
Frédéric SICOT

Thesis for the degree Master of Science

High Order Schemes on Non-uniform
Structured Meshes in a Finite-Volume

Formulation
Application in Computational Fluid Dynamics

Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg Sweden 2006

CERFACS
Toulouse – France
Supervisor: Jean-François BOUSSUGE

Abstract

In this thesis, a new family of high-order implicit schemes is developed. They are designed
to work on non-uniform grids by taking the metric of the meshes into account. They also
have a better resolution than classical explicit schemes and so can properly represent a
wider range of scales.

After the derivation of the schemes, they are tested in Matlab to easily check the ex-
pected properties. They are used to solve partial differential equations by mean of finite-
volume method and showed a good behavior.

These schemes are then integrated in a Computational Fluid Dynamics (CFD) soft-
ware co-developed by ONERA (The French National Aerospace Research Establishment),
CERFACS (European Centre for Research and Advanced Training in Scientific Computa-
tion) and AIRBUS. This software, called elsA (french acronym meaning Software Package
for Aerodynamics Simulation), solves compressible flows by mean of finite-volume method
on multi-blocks structured grids. Different methods are developed to correctly handle the
domain decomposition.

ii

Contents

Introduction vii

1 Derivation of the schemes 1
1.1 General scheme . 2
1.2 Centered schemes . 3
1.3 Upwind schemes . 5

1.3.1 ICEU Schemes . 5
1.3.2 IUEC Schemes . 5
1.3.3 IUEU Schemes . 7

1.4 Properties of the schemes . 7
1.4.1 Conservativeness . 7
1.4.2 Boundedness . 7
1.4.3 Transportiveness . 7

1.5 Solution of the scheme . 8
1.6 Fully upwind schemes . 10

2 Derivation of a procedure for diffusive flux 11

3 Numerical Tests 13
3.1 1D interpolation . 13
3.2 1D advection equation . 15

3.2.1 Uniform mesh . 16
3.2.2 Non-uniform meshes . 16

3.3 2D advection equation . 18
3.3.1 Uniform mesh . 19
3.3.2 Non-uniform meshes . 20

3.4 Test of the procedure for diffusive flux . 22
3.4.1 Empirical order . 22
3.4.2 1D diffusion equation . 22

4 Multi-Domain Treatment 25
4.1 Non-conservative strategy . 27
4.2 Use of an explicit scheme . 28
4.3 Comparison of the strategies . 29

5 Application in Computational Fluid Dynamics 31
5.1 Implementation in elsA . 31
5.2 Convection of a vortex . 32

5.2.1 Euler Computation . 33

iii

5.2.2 Navier-Stokes Computations . 34
5.2.3 Non-Uniform grid . 34
5.2.4 Multi-blocks Computations . 36

Conclusion 39

Acknowledgments 41

A Details of the derivation of the schemes 43
A.1 General scheme . 43

A.1.1 Left Hand Side . 43
A.1.2 Right Hand Side . 44
A.1.3 Matrix formulation . 45

A.2 Centered Scheme . 45
A.2.1 Coefficients of the IC3EC4 scheme 45
A.2.2 Coefficients of the IC3EC2 scheme 46

A.3 Upwind schemes . 47
A.3.1 Coefficients of the IC3EU31 scheme 47
A.3.2 Coefficients of the IC3EU32 scheme 48
A.3.3 Coefficients of the IU21EC4 scheme 48
A.3.4 Coefficients of the IU22EC4 scheme 49

B TDMA 51

C Modified Runge-Kutta Algorithm 53

Bibliography 55

iv

List of Figures

1.1 Non-uniform 1D mesh . 1
1.2 Fourier analysis of the error of centered schemes 5
1.3 Mesh with ghost cells . 5
1.4 Fourier analysis of the error of upwind schemes 6
1.5 Boundary-Layer Mesh . 8
1.6 Alternating cells Mesh . 8
1.7 Validity of the diagonal dominant hypothesis 9
1.8 Cells and interfaces used in the fully right upwind scheme 10
1.9 Cells and interfaces used in the fully left upwind scheme 10

2.1 Illustration of the procedure for diffusive flux 12

3.1 Example of the interpolation scheme . 14
3.2 Slope of the error . 14
3.3 Propagation of a 1D Gaussian wave, v = 1, CFL=1.4 16
3.4 Advection of a Gaussian wave on boundary layer mesh, t = 2 s 17
3.5 Advection of a Gaussian wave on alternating size mesh, t = 2 s 17
3.6 Advection on the alternating size mesh . 18
3.7 2D structured (cartesian) grid . 18
3.8 Advection of a 2D Gaussian wave . 19
3.9 Advection on a 2D non-uniform cartesian mesh 20
3.10 2D Advection on a wavy mesh . 21
3.11 Empirical error of diffusive flux procedure 22
3.12 Numerical solution of heat equation, after 20 s 24

4.1 A Join Boundary . 25
4.2 Matrix formulation of the multi-domain problem 26
4.3 Pentadiagonal formulation of the multi-domain problem 26
4.4 Matrix formulation of the non-conservative strategy 27
4.5 Error of the non-conservative strategy . 28
4.6 Matrix formulation of the explicit scheme strategy 28

5.1 Domain of computation for the vortex convection 33
5.2 ρu and ρv after 5 periods of Euler computation 33
5.3 Enstrophy after 5 periods of Euler computation 34
5.4 Enstrophy after 2 periods of Navier-Stokes computation 34
5.5 Non-uniform mesh for vortex convection 35
5.6 ρu and ρv after 1 period on non-uniform grid 35
5.7 ρv – Results of multi-blocks computations 36
5.8 4 blocks computation on non-uniform grid 37

v

5.9 4 blocks computation with explicit scheme on join boundaries (100 periods) 37
5.10 ρv at y = 0 . 38

vi

Introduction

In the solution of many physical problems, one is often confronted with flows possessing a
wide range of space and time scales. In order to resolve all the scales of such flows, highly
accurate methods, which can properly represent all the scales of the solution, are needed.

In recent years, so called compact (or PADÉ-type) schemes have gained increasing po-
pularity in application such as Direct Numerical Simulation (DNS) or Large Eddy Simu-
lation (LES). The work of LELE [8] contributed greatly to the diffusion of these schemes.
Their main advantage is that they provide a better representation of the shorter length scales
of the solution as compared to classical finite-difference and finite-volume schemes. This
better representation of the shorter length scales can be attributed to the implicit nature of
these schemes.

Originally, such schemes were defined in the finite-difference context, in one dimension
and on a uniform grid. Then, GAMET et al. [4] take the non-uniformity of the grid into
account.

The finite-difference approach is rather easy to implement but special attention must
be paid to the conservation properties of the scheme, as it is not guaranteed. On the other
hand, the finite-volume (FV) method is inherently conservative and is preferred by the CFD
practitioners in industry: it is (almost) as easy to implement as finite-difference method and
easier than the finite-element method. Unfortunately, only few papers dealing with compact
schemes in the FV context can be found in the literature. To my knowledge, KOBAYASHI

was the first to describe high-order PADÉ-type schemes in the FV context in [6].
While the other papers only deal with centered schemes, [1] describes upwind schemes

derived from a main formula. By removing some coefficients, the authors are able to de-
scribe a family of schemes with different properties on a uniform grid. Upwind schemes
are useful for correct boundary treatments.

All the previous papers developed 1D schemes. 2D and 3D computations are still fea-
sible thanks to dimensional splitting: a multidimensional problem is simply split into a
sequence of one-dimensional problems. This method works only on cartesian grids. In [7],
LACOR et al. extend these schemes on arbitrary 2D grids (i.e. non-cartesian, non-uniform).
They not only use the adjacent cells of the interface where the fluxes are computed, but
also cells below and above. The derivation of such schemes is very complex and they can
achieve only 2nd order accuracy. Extending their method in 3D and higher accuracy (6 th or-
der for instance) soon appears of very high difficulty and is furthermore useless in practice
since it would require too much computation time and memory space.

So in this thesis, a new family of 1D schemes with a maximum accuracy of order 4
and 6 on non-uniform grid is developed. Based on the work by LELE and GAMET, the
present schemes are derived using ideas of LACOR ([7] and [1]). Dimensional splitting
is used so that the schemes works only on non-uniform cartesian grids. Nevertheless this
is a very efficient approach as it is simple and relatively inexpensive way to extend to
multidimensional problems compared to the way chosen in [7]. And even if the present

vii

schemes are not design to work on arbitrary grids (i.e. non cartesian), a better accuracy
than standard schemes is expected.

The new family is implemented in the CFD software elsA where the time and spa-
tial discretizations are implemented separately. For time integration one can chose, for
instance, an implicit scheme such as backward Euler or an explicit scheme such as Runge-
Kutta. In this thesis, the focus is only on spatial discretization and so on semi-discretized
equations (with the time derivative still appearing). The properties (order, stability. . .) of
the global scheme in space and time depend, of course, of the time integration algorithm
chosen by the user.

viii

Chapter 1
Derivation of the schemes

Let’s take the example of the advection equation:

∂f(x, t)
∂t

+ v
∂f(x, t)

∂x
= 0. (1.1)

This equation describes the passive advection of some scalar field f(x, t) carried along by
a flow at constant speed v. It has an analytical solution: f(x, t) = f0(x − vt) where f0 is
the initial condition.

In the 1D mesh sketched in Fig. 1.1, there are 4 cells numbered from i−1 to i+2. The
right interface (or cell face) of cell i is numbered i + 1/2. The width of cell i is denoted
by hi: hi = xi+1/2 − xi−1/2.

xi−3/2 xi−1/2 xi+1/2 xi+3/2 xi+5/2

xi−1 xi xi+1 xi+2

hi−1 hi hi+1 hi+2

Figure 1.1: Non-uniform 1D mesh

In the FV approach, Eq. (1.1) is integrated over the mesh cells:

∂

∂t

∫ xi+1/2

xi−1/2

f(x) dx + v(fi+1/2 − fi−1/2) = 0, ∀i. (1.2)

This is still an exact relation, even if the mesh is non-uniform. Eq. (1.2) depends on the
values of f at the cell faces. The present schemes aim to interpolate f at the cell-faces
knowing the cell-center values. Before deriving them, one needs to choose whether point-
wise values or cell-average values of f are used. The pointwise value f i for instance, can
be defined in the center of the cell i: fi = f(xi). The cell-average value of cell i, denoted
f̄i can be defined as:

f̄i =
1
hi

∫ xi+1/2

xi−1/2

f(x) dx. (1.3)

In a pointwise approach, the spatial discretization scheme does not only require f to be ap-
proximated with high-order accuracy but also the integral (appearing after the time deriva-
tive). Whereas in a cell-average approach, Eq. (1.2) is simplified to:

∂f̄i

∂t
hi + v(fi+1/2 − fi−1/2) = 0, ∀i. (1.4)

1

The integral does not have to be evaluated since its value is stored (it is the cell-average
value). This approach seems therefore preferable as it is related to the integral form
of conservation law. Note that the use of cell-average values was already advocated by
KOBAYASHI [6].

Next the values fi+1/2 and fi−1/2 of f at the interfaces have to be evaluated. In the
next sections, the present schemes will be compared with two classical schemes of order 2
(denoted CE2) and order 4 (denoted CE4). They are both explicit and read:{

fi+1/2 = 1
2

(
f̄i + f̄i+1

)
, (CE2)

fi+1/2 = − 1
12

(
f̄i−1 + f̄i+2

)
+ 7

12

(
f̄i + f̄i+1

)
, (CE4).

(1.5)

CE2 simply computes the average of the two adjacent cells and CE4 has a stencil of four
cells to reach 4th order accuracy. The given order is only true on uniform grid. When
the mesh is non-uniform, an error term of order 1 appears. The present schemes are now
developed to take into account the metric of the grid.

1.1 General scheme

Because of constraints imposed by the future implementation in elsA, two cells on each
side of an interface are used, that is 4 cells total. Then for the implicit part, the system
should not be more complex than a tridiagonal system as it would be computationally too
expensive to solve.

