0

 .
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3. DIRECT PROBLEM: COMPUTING THE ELECTRIC FIELD

O coordinates origin, source location
P point “at infinity” (far field)
~θP unit vector, θ direction at P
~ϕP unit vector, ϕ direction at P
S surface of the reflector
Q point of S
~n outward-directed normal vector of S at Q
~ϕ unit vector, azimuth direction at Q
~s unit vector, meridian tangent of S at Q

R~R vector ~OP

ρ~ρ vector ~OQ

r~r vector ~QP

Table 3.1: Geometrical Notations

~I electrical current on S at Q
~Ei incident electric field
~Es scattered electric field
~Hi incident magnetic field
~E electric field “at infinity”
µ magnetic permeability
ε electric permittivity
η =

√
µ/ε impedance

ω wave pulsation
k = ω

√
εµ = 2π

λ (see [1]) wave number

Table 3.2: Electromagnetic Notations

Figure 3.1: Spherical System of Coordinates
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3. DIRECT PROBLEM: COMPUTING THE ELECTRIC FIELD

Figure 3.2: Reflector

3.2 Expressions for the Electric Field

In this section we recall the needed equations in electromagnetics, mainly taken
from [1]. We consider a single source that radiates onto a reflector. Under
certain assumptions we want to express the electric field. Then we define the
directive gain whose representation is the aim of the direct problem.

3.2.1 Hypothesis of Physical Optics

Given a point P , we want to formulate the total electric field ~E(P ) in spherical
coordinates. The total electric field is the sum of the incident field and the
scattered field by the reflector,

~E(P ) = ~Ei(P ) + ~Es(P ). (3.1)

According to [1], if the diameter of the reflector is much bigger than λ, ~Es is
given by

~Es(P ) =
1

i4πωε

∫∫
S

k2~I
e−ikr

r
+

(
~I · ∇

)
∇e−ikr

r
dS. (3.2)

Electromagnetic phenomena are modeled by Maxwell equations. However we
chose here to approximate the current with the Physical Optics model. In
this approach we consider that at each point of the surface, the reflexion is
equivalent to the reflexion on the tangent plane, perfectly conductor. This
means in particular that we don’t model the diffraction effects du to the border
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3. DIRECT PROBLEM: COMPUTING THE ELECTRIC FIELD

of the reflector. One reason to do so is to get an explicit formula for the far field
w.r.t. the geometry. Physical Optics is expressed by

~I = −2~n ∧ ~Hi. (3.3)

~Ei and ~Hi are the incident electromagnetic field from the source. In our problem
there are input data. We don’t study the source.

Moreover, since we consider a point P at infinity there are terms that can be
neglected (namely, terms in 1

r2 , see [1]). As well, we can assume that ~R and ~r
are collinear. Hence we consider that

1
r

=
1
R

and
e−ikr = e−ikReikρ(~R·~ρ).

Which leads to the following formula

~Es(P ) = −iωµ
e−ikR

4πR

∫∫
S

[
~I −

(
~I · ~R

)
~R
]
eikρ(~R·~ρ)dS. (3.4)

3.2.2 Scalar Expressions

One can see in (3.4) that the component of ~Es in ~R is null. Indeed, if we project
~I on the spherical system at P , this yields

~I −
(
~I · ~R

)
~R =

(
~I · ~θP

)
~θP +

(
~I · ~ϕP

)
~ϕP . (3.5)

From now ~Es will denote the vector

~Es =
i

ωµ

[
Eθ

Eϕ

]
(3.6)

where Eθ and Eϕ are the transversal components. Thus (3.4) becomes

~Es =
e−ikR

4πR

∫∫
eikρ(~R·~ρ)

[
~I · ~θP

~I · ~ϕP

]
dS. (3.7)

3.2.3 Directive Gain

The directive gain is the radiation intensity, i.e. the power radiated by unit
solid angle, normalized by the corresponding isotropic source [5].

12



3. DIRECT PROBLEM: COMPUTING THE ELECTRIC FIELD

In our case, the power per unit area is given by the Poynting vector

P =
1
2
| ~E ∧ ~H∗| = 1

2η
| ~E|2. (3.8)

So the radiation intensity U is given by U = R2P. We see that U depends only
on θ, ϕ since ~E is a spherical wave and thus the term in R2 disappear. Formally
this reads

~E =
e−ikR

4πR
~E(θ, ϕ).

Hence
U(θ, ϕ) =

1
2η(4π)2

| ~E(θ, ϕ)|2. (3.9)

Then the corresponding intensity of an isotropic source is the mean of U over
all solid angles, that is

Ui =
1
4π

∫ 4π

0

U(θ, ϕ)dΩ

=
1
4π

∫ π

0

∫ 2π

0

U(θ, ϕ) sin θdθdϕ.

Finally we can write the formula for the directive gain D where the constant
1

2η(4π)2 disappears

D(θ, ϕ) =
U(θ, ϕ)

Ui
=

4π| ~E(θ, ϕ)|2∫ π

0

∫ 2π

0
| ~E(θ, ϕ)|2 sin θdθdϕ

. (3.10)

Numerically this means that we need to compute by quadrature the normaliza-
tion term. Alternatively, if we know the power Pa of the source, then Ui = Pa

4π

and we don’t need to compute the double integral. For a single source where ~Ei

and ~Hi are already normed, the computed scalar | ~E(θ, ϕ)|2 is the normed field,
i.e., the directive gain.