For any scalar quantity u, the most general form of this kind of scheme about interface
i + 1/2 reads:

βũi−1/2 + ũi+1/2 + γũi+3/2 = aūi−1 + būi + cūi+1 + dūi+2, (1.6)

where ūk is the known cell-average value of u in cell k and ũ is the computed approxi-
mation of u at the interfaces. The relations between the coefficients a, b, c, d and β, γ are
derived by matching the Taylor series coefficients of various order (the full methodology is
detailed in appendix A). The first unmatched coefficient determines the formal truncation
error of Eq. (1.6). These constraints are:

• order 1:

1 + β + γ = a + b + c + d. (1.7)

• order 2:

γhi+1 − βhi =
1
2

[
− a(2hi + hi−1)− bhi + chi+1 + d(2hi+1 + hi+2)

]
. (1.8)

• order 3:

βh2
i + γh2

i+1 =
1
3

[
a

hi−1

(
(hi + hi−1)3 − h3

i

)
+ bh2

i

+ ch2
i+1 +

d

hi+2

(
(hi+1 + hi+2)3 − h3

i+1

)]
.

(1.9)

• order 4:

γh3
i+1 − βh3

i =
1
4

[
a

hi−1

(
h4

i − (hi + hi−1)4
)
− bh3

i

+ ch3
i+1 +

d

hi+2

(
(hi+1 + hi+2)4 − h4

i+1

)]
.

(1.10)

2

• order 5:

βh4
i + γh4

i+1 =
1
5

[
a

hi−1

(
(hi + hi−1)5 − h5

i

)
+ bh4

i

+ ch4
i+1 +

d

hi+2

(
(hi+1 + hi+2)5 − h5

i+1

)]
.

(1.11)

• order 6:

γh5
i+1 − βh5

i =
1
6

[
a

hi−1

(
h6

i − (hi + hi−1)6
)
− bh5

i

+ ch5
i+1 +

d

hi+2

(
(hi+1 + hi+2)6 − h6

i+1

)]
.

(1.12)

As there are six coefficients to find, as many constraints can be satisfied and so 6 th order
accuracy can be obtained. Eq. (1.6) has the same stencil as CE4 (four cells each). Actually
the present schemes are often referred as compact since for the same stencil they have a
higher order or, for the same order, can have a narrower stencil than explicit schemes.

The previous constraints Eq. (1.7)-(1.12) can be written in a matrix form easier to han-
dle. The coefficients can be computed by solving Ax = b where A is:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 −1 −1 −1
−hi hi+1 hi + hi−1

2
hi

2 −hi+1
2 −hi+1 − hi+2

2

h2
i h2

i+1
1

3hi−1

(
h3

i − (hi + hi−1)3
) −h2

i

3 −h2
i+1
3

1
3hi+2

(
h3

i+1 − (hi+1 + hi+2)3
)

−h3
i h3

i+1
1

4hi−1

(
(hi + hi−1)4 − h4

i

) h3
i

4 −h3
i+1
4

1
4hi+2

(
h4

i+1 − (hi+1 + hi+2)4
)

h4
i h4

i+1
1

5hi−1

(
h5

i − (hi + hi−1)5
) −h4

i

5 −h4
i+1
5

1
5hi+2

(
h5

i+1 − (hi+1 + hi+2)5
)

−h5
i h5

i+1
1

6hi−1

(
(hi + hi−1)6 − h6

i

) h5
i

6 −h5
i+1
6

1
6hi+2

(
h6

i+1 − (hi+1 + hi+2)6
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.13)

The constraints are written by rows with increasing order of accuracy. The columns corre-
spond to the coefficients. Indeed the unknown vector is x = (β, γ, a, b, c, d)� and the right
hand-side is given by b = (−1, 0, 0, 0, 0, 0)�. This approach is a powerful formalism as it
enables us to easily compute the coefficients for all the family.

In the next sections, the different schemes are described. To identify them without
ambiguity, the nomenclature developed in [1] is adopted: a scheme is denoted by four let-
ters “IaEb”. The I refers to the implicit part (left-hand side of Eq. (1.6)) and E to the explicit
part (right-hand side of Eq. (1.6)). a and b can take either the letter C meaning centered or
U for upwind. Then each part is followed by one or two numbers giving information on the
stencil. They are detailed further on.

1.2 Centered schemes

If all these coefficients are non-zero, a so-called centered scheme is obtained. It is denoted
by ICxECy where x and y are the number of points in, respectively, the left-hand side (lhs)
and right-hand side (rhs) of Eq. (1.6). In our application, the scheme with highest accuracy
is then called IC3EC4 (see appendix A.2.1). A centered scheme with a narrower stencil is
IC3EC2 where a = d = 0 (see appendix A.2.2). This one is of order 4.

3

One important remark is that this scheme becomes ’symmetric’ centered (a = d, b = c
and γ = β) when the mesh is uniform. With cells having the same size h, the linear system
Eq. (1.13) is independent of h. The coefficients are:

γ = β =
1
3
, a = d =

1
36

, b = c =
29
36

(1.14)

The order of a scheme is not the only point. One important characteristic is the resolu-
tion of the scheme. It gives information of how well a scheme can represent short length
scales. This can be determined by the Fourier analysis of the error like described in [10]
and [11]. The following analysis is derived on a uniform mesh. In this case, the scheme is
symmetric centered and identical to its finite difference version.

For the purpose of Fourier analysis the variables are assumed to be periodic over the
domain [0, L]. If there are N points, then h = L/N . The variables may be decomposed
into their Fourier series:

u(x) =
N/2∑

k=−N/2

ûk exp
(

2iπkx

L

)
, (1.15)

where i =
√−1. Since u is real-valued, the Fourier coefficients satisfy ûk = û∗

−k where ∗
denotes the complex conjugate.

It is convenient to introduce a scaled wavenumber ω = 2πkh/L, ω ∈ [0, π] and a
scaled coordinate s = x/h. the Fourier modes in terms of these are simply exp(iωs). The
exact translation n with respect to s generates a function with Fourier coefficients ûn

k =
ûk exp(iωn). The interpolation error may be assessed by comparing the Fourier coeffi-
cients of ũ obtained by the present schemes with exact Fourier coefficients. The transfer
function is then:

T (ω) =
ae−3iω/2 + be−iω/2 + ceiω/2 + de3iω/2

βe−iω + 1 + γeiω
. (1.16)

The real part of the transfer function is called dispersion error and the imaginary part is
called dissipative error.

Exact interpolation corresponds to T (ω) = 1. The range of wavenumbers over which
T is close to 1 within a specified error tolerance ε defines the set of well-resolved waves.
A scheme that has a larger range is more accurate in spectral space and this definition of
accuracy is not related to the formal accuracy defined in terms of truncation error. It should
also be noted that the resolution depends only on the scheme and not on the number of
points N used in the discretization.

In case of symmetric centered scheme, the transfer function becomes real-valued:

T (ω) =
2b cos ω

2 + 2a cos 3ω
2

1 + 2α cosω
, (1.17)

where a, b, α are computed with respect to the finite-difference constraints. So the sym-
metric centered schemes are not dissipative but only dispersive.

In Fig. 1.2, the transfer function is plotted for several schemes. The set of well-resolved
waves for CE2 is only 9 % within an error tolerance of ε = 10−2. The range for CE4
increases to 26 %. With the same order but a narrower stencil, IC3EC2 has 33 % of well-
represented waves. So its resolution is better than CE4. This is due the implicitness of
the scheme. Finally IC3EC4 has the best resolution with a percentage of 50 %. It has the
highest accuracy, both in terms of truncation error and resolution.

If u is periodic then the relation Eq. (1.6) written for each interface can be solved
together as a linear system of equations for the unknown values ũ. This linear system is
cyclic tridiagonal. The general non-periodic case requires upwind schemes appropriate for
the near-boundary interfaces. It is proved in [11] that boundary schemes can have up to two
formal order less than the interior scheme without propagating errors. In the next section,
5th order upwind schemes are derived having only one order less than IC3EC4.

4

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wavenumber

T
ra

ns
fe

r
fu

nc
tio

n
(in

te
rp

ol
at

io
n)

exact
IC3EC4
IC3EC2
CE4
CE2

Figure 1.2: Fourier analysis of the error of centered schemes

1.3 Upwind schemes

By setting some of these coefficients to 0, upwind schemes are obtained. In case of ICEU
or IUEC, at least one of the coefficients has to be zero and, at most, 5 th order accuracy can
be achieved. In the case of IUEU, at least 2 coefficients must be 0 (at least one on each
side) and therefore, the maximum order of accuracy is 4.

1.3.1 ICEU Schemes

These schemes are referred as ICxEUyz: x is the number of points in the left-hand side, y
in the right-hand side and z is the position of ū i in the right-hand side. x and y are set to 3
to attain maximum accuracy (5th order). The last constraint Eq. (1.12) is removed, which
is equivalent to remove the last row of Eq. (1.13).

Then, the right-hand side is sided. Either a or d can be set to zero. This is equivalent
to respectively remove the 3rd or 6th column of Eq. (1.13) and the corresponding terms in x
and b. They are called IC3EU31 and IC3EU32.

1.3.2 IUEC Schemes

In [1], this kind of schemes is described as being worthless because of a poor resolution.
Nevertheless, they can be useful for the join boundary interfaces as described in chapter 4.
Our goal is to compute u at the interfaces, both interior and boundary faces. Say there are
n interfaces, there also have n relations like Eq. (1.6). Let’s consider that there are 2 ghost
cells added at each boundary, the mesh reads:

x−3/2 x−1/2 x1/2 x3/2 x5/2

x−1 x0 x1 x2

Ghost cells Interior domain
Boundary
interface

Figure 1.3: Mesh with ghost cells

These ghost cells unable us to use a centered scheme in the explicit part and Eq. (1.6) is
written for the two boundaries:

βu1/2 + u1/2 + γu3/2 = aū−1 + bū0 + cū1 + dū2

βun−3/2 + un−1/2 + γun+1/2 = aūn−2 + būn−1 + cūn + dūn+1

(1.18)

The boundary schemes require to know u between the 2 ghost cells (−1/2 and n + 1/2).
The n interfaces and the 2 interfaces between the ghost cells at the two ends leads to n + 2

5

unknowns ũ, for n relations. The system is under-determined. This can be clearly shown
with the following system:

⎛⎜⎜⎜⎜⎝
β 1 γ 0 · · · 0

0 β 1 γ 0
...

...
. . .

. . .
. . .

. . .
. . .

0 · · · 0 β 1 γ

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ũ−1/2

ũ1/2

ũ3/2

...
ũn−1/2

ũn+1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
aū−1 + bū0 + cū1 + dū2

aū0 + bū1 + cū2 + dū3

...
aūn−2 + būn−1 + cūn + dūn+1

⎞⎟⎟⎟⎠
(1.19)

The matrix of the system is not square: there are 2 more columns than there are rows.
Upwind schemes for the implicit part are needed to remove the first and the last column of
the matrix.

These schemes are referred as IUxyECz: x is the number of points in the left-hand
side, z in the right-hand side and y is the position of ũ i+1/2:

• IU21EC4 scheme: In this scheme, β is set to 0. It is useful for the left boundary. The
details are given in appendix A.3.3.

• IU22EC4 scheme: In this scheme, γ is set to 0. It is useful for the right boundary.
The details are given in appendix A.3.4.

The present schemes are compared with the QUICK (quadratic upstream interpolation
for convective kinetics) scheme developed in [9]. This scheme is often used in CFD and
reads:

ũi+1/2 = −1
8
ui−1 +

6
8
ui +

3
8
ui+1, (1.20)

with respect to the flow direction (indices in i could be to the left or the right of the mesh).
The Fourier analysis gives Fig. 1.4. Concerning the dispersive error, even though the

ICEU schemes are only 5th order accurate, they have a better resolution than IC3EC4 with
68 % of well-resolved waves. As stated in [1], the IUEC schemes reveal the worst be-
havior. For some range, the waves are even amplified. The QUICK scheme has a poor
representation with only 26 % of well-resolved waves.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Wavenumber

R
ea

l p
ar

t o
f t

he
 tr

an
sf

er
 fu

nc
tio

n

exact
IC3EU31
IC3EU32
IU21EC4
IU22EC4
IC3EC4
QUICK left
QUICK right

(a) Real part of the transfer function

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

Wavenumber

Im
ag

in
ar

y
pa

rt
 o

f t
he

 tr
an

sf
er

 fu
nc

tio
n

exact
IC3EU31
IC3EU32
IU21EC4
IU22EC4
QUICK right
QUICK left

(b) Imaginary part of the transfer function

Figure 1.4: Fourier analysis of the error of upwind schemes

No matter how the schemes are sided (to the left or to the right) they have the same
dispersive error, but an opposite dissipation error. This error becomes important for high

6

wavenumbers with a slightly advantage to the ICEU schemes. The QUICK scheme has
an early differentiation with the exact interpolation but for high wavenumbers, the error
becomes smaller.

1.3.3 IUEU Schemes

These schemes are referred as IUxyEUzw: x and z are the number of points in, respec-
tively, the lhs and the rhs. y is the position of ũ i+1/2 and w is the position of ūi. These
schemes are not used in our application, so they are not described any further.

1.4 Properties of the schemes

Numerical schemes for CFD have several properties. The order of the schemes has already
been studied. It states how the error decreases when the mesh is refined. This is an impor-
tant property but not the only one to consider. And actually it can be a source of error: on
a given mesh a scheme can be less accurate than another one of lower order.

The resolution of the scheme which indicates its spectral behavior has also been studied.
This can be developed by Fourier analysis of the scheme.

Other properties are needed for CFD, namely conservativeness, boundedness and trans-
portiveness. They are all related to the inherent physics described by the solved equations.

1.4.1 Conservativeness

This property ensures global conservation of the fluid properties for the entire domain. This
is automatically satisfied for finite-volume method.

1.4.2 Boundedness

This property is simple to understand: it states that in the absence of sources the internal
values of a property u is bounded by its boundary values. Hence in a steady state conduction
problem without sources and with boundary temperatures of 500 ◦C and 200◦C, all interior
values of T should be less than 500◦C and greater than 200◦C.

One necessary condition (but not sufficient) is that a cell-face value should not be larger
or smaller than the cell values used to compute it. For example the classical centered
2nd order scheme (CE2) satisfies this requirement since the cell-face value is computed as
the average of the two adjacent cell-values:

ũi+1/2 =
1
2
(ūi + ūi+1) (1.21)

But it can be easily shown that for the convection-diffusion equation, this scheme is un-
bounded as soon as the Peclet Number (ratio of the convection over the diffusion) is higher
than 2. This is due to negative coefficients in the discretized equation where ũ has been
replaced by the rhs of Eq. (1.21). The boundedness of a scheme depends both on the solved
equation and of the flow.

Unfortunately, a similar criteria on the present schemes can hardly be found since they
are implicit and the coefficients are mesh dependent. We just have to keep in mind that they
can be unbounded under certain flow conditions and mesh metrics.

1.4.3 Transportiveness

Unlike diffusion phenomena, convective phenomena influences exclusively in the flow di-
rection so that a point only experiences effects due to changes at upstream location. In other

7

words, the transportiveness property is a measure of the ability of the scheme to recognize
the direction of the flow.

Such a property is built into upwind schemes while the centered schemes are not trans-
portive.

1.5 Solution of the scheme

In order to use the scheme, a tridiagonal system has to be solved. One of the most effi-
cient algorithm is the Tri-Diagonal Matrix Algorithm (TDMA) also known as the Thomas
algorithm. It is simply a Gaussian elimination without pivoting that takes into account
the tridiagonal structure of the matrix. In appendix B, one can find the basic algorithm
optimized for our application.

As there are no pivoting, it would be nice for numerical stability that the matrix of the
system be diagonally dominant. This is equivalent to show that the scheme satisfies:

|β| + |γ| ≤ 1 (1.22)

It is possible to compute analytically |β| + |γ| for some special meshes:

1. a uniform mesh leads to β = γ = 1
3 and the matrix is diagonally dominant.

2. a mesh for a boundary layer like the half of Fig. 1.5: h i = αhi−1, hi+1 = αhi,
hi+2 = αhi+1, α > 0. In Fig. 1.5, α = 1.1:

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.1

−0.05

0

0.05

0.1

Figure 1.5: Boundary-Layer Mesh

In this case, the diagonal dominance criteria reads:

|β| + |γ| =
1 + α4

α + α2 + α3
. (1.23)

This equation is plot in Fig. 1.7(a). The upper limit of validity is α = 1.72. As
the maximum stretch α usually met in this kind of mesh is about 1.2, the criteria is
satisfied.

3. a mesh with alternating bigger and smaller cells: h i = αhi−1, hi+1 = hi−1, hi+2 =
hi. In Fig. 1.6, α = 3:

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.1

−0.05

0

0.05

0.1

Figure 1.6: Alternating cells Mesh

The relation is now:

|β| + |γ| =
α

2 + α
+

1
1 + 2α

. (1.24)

8

Eq. (1.24) is plot in Fig. 1.7(b). Its upper limit is 1 when the stretch α is going toward
infinity. So this kind of mesh always leads to a diagonal dominant matrix.

0.5 1 1.5 2
0.6

0.7

0.8

0.9

1

1.1

1.2

|β
|+

|γ
|

stretching

(a) boundary-layer-like mesh

0 1 2 3 4 5 6 7 8 9 10
0.65

0.7

0.75

0.8

0.85

0.9

|β
|+

|γ
|

stretching

(b) alternating bigger and smaller cells

0 0.5 1 1.5 2 2.5 3 3.5
0.6

0.7

0.8

0.9

1

1.1

1.2

|β
|+

|γ
|

stretching

(c) case 4 mesh

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

|β
|+

|γ
|

stretching

(d) case 5 mesh

Figure 1.7: Validity of the diagonal dominant hypothesis

4. a mesh with parameters: hi−1 = hi, hi+1 = αhi, hi+2 = hi+1:

hi−1 hi hi+1 hi+2

gives the following relation (see Fig. 1.7(c)):

|β| + |γ| =
4(1 + 2α + 2α3 + α4)

(1 + α)2(2 + 5α + 2α2)
. (1.25)

The maximum stretch is 2.91. Such cases may appear especially on join boundary
between mesh blocks. In such cases the stretch can unfortunately be higher, but
theses cases are rare.

5. The final mesh considered is of the form: h i = αhi−1, hi+1 = hi, hi+2 = hi−1:

hi−1 hi hi+1 hi+2

In this situation, the equation is:

|β| + |γ| =
(1 + α)2

2 + 4α
, (1.26)

and the maximum stretch is 2.41 without minimum.

So in practical cases, one can assume that the matrix of the system is diagonally dominant.
That allows the use of an algorithm without pivoting.

9

1.6 Fully upwind schemes

When the cells and interfaces used to compute an interface are only situated on one side
of it, the scheme is said to be fully upwind. These schemes are useful for some boundary
conditions. As IC3EC4 is of order 6, it is admitted that a 5th order scheme on the boundary
is sufficient. This requires 5 degrees of freedom. For example, the fully right upwind
scheme reads:

ũi+1/2 + αũi+3/2 = aūi+1 + būi+2 + cūi+3 + dūi+4. (1.27)

We use the following cells and interfaces:

i i + 1 i + 2 i + 3 i + 4

i + 1/2 i + 3/2

Figure 1.8: Cells and interfaces used in the fully right upwind scheme

and the fully left upwind scheme reads:

αũi−1/2 + ũi+1/2 = aūi−3 + būi−2 + cūi−1 + dūi. (1.28)

We use the following cells and interfaces:

i − 4 i − 3 i − 2 i − 1 i i + 1

i + 1/2i − 1/2

Figure 1.9: Cells and interfaces used in the fully left upwind scheme

The methodology of derivation is similar to the previous schemes.

10

Chapter 2
Derivation of a procedure for
diffusive flux

The 1D diffusion equation reads:

ρcP
dT

dt
=

d

dx

(
k

dT

dx

)
. (2.1)

In the right hand-side of Eq. (2.1) appears the second-order derivative of T . When it is
integrated over a cell, the first derivative of T at the interfaces appears:

ρcP
dT

dt
hi =

(
k

dT

dx

)
i+1/2

−
(

k
dT

dx

)
i−1/2

, ∀i. (2.2)

The present schemes are not able to directly compute the derivatives at cell faces. They
just take the cell average value ū of a scalar function u and interpolate it to get ũ the
approximation of u at the cell interfaces. In order to get the first derivative of u at the
interfaces with the present schemes, one would like to know the cell average value of the
derivative of u. Let’s compute it:(

du

dx

)
i

=
1
hi

∫ xi+1/2

xi−1/2

du

dx
dx =

1
hi

(ui+1/2 − ui−1/2), ∀i. (2.3)

ux can be computed with the cell interface value of u. So the following 3-steps procedure
is proposed:

Step 1: compute the cell interface value ũ of u by applying the present implicit schemes;

Step 2: compute the cell-average value ux of the derivative ux using Eq. (2.3) and the
approximated cell-face values ũ;

Step 3: compute the cell interface value ũx of ux using the same schemes on ux.

Two boundary conditions are usually associated to this equation: adiabatic condition
where ∂T/∂x = 0 is prescribed on the boundaries and isotherm boundaries where T is
hold fixed. In both cases, the boundary interface that is not imposed have to be computed
(T in case of adiabatic condition or ∂T/∂x for isotherm condition). The computation of
these boundary interfaces is then handled by fully upwind schemes.

11

This procedure is illustrated in Fig. 2.1 on the function given by Eq. (2.4) used in the
test section on the domain [0, 50]:

u(x) = exp
(
− 1

60
(x − 25)2

)
. (2.4)

As u(x) admits no integral, ū is numerically computed using the function quadl of Matlab
(which implements a recursive adaptive Lobatto quadrature) within an error of 10 −6.

In subfigure (a), the approximation ũ in circles is computed from the known values ū in
horizontal solid lines. The circles match u(x). Step 2 is illustrated in subfigure (b) where
ux is plotted over the exact value ux in dashed line. Step 3 is finally done by applying the
same scheme again. As shown in (c), ũx (in squares) match pretty well ux at the interfaces.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) step 1

0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

(b) step 2

0 5 10 15 20 25 30 35 40 45 50

−0.1

−0.05

0

0.05

0.1

0.15

(c) step 3

Figure 2.1: Illustration of the procedure for diffusive flux

The scheme is actually applied twice. This can increase the error and it is then hard to
tell the order of the procedure for diffusive term. The empirical order of the procedure will
be computed in the test section.

12

Chapter 3
Numerical Tests

Basically the present schemes interpolate a function on cell-faces knowing its cell-average
value. First, a simple interpolation problem is performed. The empirical order will be
computed and compared with standard schemes. It will be interesting to observe their
behavior on non-uniform meshes.

Once this basic tests are done, some usual partial differential equations such as convec-
tion problem in 1D or 2D are solved. The performances will be measured by comparison
with other schemes (CE2 and CE4). Finally the procedure for diffusive flux is used to solve
the heat equation.

3.1 1D interpolation

Let’s consider a mesh with n − 1 interior cells numbered from 1 to n − 1. So there are n
interfaces (n−2 interior and 2 boundaries). The mesh is surrounded by two “ghost” cells so
that centered scheme in the explicit part can always be used (an intensive use of these ghost
cells is described in the next sections). For the interior interfaces numbered from 2 to n−1,
the centered scheme with highest accuracy IC3EC4 is used . For the boundaries, upwind
schemes in the implicit part are used, namely IU21EC4 for the left boundary numbered 1
and IU22EC4 for the right boundary n. The matrix form of the schemes reads:⎛⎜⎜⎜⎜⎜⎜⎝

1 γ1 0 · · · 0
β2 1 γ2 0 0

0
. . .

. . .
. . .

...
...

. . . βn−1 1 γn−1

0 . . . 0 βn 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
ũ1

ũ2

...
ũn−1

ũn

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝

a1 b1 c1 d1 0 · · · · · · 0

0 a2 b2 c2 d2 0 · · · ...
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 · · · 0 an−1 bn−1 cn−1 dn−1 0
0 · · · · · · 0 an bn cn dn

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
ū−1

ū0

...
ūn

ūn+1

⎞⎟⎟⎟⎟⎟⎠ (3.1)

where ũ is the interpolated value of u at the interfaces. The coefficients

• (γ1, a1, b1, c1, d1)� are computed following Eq.(A.35)-(A.39),

• (βn, an, bn, cn, dn)� are computed following Eq.(A.41)-(A.45).