3.3 Application to the Axisymmetric Case

We want now to express the surface integral as a double integral of 2 parame-
ters under the assumption that S is axisymmetric around Oz. In other words,
everything that depends on Q in (3.7) (i.e. ~n, ~Hi and ρ) should be expressed
as functions of these parameters.

13



3. DIRECT PROBLEM: COMPUTING THE ELECTRIC FIELD

3.3.1 Parameterization of the Surface

Let C be the curve defined by the intersection of S and the half-plane xOz for
x > 0, in other words the meridian for ϕ = 0. C is a parametric curve given by

C

{
x(s)
z(s) s ∈ [0, 1] x, z ∈ C1([0, 1], R) (3.11)

where x′(s) + z′(s) 6= 0 for all s. Because of the axisymmetry, S can be defined
as a parametric surface of s and ϕ as follows

Q(s, ϕ) ∈ S

 x = x(s) cos ϕ
y = x(s) sinϕ
z = z(s)

s ∈ [0, 1], ϕ ∈ [0, 2π] . (3.12)

The vectors ~ϕ and ~s

~ϕ =

 − sinϕ
cos ϕ

0

 ~s = 1√
x′2(s)+z′2(s)

 x′(s) cos ϕ
x′(s) sinϕ

z′(s)

 (3.13)

are tangent to S and orthonormal. Together with the outward-directed normal
~n = ~s∧ ~ϕ we have an orthonormal system of coordinates at Q. We call outward
side of S the one directed to the positive z.

In addition we note
~s∗ =

√
x′2 + z′2~s. (3.14)

3.3.2 Electric Field

We derive the electric field formula for the axisymmetric case. As modeled
in (3.3) ~I is tangent to the surface:√

x′2 + z′2~I = −2
√

x′2 + z′2~n ∧ ~Hi

= 2 ~Hi ∧ (~s∗ ∧ ~ϕ)

= 2( ~Hi · ~ϕ)~s∗ − 2( ~Hi · ~s∗)~ϕ
= Is(s, ϕ)~s∗ + Iϕ(s, ϕ)~ϕ

with {
Is(s, ϕ) = 2( ~Hi · ~ϕ)
Iϕ(s, ϕ) = −2( ~Hi · ~s∗)

. (3.15)
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3. DIRECT PROBLEM: COMPUTING THE ELECTRIC FIELD

Injecting in (3.5), this yields√
x′2 + z′2

(
~I − (~I · ~R)~R

)
= Iϕ(s, ϕ)

(
~ϕ− (~ϕ · ~R)~R

)
+Is(s, ϕ)

(
~s∗ − (~s∗ · ~R)~R

)
with

~ϕ− (~ϕ · ~R)~R = (~ϕ · ~θP )~θP + (~ϕ · ~ϕP )~ϕP

= − cos θP sin(ϕ− ϕP )~θP

+cos(ϕ− ϕP )~ϕP

and

~s∗ − (~s∗ · ~R)~R = (~s∗ · ~θP )~θP + (~s∗ · ~ϕP )~ϕP

= (x′(s) cos θP cos(ϕ− ϕP )− z′(s) sin θP ) ~θP

+(x′(s) sin(ϕ− ϕP )) ~ϕP .

We note ϕ̂ = ϕ− ϕP . Hence
√

x′2 + z′2
(
~I · ~θP

)
= Is(s, ϕ)(x′(s) cos θP cos ϕ̂− z′(s) sin θP )
−Iϕ(s, ϕ) cos θP sin ϕ̂√

x′2 + z′2
(
~I · ~ϕP

)
= Is(s, ϕ)x′(s) sin ϕ̂ + Iϕ(s, ϕ) cos ϕ̂

(3.16)

Modal Decomposition

In [4] it is explained that the current can be represented as a modal decompo-
sition where the mth mode is{

Is(s, ϕ) = Ip
s (s) cos(mϕ) + Ii

s(s) sin(mϕ)
Iϕ(s, ϕ) = Ip

ϕ(s) cos(mϕ) + Ii
ϕ(s) sin(mϕ) . (3.17)

Each mode can be considered independently from the others. We will consider
here a single mode source.

Phase Shift

We need now to express eikρ(~R·~ρ) in terms of s and ϕ. Since

ρ(~R · ~ρ) =

 x(s) cos ϕ
x(s) sinϕ

z(s)

 ·
 sin θP cos ϕP

sin θP sinϕP

cos θP


= x(s) sin θP cos ϕ̂ + z(s) cos θP

15



3. DIRECT PROBLEM: COMPUTING THE ELECTRIC FIELD

so
eikρ(~R·~ρ) = eikx(s) sin θP cos ϕ̂eikz(s) cos θP . (3.18)

Change of Variables

In (3.7), according to our choice of parameterization, the surface element dS
can be written

dS = x(s)
√

x′2 + z′2dϕ̂ds (3.19)

where ϕ̂ ∈ [−ϕP , 2π − ϕP ] and s ∈ [0, 1], since ϕ̂ = ϕ− ϕP and ϕ ∈ [0, 2π].

Integrals for Arbitrary Mode m

We provide some details on the calculation for ~Es for a single mode m. To
simplify formulas we note

x̃(s) = kx(s) sin θP ,

z̃(s) = kz(s) cos θP .

We recall that the vector ~Es =
[

.

.

]
has 2 components in ~θP and ~ϕP respec-

tively. We omit consciously the term e−ikR

4πR since it doesn’t play any role in the
directive gain (3.2.3).