13

• (βi, γi, ai, bi, ci, di)�, 2 ≤ i ≤ n − 1 are computed following Eq.(A.11)-(A.16).

This system Aũ = Bū is consistent:

• A is a matrix n × n;

• there are n unknowns ũ;

• B is a matrix n × n + 3 and n + 3 cells are used (n − 1 interior cells and 4 ghost
cells) so that Bū is a vector n × 1 which is consistent with the product Aũ

It is solved using the TDMA e.g. the Thomas algorithm. See appendix B for further
details.

The schemes are now tested on a function with a known integral. A random 1D mesh is
generated and the cell-average values of the function are computed. The approximated
values ũ at the interfaces are then compared to the true one. In Fig. 3.1 the function
f(x) = sin(7x) + 3 cos(5x) + 10 is in solid line and the vertical dashed lines show the
random mesh. The horizontal solid lines are the cell-average value of f . The interpolated
values of f are plotted in circle and they match the function at the interfaces despite a very
distort mesh (alternation of very small and very big cells).

2 2.5 3 3.5 4 4.5 5
6

7

8

9

10

11

12

13

14

Figure 3.1: Example of the interpolation scheme

Now the empirical error is computed to check whether the scheme is 6 th order accu-
rate. Therefore a uniform mesh is considered and the error is computed with respect to
different mesh size in Fig. 3.2(a). Two functions are used: f 1 is the previous function f
and f2(x) = ex+2 sin(7x) + 1000. The slope of the error is computed using least squares

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

IC3EC4 on f
2

IC3EC4 on f
1

CE4 on f
2

CE4 on f
1

6.01

5.57

3.91

3.96

h/L

m
ea

n
er

ro
r

in
%

(a) uniform mesh

10
−3

10
−2

10
−8

10
−6

10
−4

10
−2

10
0

IC3EC4 on f
2

IC3EC4 on f
1

CE4 on f
2

CE4 on f
1

0.90 0.96

5.55

5.06

m
ea

n
er

ro
r

in
%

1 / number of interfaces

(b) non-uniform mesh

Figure 3.2: Slope of the error

14

method. The first function has an order of 6.01 and 5.57 for the second. This is rather close
to the theoretical order of 6. The error is smaller than for the classical 4 th order centered
scheme denoted CE4.

Furthermore, this scheme remains 6th order on non-uniform meshes while CE4 be-
comes 1st order accurate as displayed in Fig. 3.2(b). To obtain this figure, a uniform mesh
is generated and then each interface is moved by a random slide. Then the error is plotted
versus the number of interfaces. The scheme IC3EC4 has an order of 5.56 and 5.06 which
is still high while the standard 4th order central scheme becomes 1st order accurate as ex-
pected. Of course, this test is the worst case: in real-world problems, the meshes are not so
misshapen. But at least it shows that the new derived schemes are robust.

Now that the formal behavior of the scheme is checked, it is used to solve partial dif-
ferential equations.

3.2 1D advection equation

Recall the advection equation:

∂f(x, t)
∂t

+ v
∂f(x, t)

∂x
= 0, f(x, t = 0) = f0(x), (3.2)

and its semi-discrete finite-volume formulation from Eq.(1.4):

∂f̄i

∂t
= − v

hi
(fi+1/2 − fi−1/2), ∀i. (3.3)

An ordinary differential equation in time is finally found. The time integration is achieved
using a modified Runge-Kutta of order 4 (RK4, see appendix C for more details). For this
equation, the Courant-Friedrichs-Lewy Condition (CFL condition) is equal to v∆t/∆x and
for RK4, CFL <

√
2 must be fulfilled.

This equation can be used to describe the propagation of a Gaussian wave. In this case,
f0 is:

f0(x) =
1√
2π

e−
x2
2 (3.4)

The present schemes Eq.(1.6) are designed to work on non-uniform meshes. Nevertheless,
as the wave has to go all over the domain, a uniform mesh seems relevant. In consequence
this scheme will become ’symmetric’ centered: the coefficients are given by Eq.(1.14).

Periodic boundary conditions are imposed. It means that when the wave disappears on
one side of the domain, it reappears on the other side.

In order to use the present schemes and to implement the boundary conditions, ghost
cells are used: on each side of the domain, 2 ghost cells are added. Say that the interior
cells are numbered from 1 to n − 1. Then the left ghost cells are numbered −1 and 0,
and the right ghost cells are numbered n and n + 1. To implement the periodic boundary
conditions, the following relation are set at each iteration:{

f̄n = f̄1, f̄n+1 = f̄2,
f̄−1 = f̄n−2, f̄0 = f̄n−1.

(3.5)

As in the previous section, the ghost cells enable us to use centered schemes in the explicit
part to compute the boundary interfaces.

Finally, the advection equation is solved by algorithm 3.1 on the following page. This
algorithm is now applied on several meshes to compare the behavior of the present schemes
and the standard schemes. The Gaussian wave has a unit speed and is advected on the
domain [−1/2, 1/2].

15

Algorithm 3.1 Algorithm for solving the advection equation

Require: a uniform mesh of n − 1 interior cells, v, f0(x), tmax, a CFL
choose a time step ∆t in accordance with the CFL
compute f̄0 on each cell, then set f̄0 = f̄0

compute the coefficients (β, γ, a, b, c, d) with respect to the mesh and the scheme for
each interface
for each cell i do {time update}

compute f̄ t using RK4 (algorithm C.1) and the update of the ghost cells
end for

3.2.1 Uniform mesh

An example of run is exposed in Fig. 3.3. The exact solution is in solid lines. Three schemes
are compared: the present scheme IC3EC4 in circles, the standard 2 nd order scheme (CE2)
in plus signs and the standard 4th order scheme (CE4) in triangles.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
exact solution
IC3EC4
CE4
CE2

(a) t = 2.5s

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
exact solution
IC3EC4
CE4
CE2

(b) t = 5s

Figure 3.3: Propagation of a 1D Gaussian wave, v = 1, CFL=1.4

Even though the CFL is close to its upper limit, the first scheme matches the exact
solution while CE2 shows some errors that grow with respect to time. CE4 is almost as
good as the present scheme. This is because it has a higher accuracy than CE2 and because
the mesh is uniform. In the next section, the schemes are tested on non-uniform meshes.
The behavior of the present scheme should be better than the classical schemes.

3.2.2 Non-uniform meshes

For instance, consider a first mesh that alternates bigger and bigger cells with smaller and
smaller cells. This kind of mesh is usually used for boundary layer flow where the need
of high accuracy near the boundaries requires a finer mesh. It is sketched in Fig. 1.5 that
satisfies the criteria for diagonally dominance of the scheme.

In case of a non-uniform mesh, the CFL is given by v∆t/ min(∆x). The Gaussian
wave is advected during a natural number of seconds so that its final state should be equal
to its start. In Fig. 3.4, the IC3EC4 scheme clearly shows better results than CE2 and
CE4. This behavior was expected since the latter schemes are not design to be used on
non-uniform meshes.

The previous mesh is not adapted to the problem of the advection of a Gaussian wave
because there are only a few points in the middle of the domain. In order to better see the
influence of the non-uniformity, the schemes are tested on a mesh that alternates bigger

16

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
exact solution
IC3EC4
CE4
CE2

(a) Aspect ratio=1.1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
exact solution
IC3EC4
CE4
CE2

(b) Aspect ratio=1.2

Figure 3.4: Advection of a Gaussian wave on boundary layer mesh, t = 2 s

and smaller cells as in Fig. 1.6 where the aspect ratio is 3. There is a better distribution
of the points in all the domain. The results appears in Fig. 3.5. Again the present scheme
perfectly matches the true solution. The other schemes show important oscillations. For a
small stretch, an error in the location of the peak is observed while for a higher stretch, the
result is really far from the true solution.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
exact solution
IC3EC4
CE4
CE2

(a) Aspect ratio=1.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
exact solution
IC3EC4
CE4
CE2

(b) Aspect ratio=3

Figure 3.5: Advection of a Gaussian wave on alternating size mesh, t = 2 s

It may seem unfair to compare the present scheme to other schemes designed to be used
on uniform mesh, IC3EC4 is now compared to the non-uniform version of CE2 and CE4.
CE2nu is given by:

ũi+1/2 =
hi+1

hi + hi+1
ūi +

hi

hi + hi+1
ūi+1 (3.6)

CE4nu can be easily derived as IC1CE4 by the procedure of appendix A. It is also in-
teresting to observe the behavior of a uniform version of IC3EC4 and so use the coeffi-
cients Eq. (1.14). After 5 s, the results are plotted on Fig. 3.6. It is not surprising that the
2nd order scheme, even in its non-uniform version, gives poor results. CE4 nu gives results
almost as good as IC3EC4: even when the aspect ratio is high, its behavior is satisfying.

17

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
exact solution
IC3EC4 nu
IC3EC4 u
CE4 nu
CE2 nu

(a) aspect ratio = 11/9

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
exact solution
IC3EC4 nu
IC3EC4 u
CE4 nu
CE2 nu

(b) aspect ratio = 3

Figure 3.6: Advection on the alternating size mesh

What is more peculiar is that IC3EC4u gives really poor results. When the aspect ratio
is 3, the shape of the wave is lost and even CE2nu is a lot better. It may be explained by
the fact that the interfaces are coupled three by three. So if an error is committed, which is
really likely to happen when IC3EC4u is applied on a non-uniform mesh, it is propagated
to its two neighbors which in turn will propagate it to their neighbors and so on. The use
of an implicit scheme can be dangerous since the error can propagate a lot faster.

3.3 2D advection equation

The 2D advection equation is given by:

∂f(x, y, t)
∂t

+ vx
∂f(x, y, t)

∂x
+ vy

∂f(x, y, t)
∂y

= 0 (3.7)

The semi-discrete formulation reads:

∂f̄i,j

∂t
= − 1

Ai,j

[
vx∆yi,j(fi+1/2,j − fi−1/2,j) + vy∆xi,j(fi,j+1/2 − fi,j−1/2)

]
(3.8)

where ∆xi,j is the width of the cell (i, j) and ∆yi,j is its height. Ai,j is the area of the

(i − 1, j − 1/2)
•

(i, j)

•
(i, j + 1)

•
(i + 1, j)

•
(i + 1, j + 1)

∆yi+2,j

∆xi+1,j−1

(i + 1/2, j + 1)

Figure 3.7: 2D structured (cartesian) grid

cell (Ai,j = ∆xi,j∆yi,j in case of cartesian mesh). f̄ is the cell average value of f :

f̄i,j =
1

Ai,j

∫ yi,j+1/2

yi,j−1/2

∫ xi+1/2,j

xi−1/2,j

f(x, y) dxdy (3.9)

18

3.3.1 Uniform mesh

A 2D Gaussian wave of the following shape:

f(x, y, 0) =
1
4

exp
[−154.037(x2 + y2)

]
(3.10)

is propagated in a domain −0.5 < x < 0.5, −0.5 < y < 0.5. In a first attempt, the
speeds vx = 0 and vy = 1 are used. After 5 s, the results can be found in Fig. 3.8. To
obtain these figures, a 80×80 cartesian uniform grid is used. Time integration is performed
through a six-stage RK scheme with a very low time step to minimize the error due to time
discretization. The computed solution can easily be compared to the exact solution to get
the error. CE2 shows important errors both in terms of the location of the peak (which
should be in the middle of the domain) and symmetry (the computed solution is stretched
is the direction of the movement of the wave). For the classical 4 th order scheme (not shown
here), the peak is well located but shows a little dissymmetry. The solution given by the
IC3EC4 is in excellent agreement with the exact solution (circular isolines).

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(a) IC3EC4 – Computed solution

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.00042655

0.0019436

−0.0026075

−7.9125e−05

(b) IC3EC4 – error

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−3.1602e−05

−3.1602e−05

−0.018564

0.14822

−3.1602e−05

(c) CE2 – Computed solution

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.0039552

−0.016855

−0.1001

0.087197

0.0039552

0.024766

(d) CE2 – error

Figure 3.8: Advection of a 2D Gaussian wave

The amplitude of the peak is not well conserved by the explicit schemes. While the
true value is 0.25, the CE2’s peak is 0.1668, and CE4 gives 0.1695. The implicit IC3EC4
scheme gives a peak of 0.2465 which is rather close to the true solution.

19

3.3.2 Non-uniform meshes

Cartesian Grid

The schemes are now tested on a very stretched grid. Each direction is made of alternating
bigger and smaller cells by an aspect ratio of 3. A part of the mesh can be observed in
Fig. 3.9(a). The wave is advected during 10 seconds with a unit speed in the y-direction.
The present schemes show a good solution in 3.9(b) with a maximum error of 1.5 %. The
shape of the wave and its peak are not conserved by the two other schemes. They also show
a stretching in the direction of the movement. Curiously, the worst scheme is CE4. Not
only it gives a bad representation of the solution at t = 10 s, but it has advected during
14 periods instead of 10. The convection speed is higher. It is just due to the larger stencil
of CE4. It expects to have 4 cells of equal size and instead it gets 4 stretched cells which is
probably worse than for CE2 which gets two stretched cells. Nevertheless, the latter runs
for 12 periods.

−0.1 −0.05 0 0.05 0.1

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

(a) Part of the stretched mesh

−0.5

0

0.5

−0.5

0

0.5
0

0.05

0.1

0.15

0.2

0.25

xy

(b) IC3EC4

−0.5

0

0.5

−0.5

0

0.5
0

0.05

0.1

0.15

0.2

0.25

xy

(c) CE2

−0.5

0

0.5

−0.5

0

0.5
0

0.05

0.1

0.15

0.2

0.25

xy

(d) CE4

Figure 3.9: Advection on a 2D non-uniform cartesian mesh

The same kind of results as with the uniform mesh are retrieved but the error is intensi-
fied for the standard schemes. That is the reason why for this example, 3D plots are shown
instead of contour plot. The 3D plots emphasize the fact that the peak is not conserved.

In case of classical schemes, numerical waves appears as described in [11]. While the
physical wave is advected, spurious waves are generated by the spatial discretization. These
waves have high frequencies, a smaller amplitude than the physical wave, the same speed
but an opposite direction. These wave packets, also called wiggles, are a phenomenon
to avoid because their interaction with the physical wave may be unpredictable. They
can appear for any non-dissipative scheme which is the case of all centered schemes that
have symmetric coefficients. IC3EC4 is symmetric centered only on uniform meshes (see
section 1.2). So the present schemes are robust against such spurious waves.

20

Non-Cartesian Grid The schemes are now tested on a very irregular grid. To obtain
Fig. 3.10(a), each coordinate (x̄i,j , ȳi,j) of the uniform mesh has been moved according to:{

xi,j = x̄i,j + 0.02 sin(2πȳi,j)
yi,j = ȳi,j + 0.04 sin(16πx̄i,j)

(3.11)

This mesh is not cartesian and the present schemes are not designed to work on such a grid.
Anyway, it is interesting to observe their behavior.

This time the convection speeds are vx = 1 and vy = 0. As the wave has a small
radius, the isolines of the initial condition follow the mesh lines on Fig. 3.10(b) instead of
concentric circles. But it doesn’t matter since the result after advection can be compared
to f̄0. In Fig. 3.10(c-d), the results of two schemes are compared : the implicit scheme
gives pretty good results and preserve the peak amplitude. Only some isolines are a little bit
distorted compared to f̄0. On the other hand, the solution given by CE2 is really influenced
by the mesh: the isolines are also wavy and the solution is stretched in the direction of the
movement.

−0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a) Wavy mesh

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(b) f̄0

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.01914

0.22249

(c) IC3EC4 after 2 s

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.014749

0.14901

−0.0020343

(d) CE2 after 2 s

Figure 3.10: 2D Advection on a wavy mesh

21

3.4 Test of the procedure for diffusive flux

3.4.1 Empirical order

Let’s consider the function f of Eq.(2.4) and compute the empirical error knowing its true
derivative. The present procedure is compared to the classical central 2 nd order difference
scheme (CD2) which reads:

u′
i+1/2 =

ūi+1 − ūi

xi+1 − xi
(3.12)

The results are given in Fig. 3.11(a). For the highest h, the present procedure seems to
have a higher order since the slope of the error is steeper. Surprisingly, the error starts to
increase for smaller h. CD2 has the same behavior but for even smaller cell size.

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

h/L

er
ro

r

present procedure
CD2

(a) Comparison with classical difference scheme

10
−3

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

h/L

er
ro

r

step 1
step 2
step 3

(b) Error in the 3 steps

Figure 3.11: Empirical error of diffusive flux procedure

In order to investigate the reason of this increasing error for small h, the error for each
step is plotted on sub-figure (b). The first one (computation of ũ) reaches a lower bound
for small value of h which implies a higher error on ux and in the same order on ũx. This
can be explained easily since step 2 is computed as:

ux =
ũi+1/2 − ũi−1/2

hi
. (3.13)

ũ being computed with a bounded accuracy, the numerator of Eq. (3.13) is also lower
bounded while the denominator h continue to decrease leading to a higher error propor-
tional to 1/h. Actually, the slope in this region is equal to 1. The same thing happens to
CD2, as ū is bounded, the numerator of Eq.(3.12) is lower bounded and its denominator
decreases.

This bound is actually due to error tolerance on Matlab function quadl with which is
computed ū. This tolerance is set to 10−6 by default. As the error on ū can not go under this
tolerance, ũ is approximated with a lower bound and has consequences on the remaining
steps.

Considering the highest h, the first two steps are perfectly parallel and have an order
very close to 6. The third step does not present a straight line but its order is also very high,
between 5 and 6 depending on the lower bound threshold used on h/L.

3.4.2 1D diffusion equation

The diffusion equation Eq.(2.1) is also called the heat equation. In this case, ρ is the density,
cP is the heat capacity and k is the thermal conductivity.

22

Problem

A laterally insulated bar of length L initially has some temperature distribution given by
f(x). The ends at x = 0 and x = L are held fixed at 0◦C for all time. The temperature
profile versus time is now computed, T (x, t), given that

T (x, t = 0) = f(x) = exp
(
− 1

60
(x − 25)2

)
, (3.14)

with k
ρcP

= 2 cm2.s−1 and L = 50 cm.
In order to check the computed solution, the true solution is given by mean of Fourier

series:

T (x, t) =
∞∑

n=1

Dn sin
(nπx

L

)
exp

(
−n2π2t

L2

)
, (3.15)

where:

Dn =
2
L

∫ L

0

f(x) sin
(nπx

L

)
dx. (3.16)

Numerical Solution

For the first step, as the value of the temperature is known at the boundaries, only the
interior interfaces have to be computed with upwind schemes for the first interior faces.
Namely IC3EU31 for the left side and IC3EU32 for the right side. To compute the deriva-
tives (3rd step), fully upwind schemes are used at the boundaries.

The present procedure is compared to CD2 on Fig 3.12. They both gives good results
when the mesh is uniform but as soon as the mesh is stretched (as for the 1D advection)
CD2 gives really bad results.

23

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
exact solution
present procedure
CD2

(a) uniform mesh

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
exact solution
present procedure
CD2

(b) stretch = 1.1 (boundary layer type)

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
exact solution
present procedure
CD2

(c) stretch = 2 (alternating cells)

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
exact solution
present procedure
CD2

(d) stretch = 3 (alternating cells)

Figure 3.12: Numerical solution of heat equation, after 20 s

24

Chapter 4
Multi-Domain Treatment

For complex geometries, a mesh can be be divided in several blocks. As elsA is a parallel
software, the can be allocated to several processors. And as they can be of very different
sizes, each processor solves a subset of blocks. If a processor handles several blocks, they
are solved sequentially in one way and communicate by ghost cells that overlap the cells of
the neighbors blocks. A boundary between two blocks is sketched in Fig. 4.1. To give the
illusion of a unique mesh, each block is surrounded by two ghost cells (in dashed lines).
And after each iteration on the blocks, they exchange the cell-average values of their end
cells (dotted lines).

2

2

1

1

Join
Boundary jw e

n(1) − 2 n(1) − 1 n(1) n(1) + 1

−1(2) 0(2) 1(2) 2(2)

Figure 4.1: A Join Boundary

This strategy works well when the spatial discretization scheme is explicit but is in-
adequate for implicit schemes. The problem arises for the join boundary. As it is part of
the interior domain of the global mesh, it should be computed with the present implicit
centered scheme IC3EC4:

1. for block 1, IC3EC4 reads:

βw + j + γe = aūn(1)−2 + būn(1)−1 + cūn(1) + dūn(1)+1 (4.1)

2. for block 2, IC3EC4 reads:

βw + j + γe = aū−1(2) + bū0(2) + cū1(2) + dū2(2) (4.2)

25

Interfaces w and e also depend on the join boundary value to be computed. A matrix
formulation of the problem is sketched in Fig. 4.2 for a 3-blocks mesh:

+ +
+ + +

+ + +
+ + +

⊕ ⊕ ⊕
©©©

©©©
©©©

©©©
©©©

⊗ ⊗ ⊗
× × ×

× × ×
× ×

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

=

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

b11

b12

b13

b14

Figure 4.2: Matrix formulation of the multi-domain problem

where + is only known by block 1, ⊕ corresponds to the join boundary between blocks 1
and 2, © is only known by block 2, ⊗ corresponds to the join boundary between blocks 2
and 3, × is only known by block 3. The join boundaries x 5 and x11 are computed in both
blocks and the previous system can be transformed in the following equivalent pentadiag-
onal system:

+ +
+ + +

+ + +
+ + +

⊕ ⊕ ⊕
⊕ ⊕ ⊕

©©©
©©©

©©©
©©©

©©©
⊗ ⊗ ⊗
⊗ ⊗ ⊗

× × ×
× × ×

× ×

x1

x2

x3

x4

x5

x5

x6

x7

x8

x9

x10

x11

x11

x12

x13

x14

=

b1

b2

b3

b4

b5

b5

b6

b7

b8

b9

b10

b11

b11

b12

b13

b14

Figure 4.3: Pentadiagonal formulation of the multi-domain problem

The coupling between the blocks is done by the off diagonal elements in bold symbols.
There exists tens of algorithms that solve banded systems in parallel and, for instance,
ScaLaPack banded solvers could be called. This would work only and only if each proces-
sor handles one blocks. This is unfortunately not the case. When a processor solve several
blocks, the first one could make the call to the solver routine as well as the first blocks
handled by the other processors. But at one time, the blocks need to share informations
(the elements of the Schur matrix in case of the ScaLaPack Algorithm, see [3]) in order to
accomplish their computation. But as the other blocks of a processor have not been reached

26

(the processor is solving the first one), they can not call the routine and the computation is
blocked.

Not only the blocks are solved sequentially but this is done in one way: when a proces-
sor finished the computation in the first block, he then goes to the second block and never
come back to the first one. It means that a forward and backward strategy like the Thomas
algorithm is not usable.

With all these constraints, the system is impossible to solve: consider that the first
two blocks of Fig. 4.3 are solved by the same processor. The first blocks depends on
6 unknowns x1, . . . , x6 but has only 5 equations, the system is under-determined. It needs
block 2 (and also block 3 solved by another processor). But elsA will not allow block 2 to
give back informations to block 1 leading to the impossibility of solving the system because
of under-determined blocks. One could argue that elsA just have to be adapted, but actually
the loop on the blocks in really on top of the code and there is no way it could be changed.
Too much code would be impacted.

The only remaining solution is to decouple the blocks by removing the off diagonal
elements in Fig. 4.3. The blocks are then completely independent and can be computed
both in parallel or sequentially. There are two manners to achieve this.

4.1 Non-conservative strategy

The problem comes from the join boundary depending on w and e. As a solution, upwind
schemes (see section 1.3) can be used in the implicit part, namely IU22EC4 when the join
boundary is the last interface of a block and IU21EC4 when the join boundary is the first
interface of a block. This strategy leads to uncoupled tridiagonal systems. The blocks are
only linked in the explicit part of the scheme by the ghost cells (that changes the right-hand
side b). The structure of the system is now:

+ +
+ + +

+ + +
+ + +

⊕ ⊕
⊕ ⊕
©©©

©©©
©©©

©©©
©©©

⊗ ⊗
⊗ ⊗
× × ×

× × ×
× ×

x1

x2

x3

x4

x5

x5

x6

x7

x8

x9

x10

x11

x11

x12

x13

x14

=

b1

b2

b3

b4

b5

b5

b6

b7

b8

b9

b10

b11

b11

b12

b13

b14

Figure 4.4: Matrix formulation of the non-conservative strategy

As the join boundary is computed by two different schemes in the adjacent blocks, its
value is different in the two blocks. The upwind schemes are 5 th order accurate, so that the
difference is not so high but it can actually be problem dependent: it would not be difficult
to find a right hand side b that screws up the solution. Physically, the use of such an inexact
solver leads to the loss of conservativeness of the whole scheme.