Equations (3.18) and (3.19) in (3.7) give

~Es =
∫∫

S

eiz̃(s)eix̃(s) cos ϕ̂

[
~I · ~θP

~I · ~ϕP

]
dS

=
∫ 1

0

x(s)eiz̃(s)

∫ 2π−ϕP

−ϕP

eix̃(s) cos ϕ̂

[
~I · ~θP

~I · ~ϕP

] √
x′2 + z′2dϕ̂ds

Because of (3.17) the dependence in ϕ̂ is 2π-periodic and we can integrate over
any period. Together with (3.16) we have

~Es =
∫ 1

0

x(s)eiz̃(s)

∫ 2π

0

eix̃(s) cos ϕ̂ ×[
A1 cos(mϕ̂) cos ϕ̂ + A2 cos(mϕ̂) + A3 sin(mϕ̂) sin ϕ̂
B1 sin(mϕ̂) sin ϕ̂ + B2 cos(mϕ̂) cos ϕ̂

]
dϕ̂ds

where

16
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A1(s) =
(
Ip
s (s) cos(mϕP ) + Ii

s(s) sin(mϕP )
)
x′(s) cos θP

A2(s) = −
(
Ip
s (s) cos(mϕP ) + Ii

s(s) sin(mϕP )
)
z′(s) sin θP

A3(s) =
(
−Ii

ϕ(s) cos(mϕP ) + Ip
ϕ(s) sin(mϕP )

)
cos θP

B1(s) =
(
Ii
s(s) cos(mϕP )− Ip

s (s) sin(mϕP )
)
x′(s)

B2(s) = Ip
ϕ(s) cos(mϕP ) + Ii

ϕ(s) sin(mϕP )

(3.20)

Then we can separate variables and integrate in ϕ̂ integrals of the form∫ 2π

0

eix cos t cos(mt)dt (3.21a)∫ 2π

0

eix cos t cos(mt) cos tdt (3.21b)∫ 2π

0

eix cos t sin(mt) sin tdt (3.21c)

We note [3] that∫ 2π

0

eix cos t cos(mt)dt = 2πimJm(x), ∀m ∈ N, (3.22)

where Jm denotes the Bessel functions of the first kind. So (3.21a) is straight-
forward for all m. Moreover, when m = 0, (3.21b) is like (3.21a) with m = 1
and (3.21c) is null. Else we make use of the formulas

cos(mt) cos t =
1
2

(cos[(m + 1)t] + cos[(m− 1)t]) , (3.23a)

sin(mt) sin t = −1
2

(cos[(m + 1)t]− cos[(m− 1)t]) . (3.23b)

In addition we recall the recursive formulas for the Bessel functions [2]

Jm+1 + Jm−1 =
2m

x
Jm (3.24a)

Jm+1 − Jm−1 = −2
dJm

dx
(3.24b)
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3. DIRECT PROBLEM: COMPUTING THE ELECTRIC FIELD

Thus we have∫ 2π

0

eix cos t cos(mt) cos tdt = πim−1 (Jm−1(x)− Jm+1(x)) (3.25a)

= 2πim−1 dJm

dx
(x)∫ 2π

0

eix cos t sin(mt) sin tdt = πim−1 (Jm−1(x) + Jm+1(x)) (3.25b)

= 2πim−1 m

x
Jm(x)

Putting everything together gives the expression of the scattered electric field
for an axisymmetric reflector and for mode m:

~Es = 2πim−1

∫ 1

0

x(s)eiz̃(s) × (3.26)[
A1(s)J ′m(x̃(s)) + A2(s)iJm(x̃(s)) + A3(s) m

x̃(s)Jm(x̃(s))
B1(s) m

x̃(s)Jm(x̃(s)) + B2(s)J ′m(x̃(s))

]
ds.

3.3.3 A Word on Sources

~Ei and ~Hi are considered as black boxes. In general we will be able to compute
~Hi(Q) for any point Q on the reflector and ~Ei(P ) for any point P .

The way we obtain the current reads as follows: from (3.17) we know that for
all Q and the mode m we have

Is(s, 0) = Ip
s (s)

Iϕ(s, 0) = Ip
ϕ(s)

Is(s, π
2m ) = Ii

s(s)
Iϕ(s, π

2m ) = Ii
ϕ(s)

(3.27)

where ~I(s, 0) and ~I(s, π
2m ) are deduced from (3.15).

In some special cases, analytical formulas can be derived for the sources. These
cases correspond to elementary dipoles [1] [5] for which we introduce Green
functions:

G(r) =
e−ikr

4πr
, (3.28a)

G1(r) =
1
r

dG(r)
dr

= −1
r

(
ik +

1
r

)
G(r), (3.28b)

G2(r) =
1
r

dG1(r)
dr

= −1
r

(
−k2

r
+

3ik
r2

+
3
r3

)
G(r). (3.28c)
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3. DIRECT PROBLEM: COMPUTING THE ELECTRIC FIELD

Example for m = 1

In the case where the dipole is Oy-oriented the incident magnetic field reads

~Hi = rG1(r)
(
− cos ϕ~θ + cos θ sinϕ~ϕ

)
.

Straightforwardly the current yields

Ii
s(s) = 2z(s)G1(r)

Ip
ϕ(s) = 2 (z(s)x′(s)− x(s)z′(s))G1(r)

Ip
s (s) = Ii

ϕ(s) = 0.

Thus it appears that there is one single mode m = 1.

3.4 Numerical Computation

Knowing Is(s, ϕ) and Iϕ(s, ϕ), the electric field can be computed by a double
integral quadrature. Alternatively, knowing the modal decomposition of ~I, we
have a faster method with single integral quadrature for each mode.