This solution is tested to observe its behavior. The function f(x) = sin(4πx) is divided
in 3 blocks of 21 cells on the domain [0, 1]. The schemes are applied and the difference

27

between the values at the interfaces and the true values is computed on Fig. 4.5(a). The error
of the solution at the interfaces if of order 1.2.10−6 when the magnitude of f is 0.8660.
The relative error is very low. The solution is very satisfying.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

(a) log of the absolute error

0.32 0.325 0.33 0.335 0.34 0.345 0.35

10
−6

(b) Zoom on the first join boundary

Figure 4.5: Error of the non-conservative strategy

In Fig. 4.5(b), the value at the first join boundary is different for the two blocks. But
the difference is only 5.2.10−8. In this case there is a quasi-conservativeness which is
acceptable.

4.2 Use of an explicit scheme

The simplest solution would be to compute the join boundaries explicitly leading to the
following matrix structure:

+ +
+ + +

+ + +
+ + +

⊕
⊕
©©©

©©©
©©©

©©©
©©©

⊗
⊗
× × ×

× × ×
× ×

x1

x2

x3

x4

x5

x5

x6

x7

x8

x9

x10

x11

x11

x12

x13

x14

=

b1

b2

b3

b4

b5

b5

b6

b7

b8

b9

b10

b11

b11

b12

b13

b14

Figure 4.6: Matrix formulation of the explicit scheme strategy

A join boundary shares the same right-hand side in both blocks computed by mean of
ghost cells and so this strategy is conservative.

As there are two ghost cells on each blocks, there are 4 common cells and so can achieve
at most a 4th order accurate scheme. To get the highest accuracy, CE4 nu (e.g. IC1EC4) is
used. It takes the metrics of the mesh into account. This scheme has already been used in
Fig. 3.6 where it showed a very good behavior.

28

4.3 Comparison of the strategies

Two strategies have been developed: the first one has the highest order of accuracy but is
not conservative. Furthermore the schemes sided in the implicit part (IUEC family) have
a bad resolution (see Fig. 1.4). On the other hand the use of explicit schemes for join
boundaries maintains the conservativeness. Being limited by the number of ghost cells
available, the non-uniform version of CE4 is the highest order scheme available.

If the interior scheme is of order 4 (IC3EC2), then the second strategy is very satisfy-
ing: it is conservative, the order for interior domain and join boundaries is both 4 and the
resolution is almost identical (see Fig. 1.2). But if the interior scheme is of order 6, then
this strategy leads to join boundaries being computed with 2 order less than the interior
scheme which might provoke errors. On the other hand, the use of the IUEC family for
join schemes (1st strategy) has only one order less than interior domain but without the
guarantee of conservativeness.

Both solution will be tested in the next section, directly in elsA.

29

30

Chapter 5
Application in Computational Fluid
Dynamics

The present schemes and strategies have been implemented in the CFD software elsA 1.
This software aims at solving CFD problems for compressible flows around complex vari-
ous geometries such as airplanes, turbomachinery, helicopters, missiles, rocket launchers. . .
It was started in 1997 by ONERA (The French National Aerospace Research Establish-
ment) and is now co-developed with CERFACS and AIRBUS. elsA is an object-oriented
software written in C++ with core computation routines coded in Fortran.

5.1 Implementation in elsA

The Navier-Stokes equation in conservative form reads:

∂W

∂t
+

∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
= F , (5.1)

where W is the vector of conservative variables and F the convective fluxes:

W =

⎛⎜⎜⎜⎜⎝
ρ
ρu
ρv
ρw
ρE

⎞⎟⎟⎟⎟⎠ , Fx =

⎛⎜⎜⎜⎜⎝
ρu

ρu2 + p
ρuv
ρuw

(ρE + p)u

⎞⎟⎟⎟⎟⎠ , Fy =

⎛⎜⎜⎜⎜⎝
ρv
ρuv

ρv2 + p
ρvw

(ρE + p)v

⎞⎟⎟⎟⎟⎠ , Fz =

⎛⎜⎜⎜⎜⎝
ρw
ρuw
ρvw

ρw2 + p
(ρE + p)w

⎞⎟⎟⎟⎟⎠ , (5.2)

ρ is the density of the fluid, (u, v, w) the speed vector, p the pressure and E the internal
energy. The first element of these vectors corresponds to the continuity equation, the next
three to the momentum equations and the last one to the energy equation. For turbulent
flows computation based on RANS (Reynolds Average Navier-Stokes) up to four variables
can be added to the five previous terms.

The present schemes are implemented in elsA to compute the fluxes through the inter-
faces of a cell. There are several ways to do this (see [2]), two of them are implemented
in elsA:

• a divergence form: knowing W at the center of the cells (the bar ·̄ still denotes the cell
average value of a variable), Fx, Fy and Fz are computed. By applying the scheme
on each element of these vectors, one gets F̃x, F̃y and F̃z . This method requires the
interpolation of three vectors. The second way is computationally cheaper;

1Software Package for Aerodynamics Simulation, see http://elsa.onera.fr

31

• a skew symmetric form: the schemes are directly applied on W to get W̃ . Then
F̃x, F̃y and F̃z are explicitly computed.

Both ways are implemented and it is the responsibility of the user to choose between them.
Once F̃x, F̃y and F̃z are computed, the total flux passing through an interface between two
cells is given by the relation:

F = F̃xSx + F̃ySy + F̃zSz (5.3)

where Sx is the surface of the interface projected on direction x.
The “cost” of a computation with the present schemes can be estimated. Let’s consider a

mesh of n = im × jm × km cells and 3n interfaces. n can eventually be very high, several
millions for instance. The storage of the six coefficients for all the interfaces requires
18n memory words. Dimensional splitting is used, so that each direction can be handled
separately. If the flow is laminar and the fluxes are computed in a skew symmetric form,
the following systems have to be solved:

• 5 × jm × km tridiagonal systems of size im + 1;

• 5 × im × km tridiagonal systems of size jm + 1;

• 5 × im × jm tridiagonal systems of size km + 1.

For divergence form, the number of systems to solve would be three times higher. So all
these computations are expensive both in term of memory space and processor time.

To validate the implementation and the schemes, 2D computations are performed in
order to check the dimensional splitting. The behavior on non-uniform grids is also tested.
Finally, the domain decomposition strategies developed in the previous section are com-
pared.

5.2 Convection of a vortex

The test corresponds to a vortex convected downstream by a uniform flow of velocity U ∞.
The initial vortex is given by the stream function:

Ψ(x, y) = Γe
− (x−xc)2+(y−yc)2

2R2
c , (5.4)

where Γ is the vortex strength, (xc, yc) is the location of the vortex center and Rc controls
the size of the vortex. The resulting velocity distribution is obtained through the velocity
stream function relationship:

u = U∞ +
∂Ψ
∂y

, v = −∂Ψ
∂x

, Ω =
∂v

∂x
− ∂u

∂y
, (5.5)

where Ω is the vorticity. Γ is chosen so that the speed of the vortex is much more lower
than the mean flow speed to test the resolution of the schemes. The associated pressure
variation follows the radial momentum equation:

p − p∞ = − Γ2

2ρR2
c

e
− (x−xc)2+(y−yc)2

R2
c . (5.6)

A domain [0, 2L]× [−L, L] with (xc, yc) = (L, 0) is considered. The boundaries in x-
direction are periodic and y boundaries are slip walls. The vortex is convected by the flow
during a natural number of periods so that the final and initial state should be equivalent.

As another diagnostic tool, the enstrophy is defined as one-half the square of the vor-
ticity. This is an indicator of the shape of the vortex.

In the following computations, IC3EC4 is used for interior domain. The results are
compared with the Jameson scheme already implemented in elsA. This scheme is 2 nd order
accurate and is not design to work on non-uniform meshes. The results should be clearly
in favor of the present schemes.

32

Slip Walls

Figure 5.1: Domain of computation for the vortex convection

5.2.1 Euler Computation

After 5 periods of convection, the results are shown in Fig. 5.2. The present schemes give a
very good solution that perfectly matches the initial condition. The Jameson scheme shows
important deformations in the direction of the flow with the creation of counter-rotating
vortices behind the original vortex.

x

y

0.5 1 1.5 2

-0.5

0

0.5

rovx

1.1018
1.1016
1.1014
1.1012
1.101
1.1008
1.1006
1.1004
1.1002
1.0998
1.0996
1.0994
1.0992
1.099
1.0988
1.0986
1.0984
1.0982

(a) ρu - Jameson

x

y

0.5 1 1.5 2

-0.5

0

0.5

rovx

1.1018
1.1016
1.1014
1.1012
1.101
1.1008
1.1006
1.1004
1.1002
1.0998
1.0996
1.0994
1.0992
1.099
1.0988
1.0986
1.0984
1.0982

(b) ρu - present schemes

x

y

0.5 1 1.5 2

-0.5

0

0.5

rovy

0.0022
0.002
0.0018
0.0016
0.0014
0.0012
0.001
0.0008
0.0006
0.0004
0.0002

-0.0002
-0.0004
-0.0006
-0.0008
-0.001
-0.0012

(c) ρv - Jameson

x

y

0.5 1 1.5 2

-0.5

0

0.5

rovy

0.0022
0.002
0.0018
0.0016
0.0014
0.0012
0.001
0.0008
0.0006
0.0004
0.0002

-0.0002
-0.0004
-0.0006
-0.0008
-0.001
-0.0012

(d) ρv - present schemes

Figure 5.2: ρu and ρv after 5 periods of Euler computation

33

Enstrophy is a conservative quantity in two-dimensional inviscid flow. In Fig. 5.3, the
initial enstrophy is in dashed line. After 5 periods, the Jameson scheme gives a really poor
approximation of the solution while the present schemes solution is coincident with the
initial condition.

X

E
ns

tr
o

ph
y

w
/w

0

0.5 1 1.5
0

0.5

1

Computed solution
Initial solution

(a) Jameson

X

E
ns

tr
o

ph
y

w
/w

0

0.5 1 1.5
0

0.5

1

Computed solution
Initial solution

(b) present schemes

Figure 5.3: Enstrophy after 5 periods of Euler computation

5.2.2 Navier-Stokes Computations

The Navier-Stokes equations take into account the viscosity of the fluid. So the curve of
enstrophy should be damped by the diffusive flux:

X

E
ns

tr
o

ph
y

w
/w

0

0.5 1 1.5
0

0.5

1

Computed solution
Initial solution

(a) Jameson

X

E
ns

tr
o

ph
y

w
/w

0

0.5 1 1.5
0

0.5

1

Computed solution
Initial solution

(b) present schemes

Figure 5.4: Enstrophy after 2 periods of Navier-Stokes computation

With the present schemes, the curve is damped but the shape is conserved. The Jameson
scheme create a little dissymetry.

5.2.3 Non-Uniform grid

The vortex is now convected on the mesh Fig. 5.5. While the mesh is finner in the center
of the grid where the vortex is, alternating cells appears the x-direction with an aspect ratio
of 2.

34

x

y

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

Figure 5.5: Non-uniform mesh for vortex convection

In Fig. 5.6, the results are presented after one period. For Jameson, the contour lines
are very distorted because of the mesh and the convection speed is wrong since the location
of the vortex is shifted to the right. The present schemes give a good result.

x

y

0.5 1 1.5 2

-0.5

0

0.5

rovx

1.1018
1.1016
1.1014
1.1012
1.101
1.1008
1.1006
1.1004
1.1002
1.0998
1.0996
1.0994
1.0992
1.099
1.0988
1.0986
1.0984
1.0982

(a) ρu - Jameson

x

y

0.5 1 1.5 2

-0.5

0

0.5

rovx

1.1018
1.1016
1.1014
1.1012
1.101
1.1008
1.1006
1.1004
1.1002
1.0998
1.0996
1.0994
1.0992
1.099
1.0988
1.0986
1.0984
1.0982

(b) ρu - present schemes

x

y

0.5 1 1.5 2

-0.5

0

0.5

rovy

0.0022
0.002
0.0018
0.0016
0.0014
0.0012
0.001
0.0008
0.0006
0.0004
0.0002

-0.0002
-0.0004
-0.0006
-0.0008
-0.001
-0.0012

(c) ρv - Jameson

x

y

0.5 1 1.5 2

-0.5

0

0.5

rovy

0.0022
0.002
0.0018
0.0016
0.0014
0.0012
0.001
0.0008
0.0006
0.0004
0.0002

-0.0002
-0.0004
-0.0006
-0.0008
-0.001
-0.0012

(d) ρv - present schemes

Figure 5.6: ρu and ρv after 1 period on non-uniform grid

35

5.2.4 Multi-blocks Computations

The uniform domain is now separated into several blocks. The non-conservative strategy is
first tested on three cases in Fig 5.7. In (a), the domain is split into two vertical blocks, after
500 periods, the computed solution is really good compared to the initial condition. On (b),
the domain is also split into two blocks, but horizontally. As the vortex is now always on
two blocks, the effects of the non-conservativeness are clearly visible after 80 periods. And
on the 4 blocks domain of subfigure (c), these effects are sensible after 20 periods.

x

y

0.5 1 1.5 2

-0.5

0

0.5

rovy

1.8E-03
1.6E-03
1.4E-03
1.2E-03
1.0E-03
8.0E-04
6.0E-04
4.0E-04
2.0E-04

-2.0E-04
-4.0E-04
-6.0E-04
-8.0E-04
-1.0E-03
-1.2E-03
-1.4E-03
-1.6E-03
-1.8E-03

(a) 2 vertical blocks – 500 periods

x

y

0.5 1 1.5 2

-0.5

0

0.5

rovy

1.8E-03
1.6E-03
1.4E-03
1.2E-03
1.0E-03
8.0E-04
6.0E-04
4.0E-04
2.0E-04

-2.0E-04
-4.0E-04
-6.0E-04
-8.0E-04
-1.0E-03
-1.2E-03
-1.4E-03
-1.6E-03
-1.8E-03
-2.0E-03

(b) 2 horizontal blocks – 80 periods

x

y

0.5 1 1.5 2

-0.5

0

0.5

rovy

1.8E-03
1.6E-03
1.4E-03
1.2E-03
1.0E-03
8.0E-04
6.0E-04
4.0E-04
2.0E-04

-2.0E-04
-4.0E-04
-6.0E-04
-8.0E-04
-1.0E-03
-1.2E-03
-1.4E-03
-1.6E-03
-1.8E-03

(c) 4 blocks – 20 periods

Figure 5.7: ρv – Results of multi-blocks computations

With the grid shown in Fig 5.5, the results are better. Even if the x direction has
alternating size cells, the refinement around y = 0 allow the IUEC schemes to be more
precise and the effect of non-conservativeness less sensitive as shown in Fig. 5.8 on the 4
blocks configuration. For the same number of periods and blocks, Fig. 5.8(a) is a lot better
than Fig. 5.7(c). The effects of non-conservativeness are sensitive after 32 periods.

On the same times, the Jameson scheme gives worse solution, but even though this
situation is clearly not satisfying. The non-conservativeness of the global scheme is a
problem.

The conservative strategy is now tested for comparison. By using the explicit scheme
CE4nu on join boundaries, the results are a lot better as shown in Fig. 5.9 obtained after
100 periods. Even though the results are slightly less accurate than in a one-block con-
figuration where all the interior domain is computed with IC3EC4, the results are clearly

36

x

y

0.5 1 1.5 2

-0.5

0

0.5

rovy

1.8E-03
1.6E-03
1.4E-03
1.2E-03
1.0E-03
8.0E-04
6.0E-04
4.0E-04
2.0E-04

-2.0E-04
-4.0E-04
-6.0E-04
-8.0E-04
-1.0E-03
-1.2E-03
-1.4E-03
-1.6E-03
-1.8E-03

(a) 20 periods

x

y

0.5 1 1.5 2

-0.5

0

0.5

rovy

1.8E-03
1.6E-03
1.4E-03
1.2E-03
1.0E-03
8.0E-04
6.0E-04
4.0E-04
2.0E-04

-2.0E-04
-4.0E-04
-6.0E-04
-8.0E-04
-1.0E-03
-1.2E-03
-1.4E-03
-1.6E-03
-1.8E-03
-2.0E-03

(b) 32 periods

Figure 5.8: 4 blocks computation on non-uniform grid

better than with the non-conservative strategy since the computed solution is very close to
the initial condition after 100 periods.

x

y

0.5 1 1.5 2

-0.5

0

0.5

rovy

1.8E-03
1.6E-03
1.4E-03
1.2E-03
1.0E-03
8.0E-04
6.0E-04
4.0E-04
2.0E-04

-2.0E-04
-4.0E-04
-6.0E-04
-8.0E-04
-1.0E-03
-1.2E-03
-1.4E-03
-1.6E-03
-1.8E-03

Figure 5.9: 4 blocks computation with explicit scheme on join boundaries (100 periods)

On the figure 5.10, the initial ρv (solid line) for y = 0 is compared to the 4-blocks
configurations after 100 periods of convection in dashed line. The interior scheme IC3EC4
is of order 6, and CE4nu is used on join boundaries like Fig. 5.9. Even if the join treatment
has 2 order less than the interior scheme, the computed solution approximate very well the
initial solution so that the loss of accuracy is really small.

The conservativeness and the resolution of the join treatment appear to be a more im-
portant property than its order and formal truncation error.

37

0.5 1 1.5

-0.002

-0.001

0

0.001

0.002
Initial solution
order 6

x

ρ
v

Figure 5.10: ρv at y = 0

38

Conclusion

A family of high-order implicit schemes has been developed: centered schemes of order 4
and 6 used in the interior domain and various upwind schemes used for the boundaries.
They can directly be applied on convective terms and a procedure for diffusive fluxes has
been derived.

These schemes and procedure have been deeply tested on cases usually used in the
literature. These tests have been carried out in Matlab for its simplicity of use and speed of
development. They showed a good behavior.

Then, they have been implemented in a Computational Fluid Dynamics software to
compute the fluxes of the Navier-Stokes equations. This step required an intensive phase
of coding and the development of methods for multi-domain treatment mixing parallel and
sequential computations. The schemes have been tested on a vortex convection problem on
uniform and non-uniform grids. The present schemes clearly show a better representation
of the solution than the classical Jameson scheme. For multi-blocks configurations, the
conservativeness of the join treatment appears to be a more important property than its
formal order of accuracy. Nevertheless, the latter is still higher than classical schemes.

39

40

Acknowledgments

This thesis is submitted as part of the requirements of the International Master’s Programme
in Engineering Mathematics at the Department of Mathematics, Chalmers University of
Technology.

It has been carried out at CERFACS (European Center for Research and Advanced
Training in Scientific Computing) in Toulouse (France) in co-operation with UTC (Com-
piègne University of Technology). I was a member of the CFD (Computational Fluid Dy-
namics) team dedicated to aerodynamic simulation.

I would like to thank many people who helped me and supported me during these
six months:

• my supervisor Jean-François BOUSSUGE for always being so helpful despite his busy
schedule;

• Guilhem CHEVALIER and Thierry POINSOT, leaders of the CFD team who wel-
comed me in their research team;

• Serge GRATTON, senior researcher at the parallel algorithm team for his kindness
and help;

• Marc MONTAGNAC, elsA guru, who patiently answered all my questions about the
implementation of the present schemes;

• Guillaume PUIGT and Jean-Phillipe BOIN for carefully reading this thesis and their
very useful comments;

• all the people involved in the CFD team, especially my office mates, Yann, Florian
and Julien. The atmosphere is great and it was a daily pleasure to work with them;

• the computer support group members who solved all my (numerous) computer prob-
lems very quickly.

I also want to express my special gratitude to the people at the Department of Mathe-
matics, especially Ivar GUSTAFSSON, for their great teaching.

Toulouse, February 2006
Frédéric Sicot

41

42

Appendix A
Details of the derivation of the
schemes

A.1 General scheme

u is expanded into its Taylor series about point xi+1/2:

u(x) =ui+1/2 + u′
i+1/2(x − xi+1/2) +

1
2
u′′

i+1/2(x − xi+1/2)2

+
1
3!

u′′′
i+1/2(x − xi+1/2)3 +

1
4!

u
(4)
i+1/2(x − xi+1/2)4

+
1
5!

u
(5)
i+1/2(x − xi+1/2)5 + O(h6)

(A.1)

A.1.1 Left Hand Side

Setting hk = xk+1/2 − xk−1/2, the computation of the lhs gives:

ui−1/2 = ui+1/2 − hiu
′
i+1/2 +

1
2
h2

i u
′′
i+1/2 −

1
3!

h3
i u

′′′
i+1/2 +

1
4!

h4
i u

(4)
i+1/2

− 1
5!

h5
i u

(5)
i+1/2 (A.2)

ui+3/2 = ui+1/2 + hi+1u
′
i+1/2 +

1
2
h2

i+1u
′′
i+1/2 +

1
3!

h3
i+1u

′′′
i+1/2 +

1
4!

h4
i+1u

(4)
i+1/2

+
1
5!

h5
i+1u

(5)
i+1/2 (A.3)

So that the lhs of (1.6) becomes:

lhs =ui+1/2(1 + β + γ) + u′
i+1/2 (γhi+1 − βhi) + u′′

i+1/2

(
βh2

i + γh2
i+1

2

)
+ u′′′

i+1/2

(
γh3

i+1 − βh3
i

3!

)
+ u

(4)
i+1/2

(
βh4

i + γh4
i+1

4!

)
+ u

(5)
i+1/2

(
γh5

i+1 − βh5
i

5!

) (A.4)

43

A.1.2 Right Hand Side

To compute ū, (A.1) is integrated over the different cells:

ūi−1 =
1

xi−1/2 − xi−3/2

∫ xi−1/2

xi−3/2

u(x) dx =
1

hi−1

∫ xi+1/2−hi

xi+1/2−hi−hi−1

u(x) dx

=ui+1/2 + u′
i+1/2

[
−1

2
(2hi + hi−1)

]
+ u′′

i+1/2

[
1

3!hi−1

(
(hi + hi−1)3 − h3

i

)]
+ u′′′

i+1/2

[
1

4!hi−1

(
h4

i − (hi + hi−1)4
)]

+ u
(4)
i+1/2

[
1

5!hi−1

(
(hi + hi−1)5 − h5

i

)]
+ u

(5)
i+1/2

[
1

6!hi−1

(
h6

i − (hi + hi−1)6
)]

(A.5)

ūi =
1

xi+1/2 − xi−1/2

∫ xi+1/2

xi−1/2

u(x) dx =
1
hi

∫ xi+1/2

xi+1/2−hi

u(x) dx

=ui+1/2 + u′
i+1/2

[
−hi

2

]
+ u′′

i+1/2

[
h2

i

3!

]
+ u′′′

i+1/2

[
−h3

i

4!

]
+ u

(4)
i+1/2

[
h4

i

5!

]
+ u

(5)
i+1/2

[
−h5

i

6!

]
(A.6)

ūi+1 =
1

xi+3/2 − xi+1/2

∫ xi+3/2

xi+1/2

u(x) dx =
1

hi+1

∫ xi+1/2+hi+1

xi+1/2

u(x) dx

=ui+1/2 + u′
i+1/2

[
hi+1

2

]
+ u′′

i+1/2

[
h2

i+1

3!

]
+ u′′′

i+1/2

[
h3

i+1

4!

]
+ u

(4)
i+1/2

[
h4

i+1

5!

]
+ u

(5)
i+1/2

[
h5

i+1

6!