3.4.1 Geometry

We model here the curve C. We assume we are given a set of points {Q} in
the xOz plane. From this set we define n segments τi = [Q1

i , Q
2
i ] of length li

(see Fig. 3.3 for a connex example). Furthermore we note ∆xi = x2
i − x1

i and
∆zi = z2

i − z1
i .

To parameterize segment τi we define the derivatives x’ and z’, which are con-
stants over each segment, as function of the points:{

x′(s) = x′i = sin(~z,~si) = ∆xi/li
z′(s) = z′i = cos(~z,~si) = ∆zi/li

(3.29)

where

~z =

 0
0
1

 , ~si =

 ∆xi/li
0

∆zi/li

 .

In this case note that x′2 + z′2 = 1, so ~s = ~s∗.
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3. DIRECT PROBLEM: COMPUTING THE ELECTRIC FIELD

(a) meridian (b) segment τi

Figure 3.3: Geometry

3.4.2 Quadrature

Method

We consider a gi-points Gaussian quadrature over τi for each i. We call sk
i , k =

1 . . . gi, the Gaussian curvilinear abscissae and wk
i the corresponding weights.

Moreover xk
i = x(sk

i ), zk
i = z(sk

i ), fk
i = f(sk

i ), . . . . Thus the contribution of
segment τi is

~Es
i = 2πim−1

gi∑
k=1

wk
i fk

i (3.30)

where, according to (3.26),

fk
i = xk

i eiz̃k
i

[
Ak

1,iJ
′
m(x̃k

i ) + Ak
2,iiJm(x̃k

i ) + Ak
3,i

m
x̃k

i

Jm(x̃k
i )

Bk
1,i

m
x̃k

i

Jm(x̃k
i ) + Bk

2,iJ
′
m(x̃k

i )

]
.

And thus over the whole reflector, we have

~Es = 2πim−1
n∑

i=1

gi∑
k=1

wk
i fk

i . (3.31)
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3. DIRECT PROBLEM: COMPUTING THE ELECTRIC FIELD

Implementation

We are given a set {P} of points at infinity to compute the electric field. The
full algorithm reads as follows.

Algorithm 1 Quadrature, mode m

Require: geometry (λ, {τi}ni=0 {gi}ni=1, {P}),
Require: source (mode m, ~Ei, ~Hi, see 3.3.2, 3.3.3)

k ← 2π/λ
for all τi do

derivatives
li ←

√
(∆xi)2 + (∆zi)2

dxi ← ∆xi/li, dzi ← ∆zi/li
quadrature points and weights
xk

i , zk
i , wk

i , k = 1 . . . gi

end for
for all P do

~Es
p ← 0

compute all constants regarding P
(precompute cos θP , sin θP , cos ϕP , etc.)
for all τi do

for k = 1 to gi do
x̃k

i ← k sin θP xk
i

z̃k
i ← k cos θP zk

i

compute current ~I (3.27)
compute A1, A2, A3, B1, B2 (3.20)
compute Bessel functions Jm(x̃k

i ), J ′m(x̃k
i ), m

Jm(x̃k
i )

x̃k
i

compute fk
i (3.26)

~Es
p ← ~Es

p + wk
i fk

i

end for
end for
~Ep ← ~Es

p + ~Ei
p total field

|| ~Ep||2 ← ~Ep
∗
· ~Ep directive gain

end for

The Bessel functions are computed with the routine rjbesl which is to be found
in the NETLIB repository (http://www.netlib.org) and written by W. J.
Cody.
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Chapter 4

Inverse Problem:
Optimizing the Shape of a
Reflector

In the direct problem, given a point P and a geometry in terms of x(s) and z(s)
we can compute the scattered electric field. Inversely, considering the geometry
as the unknown, how can we determine the shape of S to fit a given diagram ?

To solve this inverse problem we minimize a shape functional that penalizes
the discrepancy with the given diagram. We propose two different ways to
define the shape functional and we compare them on a specific case. One is
analytical and the other parametric. However, once the optimization variables
are defined, the strategy to reduce this cost function is the same, which is a
gradient-based algorithm (see appendix A). Indeed, since the electric field is an
explicit expression of the shape thanks to the Physical Optics model, we dispose
of its gradient w.r.t. the shape variables x and z.

4.1 Shape Functional

For a set of points {P}, we are given a target or measured electric field noted

~Ed
p =

(
Ed,θ

p

Ed,ϕ
p

)
. (4.1)

We shall then find the right shape for which the reflected field corresponds to
~Ed
p . The idea here is to consider equation (3.26) as a functional of S. That is,
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4. INVERSE PROBLEM: OPTIMIZING THE SHAPE OF A REFLECTOR

for a given P we define the corresponding functional

~Ep[x, z] : X ×X → C2 (4.2)

where X ≡
{
v ∈ C1([0, 1], R)

}
.

Since we want to obtain the target electric field for several points {P}, it is
natural to define a shape functional as a discrete L2-norm of the difference
between actual and specified electric field:

J(S) = J [x, z] =
∑
P

1
2

∣∣∣∣∣∣ ~Ep[x, z]− ~Ed
p

∣∣∣∣∣∣2 (4.3)

where the ||.|| norm is the l2-norm in C2. Thus our optimization problem reads

min
(x,z)∈X2

J [x, z]. (4.4)

4.1.1 Expression of the Shape Gradient

We now derive the expression of the gradient. The partial derivatives ∂x and
∂z represent functional derivatives.

First of all, the norm in (4.3) reads∣∣∣∣∣∣ ~Ep[x, z]− ~Ed
p

∣∣∣∣∣∣2 =
(
Eθ

p [x, z]− Ed,θ
p

) (
Eθ

p [x, z]− Ed,θ
p

)
+(

Eϕ
p [x, z]− Ed,ϕ

p

) (
Eϕ

p [x, z]− Ed,ϕ
p

)
.

Hence we have

∂x

∣∣∣∣∣∣ ~Ep[x, z]− ~Ed
p

∣∣∣∣∣∣2 = ∂xEθ
p [x, z]

(
Eθ

p [x, z]− Ed,θ
p

)
+

(
Eθ

p [x, z]− Ed,θ
p

)
∂xEθ

p [x, z]

+∂xEϕ
p [x, z]

(
Eϕ

p [x, z]− Ed,ϕ
p

)
+

(
Eϕ

p [x, z]− Ed,ϕ
p

)
∂xEϕ

p [x, z]

= 2<
(
∂xEθ

p [x, z]
(
Eθ

p [x, z]− Ed,θ
p

))
+2<

(
∂xEϕ

p [x, z]
(
Eϕ

p [x, z]− Ed,ϕ
p

))
.

Similarly we obtain the z derivative. Let D ~Ep be the Jacobian matrix

D ~Ep =
[

∂xEθ
p ∂zE

θ
p

∂xEϕ
p ∂zE

ϕ
p

]
, (4.5)
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4. INVERSE PROBLEM: OPTIMIZING THE SHAPE OF A REFLECTOR

and D∗ its conjugate transposed. Moreover we note ~Up = ~Ep[x, z]− ~Ed
p . Thus

the gradient can be written

∇J =
∑
P

<
(
D∗ ~Ep · ~Up

)
. (4.6)

In addition note that D ~E reduces to D ~Es since ~Ei does not depend on S.

4.1.2 Application to the Discrete Case

Here we consider the case where the meridian is modeled as a group of segments
(cf. 3.4.1). Therefore we are looking for a shape gradient as derivatives w.r.t.
the points. We recall that the set {Q}, noted also (x, z), defines n segments.
Moreover we note M = |Q|, the cardinal of the set.

From (3.26) we can write

~Es
p[x, z] =

∫ 1

0

~Fp(x, z, x′, z′)ds (4.7)

with

~Fp(x, z, x′, z′) = 2πim−1x(s)eiz̃(s) ×[
A1(s)J ′m(x̃(s)) + A2(s)iJm(x̃(s)) + A3(s) m

x̃(s)Jm(x̃(s))
B1(s) m

x̃(s)Jm(x̃(s)) + B2(s)J ′m(x̃(s))

]
.

On segment τi, according to our parameterization,{
x′(σ) = ∆xi/li
z′(σ) = ∆zi/li

, (4.8)

thus {
x(σ) = x1

i + σ∆xi/li
z(σ) = z1

i + σ∆zi/li
, (4.9)

for σ ∈ [0, li]. To simplify further derivation we define the new variable σ′ =
σ/li, where σ′ ∈ [0, 1] on each segment. After change of variable and inject-
ing (4.8) and (4.9) in (4.7) the function of the points reads

~Es
p(x, z) =

n∑
i=1

li

∫ 1

0

~Fp(Q1
i , Q

2
i )dσ′. (4.10)

Then we derivate point-wise ~Ep with respect to both direction, i.e., both coor-
dinates of each point. So we define ∇x as

∇x
~Ep =

(
∇xEθ

p

∇xEϕ
p

)
=

 . . .
∂Eθ

p

∂xj
. . .

. . .
∂Eϕ

p

∂xj
. . .

 . (4.11)
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4. INVERSE PROBLEM: OPTIMIZING THE SHAPE OF A REFLECTOR

Similarly we define ∇z
~Ep. Note that ∇x

~Ep, ∇z
~Ep ∈ C2×M .

It’s important to see that a point xj can appear in two segments. In fact,
the segment structure of the meridian allow us to define different non-connex
parts. In this way, points at extremities of each part will appear once and the
others twice (for a connex part, n + 1 points define n segments). Therefore the
derivation with respect to some xj in x reads

∂ ~Ep

∂xj
=

∑
τi, xj∈τi

∂li
∂xj

∫ 1

0

~Fp(Q1
i , Q

2
i )dσ′ + li

∫ 1

0

∂ ~Fp

∂xj
(Q1

i , Q
2
i )dσ′ (4.12)

and similarly for ∂ ~Ep

∂zj
.

According to (4.6) the shape gradient is then obtained by using (4.11) for a
point-wise estimation of D ~Ep. ∇xJ =

∑
P <

(
∇∗x ~Ep · ~Up

)
∇zJ =

∑
P <

(
∇∗z ~Ep · ~Up

) , (4.13)

where ∇∗ ≡ ∇T . We have well ∇xJ, ∇zJ ∈ RM . Note that the first integral
of the nodal derivative (4.12) is already computed with the direct problem and
the second term is computed with the same quadrature rule. The only thing
we need is the expression of the derivatives of ~Fp. This is quite tedious but
straightforward so we do not provide any details. We validate our formula by a
Finite Difference method (see section 5.1).

4.2 Parametric Functional

In the previous method the functional depends explicitly on the geometry. In the
discrete case the number of nodes needed for the precision of the computation
is also the number of optimization variables. This may cause stiffness and the
algorithm may fail to converge. Thus, one may want to find other optimization
variables.

The method of Free-Form Deformation (FFD) [6] consists in the parameter-
ization of the deformation of any solid object. In other words we use non
geometrical variables with geometrical objects. The following section deals in
details a 2-dimensional problem.

4.2.1 2D Free-Form Deformation

Let S0 be an arbitrary curve in R2, non necessarily connex. D is a closed
set of R2 containing S0 that we call the deformation area. We consider an
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homeomorphism φ that maps any point of D in [0, 1] × [0, 1], i.e. we define a
local basis for D.

φ : D → [0, 1]× [0, 1]

(x, z) (tx, tz)
(4.14)

For all point (x, z) in D, a fortiori for all points of S0, the deformation (∆x, ∆z)
reads: (

∆x
∆z

)
=

nx∑
i=1

nz∑
j=1

bx
i (tx)bz

j (tz) · ~pij . (4.15)

where nx and nz are called degrees of the parameterization. The bx
i (t) and

bz
j (t) are basis function in C1([0, 1], R) (the deformation is smooth) and the

~pij = (px
ij pz

ij)
> are the parameters. The deformation can hence be seen as a

linear combination of tensorial products of basis functions.

Bernstein polynomials (see Figure 4.1) are commonly used basis function (Bézier
representation). For degree n, They are defined by

Bn
i (t) =

(
n
i

)
ti(1− t)(n−i) i = 0 . . . n. (4.16)

Figure 4.1: Bernstein Polynomials, n=4

For a deformation in the z-axis with nx = 4 and nz = 0 the deformation becomes

∀tz, ∆z =
4∑

i=1

B4
i (tx)pz

i (4.17)

In this way the geometrical deformation is simply a weighting of the functions
seen on Figure 4.1. Since the deformation is smooth S does not have more
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singularities than S0. This is a big difference between the first method where
in the discrete case, points move independently and can create singularities.

We show a simple example of a 2D deformation on Figure (4.2).

Figure 4.2: Simple 2D Example

4.2.2 Boundary Conditions

Since the parameters p do not have any direct geometrical influence, only
through the basis functions, it is not easy to respect geometrical constraints.
However one can see which kind of deformation the shape will be subject to
while looking at certain properties of the Bernstein polynomials. In particular
we focus on the boundary of D. We want to identify the right parameters for
which there might be a deformation of the border.

First note that
Bn

0 (0) = Bn
n(1) = 1 ∀n ∈ N,

Bn
i (0) = 0, ∀i > 0 n > 0,

Bn
i (1) = 0, ∀i < n n > 0.

(4.18)

In example (4.17) we deduce that there can be a deformation in z for borders
corresponding to tx = 0 or tx = 1 only with respectively p0 or p4 non zero.

In addition we have

Bn′

1 (0) 6= 0, Bn′

n−1(1) 6= 0 n > 0,

Bn′

i (0) = 0, ∀i > 1 n > 1,

Bn′

i (1) = 0, ∀i < n− 1 n > 1.

(4.19)

This give us information on the kind of deformation in the neighborhood of
borders. Namely if we apply a deformation with functions Bn

1 or Bn
n−1 for n > 1
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there will be a sharp deformation in the neighborhood. Inversely if we use the
others, assuming there is no deformation of the border itself, the deformation
will tend to 0 in the neighborhood.

We provide different cases where we deform a domain containing a parabola on
Figure 4.3.

Figure 4.3: Different Boundary Conditions

4.2.3 Expression of the Parametric Functional

We apply the FFD method to our problem with Bernstein polynomials as basis
functions. We define a set D which contains the initial reflector S0 and such
that the extremities belong to the border so that we can manage boundary
conditions as explained in the previous section. If ∆S is a deformation of S0

the shape reads now as a function of the parameters p

S(p) = S0 + ∆S(p) = S0 +
nx∑
i=1

nz∑
j=1

Bnx
i (tx)Bnz

j (tz) · ~pij . (4.20)

Hence let j(p) be the parametric functional

j(p) = J(S0 + ∆S(p)) (4.21)

where J is given by (4.3).
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4.2.4 Gradient Condensation

We express now the gradient of j w.r.t. the FFD parameters. From (4.21) and
since all points of S in D are functions of p we have

∂j

∂px
ij

=
M∑

k=1

∂J

∂xk

∂xk

∂px
ij

(4.22)

with
∂xk

∂px
ij

=
∂(x0

k + ∆xk)
∂px

ij

=
∂∆xk

∂px
ij

= Bnx
i (tx)Bnz

j (tz). (4.23)

Thus the gradient is a condensation of the nodal gradient to the parameters
where the distribution is determined by the value of the tensor products. This
is quite natural in fact, if a parameter has more influence on a specific point,
then the deviation of the functional du to the deviation of this parameter will
be carried most by the corresponding point.
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Chapter 5

Numerical Case Study

In this chapter we conduct experimentations. The source is an elementary dipole
Oy-oriented (see section 3.3.3) located at the origin with frequency λ = 10 GHz.

5.1 Gradient Validation with FD

Description of computation for the validation of the derivative in x and z:

• Target: parabola, 51 nodes

• S0: uniform deformation

• S for the x derivative: deviation of node 5

• S for the z derivative: deviation of node 10

(a) w.r.t. x10 (b) w.r.t. z5

Figure 5.1: Functional w.r.t. small deviations of the geometry
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AD FD

∂J/∂x10 -2208.1963 -2208.2187

∂J/∂z5 -5989.1005 -5989.5189

Table 5.1: Analytical Derivative (AD) and Finite Difference (FD)

According to table 5.1 the derivatives are validated1.

5.2 Analysis

Algorithm 1 has permitted us to compute the directive gain for geometries such
as the ones presented in Figure 5.2. The set {P} corresponds to two plans:
ϕ = 0 (in red) and ϕ = π/2 (in black) for θ ∈ [0 2π].

On the left are the diagrams for both plans and on the right figures the meridian
of the reflector.

Figure 5.2: Directive Gain

1see appendix B for the comparison with automatic differentiation
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5.3 Reconstruction

This section presents the main results in the reconstruction problem. We pro-
vide special cases which allow us to summarize the results of the numerical
experimentations.

The results are presented on figures with three graphs:

• the left graph is the directive gain expressed in db where the reference
value is the power of the source if there was no reflector (both plans are
represented, see previous section);

• on the top right graph figures the meridian;

• on the bottom right graph figures the functional.

Moreover we adopt the following color convention:

• black if related to the initial reflector;

• brown if related to intermediate values during the optimization;

• red if related to the algorithm convergence;

• green if related to the target.

The target is a parabola discretized with 51 nodes (50 segments). We consider
deformation in z (px

ij = 0, ∀i, j). Unless specified we set nx = 0.

5.3.1 Small Deviation with Singularity in S0

At first we try the methods with a quasi-uniform small perturbation of the target
as initial meridian. Around node 32 can be seen a significantly non smooth part.
On Figure 5.3 we observe that the algorithm has converged with nodal variables
after 18 iterations. The parametric method, with nz = 8, converges as well
but towards a slightly worst solution (see Figure 5.4). After 39 iterations the
algorithm stops. To explain this we zoom on the singular part of the meridian.
This confirms what has been said in section 4.2.1: with FFD the singularities
are kept. Since the target is smooth it is clear that it does not belong to the
set of geometries spanned by the FFD on S0. Whereas with the nodal variables
the deformation is singular and in this case each point came back to its original
position.

From now only smooth initial geometries will be considered. The reason is that
practically this is very expensive to build such reflectors. So there is no need to
look for singular solutions.
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Figure 5.3: Nodal Optimization

Figure 5.4: Parametric Optimization
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5.3.2 Medium Deviation with Smooth S0

Now the initial geometry is a polynomial deformation of the target such that
there is no deviation at the extremities. The global deformation is much bigger
than in the previous case. Consequently the initial diagram is much different
from the measured one. As constraint (see section 4.2.2) we fix the first node
(x = 0, z = 0.075).

One can see on Figures 5.5 and 5.6 that the algorithm converges towards com-
pletely different solutions. The one with parametric variables and with degree
nz = 4 is very satisfying, the target has been recovered, at the precision of
the corresponding degree. On the contrary the reconstruction failed with nodal
variables. Even if the diagram may fit in some area, we are not interested in
non regular reflectors for the reason explained previously. In such cases the al-
gorithm introduces too many singularities. Moreover the chosen model for the
direct problem is a good approximation if the shape is regular. So the field is
most probably false.

This shows that the parametric formulation can handle much larger deforma-
tion, compared to experience in 5.3.1. This comes from the fact that there are
probably too many degrees of freedom with 50 optimization variables. The re-
duction of variables is hence necessary.

Figure 5.5: Nodal Optimization
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Figure 5.6: Parametric Optimization, n = 4

On Figure 5.7 we set the degree to nz = 8 and we compare the solution with
the one found with nz = 4. We represent the meridian and the functional for
both degrees in order to visualize the differences, especially for two areas that
have been increased. It appears that the accuracy is improved while increasing
the degree.
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Figure 5.7: Parametric Optimization, n = 8

5.3.3 Large Deviation with Smooth S0

At last we try huge deformations for S0 to see how the algorithm behaves with
the parametric variables (we do not expect any convergence with the nodal
ones). We set nz = 4.

Starting from a Cone

S0 is a cone, modeled by its meridian, i.e. a straight line. We try with fixed
(Figure 5.8) and free (Figure 5.9) extremities. It seems that the former case is
too much constrained whereas the latter find shape similar to the target with a
different focal point.
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Figure 5.8: Fixed Extremities

Figure 5.9: Free Extremities
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Starting from a Disc

We try with another initial shape: a disc. The shape after convergence looks
like the one in Figure 5.9 with another focal point.

Figure 5.10: Free Extremities
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Multimodal Functional

According to previous results in this section, it seems that the initial shapes are
too far from the solution to recover the target shape. In general, the conducted
experimentations show that convergence toward a local minimum is very likely.
We show this on Figures 5.11 and 5.12. In the former we consider a single pa-
rameter problem with nz = 2 and parameter p2. The feasible geometries are
shown on the right picture from the black curve to the blue one through the
solution, still in green. On the left we see the functional w.r.t. the parameter
p2. Clearly this is a multimodal functional. The latter show that this configu-
ration (probably with not enough degrees of freedom) is very sensitive to this
parameter: the initial shape is chosen as far as possible from the target and
such that there is convergence towards the global minima.

Figure 5.11: Functional w.r.t p2
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Figure 5.12: S0 : p2 = −6.0 · 10−2
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Chapter 6

Conclusions and
Perspectives

This study was intended to be a first step towards constructing an efficient nu-
merical method for shape optimization of three-dimensional axisymmetric radi-
ating structures incorporating and adapting various general numerical advances
within the framework of the Maxwell equations.

Here we have considered the simplified approximation known as Physical Optics
for which the electromagnetic field is known in closed form. In particular, the
method yields the radiating diagram of a reflector, given the geometry (analysis
code).

From this simplified analysis, we have considered the inverse problem consisting
of identifying a geometry that produces a radiating diagram as close as possible
to a target diagram. For this, we have used a least-squares formulation.

To make the optimization tractable, the shape deformation has been parame-
terized with a finite number of parameters via the so-called Free-Form Defor-
mation approach. In this setting, the inverse problem reduces to a parametric
optimization.

Compared with the classical “nodal formulation” of the inverse problem in which
the shape gradient is discretized over the mesh used in the analysis code, the
FFD approach has several merits. Both iterative convergence and control of
accuracy are enhanced, by regularization and through the specification of the
degree of the parameterization. Indeed, in the nodal formulation, the large
number of nodes necessary to achieve sufficient accuracy makes the optimiza-
tion numerically stiff, whereas the parametric optimization converges reasonably
fast.
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6. CONCLUSIONS AND PERSPECTIVES

For further work, in order to improve the method, several directions will be in-
vestigated. Concerning the physical model, the Physical Optics approximation
should be replaced by a numerical simulation of the true equations of electro-
magnetics (possibly preconditioned with the Physical Optics model). Moreover
a single frequency has been considered here, so we can envisage to look for ro-
bustness w.r.t. the frequency, which is essential in practical situations. This
question could be treated as a multi-point optimization. Then, concerning the
numerical procedure, we can try to avoid local minima with a hybrid evolu-
tionary algorithm/descent algorithm method. In addition, the convergence may
be accelerated by a multi-level algorithm or the preconditioning by simplified
models (such as neural networks).
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Appendix A

Optimization Algorithm
(from [10])

A descent direction d for the functional J at point x is such that

〈d,∇J(x)〉 < 0. (A.1)

If such a direction exists this means that there is a point x̃ = x + ρd for some
ρ > 0 such that J(x̃) < J(x). Thus one may find a minimum of J near x0

with a so-called descent method. This is an iterative method which consists in
starting from x0 and iterate according to (A.2).

xk+1 = xk + ρkdk (A.2)

where ρ is called the step and dk is a direction descent for xk. The best step is the
one that minimizes J(xk + ρdk). However this is numerically expensive to find
the optimal step since the computation of J may be expensive. The implemented
algorithm is a dichotomic rule and checks that the Wolfe conditions (A.3a)
and (A.3b) are satisfied

J(xk + ρkdk) ≤ J(xk) + ω1ρ
k
〈
∇J(xk), dk

〉
(A.3a)〈

∇J(xk + ρkdk), dk
〉
≥ ω2

〈
∇J(xk), dk

〉
(A.3b)

where 0 < ω1 < ω2 < 1. In so doing we avoid too small steps. Practically we
choose ω1 = 0.05 and ω2 = 0.95.

A natural descent direction is the opposite of the gradient itself. In this case the
method is called steepest descent. However the convergence may be slow and
inaccurate near the solution. The chosen algorithm is a Conjugate Gradient
(CG) algorithm where the direction is given by{

d0 = −∇J(x0)
dk = −∇J(xk) + βdk−1
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A. OPTIMIZATION ALGORITHM

where β is either the Fletcher-Reeves coefficient

βFR =
||∇J(xk)||2

||∇J(xk−1)||2

or the Polak-Ribière coefficient

βPR =

〈
∇J(xk),∇J(xk)−∇J(xk−1)

〉
||∇J(xk−1)||2

.

This method is also called non-linear CG algorithm and is a generalization of
the standard CG algorithm for solving symmetric positive definite systems of
the form Ax = b. In this case the optimal step is known.

As evoked, a gradient-based algorithm is not accurate around the solution. This
is du to the fact that we use only the first order Taylor expansion as information
on the functional. There are better methods known as Newton methods using
also the second order Taylor expansion. That is, we use not only the slope
but also the curve of the functional in the neighborhood of the points at each
iteration. This means that we need the Hessian of the functional J . Alternative
methods estimate this Hessian at each iteration. However in our case, we could
formally derive the Hessian. An other idea is to use automatic differentiation.
In a first step it has been used for the first derivative of the electric field to be
compared to a Finite Difference method and formal derivatives (see appendix B).
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Appendix B

Automatic Differentiation

As mentioned in the previous appendix, automatic differentiation has been
tested to compute the nodal derivatives of the electric field as a pilot study
for a potential tool to compute the Hessian. The software TAPENADE c© of
the project team Tropics [7] at the INRIA Sophia-Antipolis has been used.

Here is an example of the output of the program. We compare the three meth-
ods (formal, TAPENADE and FD) for the derivative (4.12) for node 24. S
is composed of 51 nodes, P is defined by θ = 134.0◦. eth and eph are both
components of ~Es. The output is a complex number in the default * Fortran 77
format: (real part, imaginary part).

Formal Derivative of E, id= 24
--------------------------------------------

===> 134. <===

deth/dx: (9.81991174,-2.17174473)
deth/dz: (21.9963369,-4.86068306)

deph/dx: (-14.4643428,3.829188)
deph/dz: (-32.3994497,8.5711727)
--------------------------------------------

TAPENADE E
--------------------------------------------

===> 134. <===

deth/dx: (9.81991174,-2.17174473)
deth/dz: (21.9963369,-4.86068306)
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B. AUTOMATIC DIFFERENTIATION

deph/dx: (-14.4643428,3.829188)
deph/dz: (-32.3994497,8.5711727)
--------------------------------------------

FD (def. in x of 1.875E-07, id= 24)
--------------------------------------------

===> 134. <===

Deth: (9.81986081,-2.17187123)
Deth: (21.9962559,-4.8610802)

Deph: (-14.4642634,3.82937436)
Deph: (-32.399288,8.57175076)
--------------------------------------------
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