]
(A.7)

ūi+2 =
1

xi+5/2 − xi+3/2

∫ xi+5/2

xi+3/2

u(x) dx =
1

hi+2

∫ xi+1/2+hi+1+hi+2

xi+1/2+hi+1

u(x) dx

=ui+1/2 + u′
i+1/2

[
1
2
(2hi+1 + hi+2)

]
+ u′′

i+1/2

[
1

3!hi+2

(
(hi+1 + hi+2)3 − h3

i+1

)]
+ u′′′

i+1/2

[
1

4!hi+2

(
(hi+1 + hi+2)4 − h4

i+1

)]
+ u

(4)
i+1/2

[
1

5!hi+2

(
(hi+1 + hi+2)5 − h5

i+1

)]
+ u

(5)
i+1/2

[
1

6!hi+2

(
(hi+1 + hi+2)6 − h6

i+1

)]
(A.8)

44

So that the rhs of (1.6) becomes:

rhs =
1

hi+2

∫ xi+5/2

xi+3/2

u(x) dx

=ui+1/2(a + b + c + d)

+ u′
i+1/2

1
2

[
− a(2hi + hi−1) − bhi + chi+1 + d(2hi+1 + hi+2)

]
+ u′′

i+1/2

1
3!

[
a

1
hi−1

(
(hi + hi−1)3 − h3

i

)
+ bh2

i + ch2
i+1 + d

1
hi+2

(
(hi+1 + hi+2)3 − h3

i+1

)]
+ u′′′

i+1/2

1
4!

[
a

1
hi−1

(
h4

i − (hi + hi−1)4
)
− bh3

i + ch3
i+1 + d

1
hi+2

(
(hi+1 + hi+2)4 − h4

i+1

)]
+ u

(4)
i+1/2

1
5!

[
a

1
hi−1

(
(hi + hi−1)5 − h5

i

)
+ bh4

i + ch4
i+1 + d

1
hi+2

(
(hi+1 + hi+2)5 − h5

i+1

)]
+ u

(5)
i+1/2

1
6!

[
a

1
hi−1

(
h6

i − (hi + hi−1)6
)
− bh5

i + ch5
i+1 + d

1
hi+2

(
(hi+1 + hi+2)6 − h6

i+1

)]
(A.9)

A.1.3 Matrix formulation

By matching the terms of each derivatives in (A.4) and (A.9), one finds the constraints
(1.7)-(1.12). An easier way to describe these constraints is to find the solution of the linear
system Ax = b where A is:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 −1 −1 −1
−hi hi+1 hi + hi−1

2
hi

2 −hi+1
2 −hi+1 − hi+2

2

h2
i h2

i+1
1

3hi−1

(
h3

i − (hi + hi−1)3
) −h2

i

3 −h2
i+1
3

1
3hi+2

(
h3

i+1 − (hi+1 + hi+2)3
)

−h3
i h3

i+1
1

4hi−1

(
(hi + hi−1)4 − h4

i

) h3
i

4 −h3
i+1
4

1
4hi+2

(
h4

i+1 − (hi+1 + hi+2)4
)

h4
i h4

i+1
1

5hi−1

(
h5

i − (hi + hi−1)5
) −h4

i

5 −h4
i+1
5

1
5hi+2

(
h5

i+1 − (hi+1 + hi+2)5
)

−h5
i h5

i+1
1

6hi−1

(
(hi + hi−1)6 − h6

i

) h5
i

6 −h5
i+1
6

1
6hi+2

(
h6

i+1 − (hi+1 + hi+2)6
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.10)

The constraints are written by rows with increasing order of accuracy. The columns corre-
spond to the coefficients. Indeed the unknwon vector is x = (β, γ, a, b, c, d)� and the right
hand-side is given by b = (−1, 0, 0, 0, 0, 0)�. This approach enables us to easily com-
pute the coefficients of all the family: for the other schemes, the columns corresponding to
zero coefficients are removed. And as the order of accuracy decreases, the last rows of the
matrix are also removed, the same number as removed coefficients.

A.2 Centered Scheme

A.2.1 Coefficients of the IC3EC4 scheme

The coefficients are given by (A.11)-(A.16):

β =
h2

i+1 (hi−1 + hi) (hi+1 + hi+2)

hi−1 (hi + hi+1)
2 (hi + hi+1 + hi+2)

(A.11)

45

γ =
h2

i (hi−1 + hi) (hi+1 + hi+2)

(hi + hi+1)
2 (hi−1 + hi + hi+1)hi+2

(A.12)

a =
h2

i h
2
i+1 (hi+1 + hi+2)

hi−1 (hi−1 + hi) (hi−1 + hi + hi+1)
2 (hi−1 + hi + hi+1 + hi+2)

(A.13)

b =
h2

i+1

h2
i−1

(
2hi−1hi (hi−1 + hi)

(hi + hi+1)
3 +

(2hi−1 − hi) (hi−1 + hi)
(hi + hi+1)

2

+
h3

i

(hi−1 + hi) (hi−1 + hi + hi+1)
2 − hi−1h

2
i (hi−1 + hi)

(hi + hi+1)
2 (hi + hi+1 + hi+2)

2

+
hi (hi−1 + hi) (hi (hi + hi+1) − hi−1 (3hi + hi+1))

(hi + hi+1)
3 (hi + hi+1 + hi+2)

− h3
i

(hi−1 + hi + hi+1)
2 (hi−1 + hi + hi+1 + hi+2)

)
(A.14)

c =
h2

i (hi−1 + hi) (2hi−1 (hi + 2hi+1) + (hi + hi+1) (2hi + 5hi+1))
(hi + hi+1)

3 (hi−1 + hi + hi+1)
2

+
hi+1

hi+1 + hi+2
− hi (hi−1 + hi)h3

i+1

hi−1 (hi + hi+1)
2 (hi + hi+1 + hi+2)

2

− (hi−1 + hi)h3
i+1 (−hi (hi + hi+1) + hi−1 (3hi + hi+1))

h2
i−1 (hi + hi+1)

3 (hi + hi+1 + hi+2)

− h2
i h

3
i+1

h2
i−1 (hi−1 + hi + hi+1)

2 (hi−1 + hi + hi+1 + hi+2)

(A.15)

d =
h2

i h
2
i+1 (hi−1 + hi)

hi+2 (hi+1 + hi+2) (hi + hi+1 + hi+2)
2 (hi−1 + hi + hi+1 + hi+2)

(A.16)

A.2.2 Coefficients of the IC3EC2 scheme

This scheme is of order 4. As a = d = 0, the columns 3 and 6 of A are removed as well as
the last 2 rows so that the system becomes:⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 −1
−hi hi+1

hi

2 −hi+1
2

h2
i h2

i+1 −h2
i

3 −h2
i+1
3

−h3
i h3

i+1
h3

i

4 −h3
i+1
4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝

β
γ
c
d

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−1
0
0
0

⎞⎟⎟⎠ (A.17)

The coefficients are given by:

β =
h2

i+1

(hi + hi+1)2
(A.18)

46

γ =
h2

i

(hi + hi+1)2
(A.19)

b =
2h2

i+1(2hi + hi+1)
(hi + hi+1)3

(A.20)

c =
2h2

i (hi + 2hi+1)
(hi + hi+1)3

(A.21)

A.3 Upwind schemes

A.3.1 Coefficients of the IC3EU31 scheme

As a = 0, the last row and third column of A are removed so that the system becomes:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 −1 −1
−hi hi+1

hi

2 −hi+1
2 −hi+1 − hi+2

2

h2
i h2

i+1 −h2
i

3 −h2
i+1
3

1
3hi+2

(
h3

i+1 − (hi+1 + hi+2)3
)

−h3
i h3

i+1
h3

i

4 −h3
i+1
4

1
4hi+2

(
h4

i+1 − (hi+1 + hi+2)4
)

h4
i h4

i+1 −h4
i

5 −h4
i+1
5

1
5hi+2

(
h5

i+1 − (hi+1 + hi+2)5
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
β
γ
b
c
d

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−1
0
0
0
0

⎞⎟⎟⎟⎟⎠

(A.22)

The solution is given by:

β =
h2

i+1(hi+1 + hi+2)
(hi + hi+1)2(hi + hi+1 + hi+2)

(A.23)

γ =
h2

i (hi+1 + hi+2)
(hi + hi+1)2hi+2

(A.24)

b =
h2

i+1(hi+1 + hi+2)(5h2
i + 2hi+1(hi+1 + hi+2) + hi(7hi+1 + 4hi+2))

(hi + hi+1)3(hi + hi+1 + hi+2)2
(A.25)

c =
2h2

i (hi + 2hi+1)
(hi + hi+1)3

+
hi+1

hi+1 + hi+2
− hih

3
i+1

(hi + hi+1)2(hi + hi+1 + hi+2)2

− h3
i+1(3hi + hi+1)

(hi + hi+1)3(hi + hi+1 + hi+2)

(A.26)

d =
h2

i h
2
i+1

hi+2(hi+1 + hi+2)(hi + hi+1 + hi+2)2
(A.27)

47

A.3.2 Coefficients of the IC3EU32 scheme

As d = 0, the last row and column of A are removed so that the system becomes:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 −1 −1
−hi hi+1 hi + hi−1

2
hi

2 −hi+1
2

h2
i h2

i+1
1

3hi−1

(
h3

i − (hi + hi−1)3
) −h2

i

3 −h2
i+1
3

−h3
i h3

i+1
1

4hi−1

(
(hi + hi−1)4 − h4

i

) h3
i

4 −h3
i+1
4

h4
i h4

i+1
1

5hi−1

(
h5

i − (hi + hi−1)5
) −h4

i

5 −h4
i+1
5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
β
γ
a
b
c

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−1
0
0
0
0

⎞⎟⎟⎟⎟⎠ (A.28)

The solution is given by:

β =
(hi−1 + hi)h2

i+1

hi−1 (hi + hi+1)
2 (A.29)

γ =
h2

i (hi−1 + hi)

(hi + hi+1)
2 (hi−1 + hi + hi+1)

(A.30)

a =
h2

i h
2
i+1

hi−1 (hi−1 + hi) (hi−1 + hi + hi+1)
2 (A.31)

b =
h2

i+1

(hi−1 + hi) (hi + hi+1)
3 (hi−1 + hi + hi+1)

2

(
2h3

i−1 (2hi + hi+1)

+ 2hi−1 (2hi + hi+1)
(
5h2

i + 5hihi+1 + h2
i+1

)
+ hi (hi + hi+1)

(
10h2

i + 10hihi+1 + 3h2
i+1

)
+ h2

i−1

(
15h2

i + 15hihi+1 + 4h2
i+1

))
(A.32)

c =
h2

i (hi−1 + hi) (2hi−1 (hi + 2hi+1) + (hi + hi+1) (2hi + 5hi+1))
(hi + hi+1)

3 (hi−1 + hi + hi+1)
2 (A.33)

A.3.3 Coefficients of the IU21EC4 scheme

β = 0 and the system becomes:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 −1
hi+1 hi + hi−1

2
hi

2 −hi+1
2 −hi+1 − hi+2

2

h2
i+1

1
3hi−1

(
h3

i − (hi + hi−1)3
) −h2

i

3 −h2
i+1
3

1
3hi+2

(
h3

i+1 − (hi+1 + hi+2)3
)

h3
i+1

1
4hi−1

(
(hi + hi−1)4 − h4

i

) h3
i

4 −h3
i+1
4

1
4hi+2

(
h4

i+1 − (hi+1 + hi+2)4
)

h4
i+1

1
5hi−1

(
h5

i − (hi + hi−1)5
) −h4

i

5 −h4
i+1
5

1
5hi+2

(
h5

i+1 − (hi+1 + hi+2)5
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.34)

48

The coefficients are:

γ =
hi (hi−1 + hi) (hi+1 + hi+2)

(hi + hi+1) (hi−1 + hi + hi+1) hi+2
(A.35)

a = − hih
2
i+1 (hi+1 + hi+2)

(hi−1 + hi) (hi−1 + hi + hi+1)
2 (hi−1 + hi + hi+1 + hi+2)

(A.36)

b =
h2

i+1

hi−1

(
hi−1 + hi

(hi + hi+1)
2 − h2

i

(hi−1 + hi) (hi−1 + hi + hi+1)
2

− hi (hi−1 + hi)
(hi + hi+1)

2 (hi + hi+1 + hi+2)

+
h2

i

(hi−1 + hi + hi+1)
2 (hi−1 + hi + hi+1 + hi+2)

) (A.37)

c =
hi (hi−1 + hi) (2 (hi + hi+1) (hi + 2hi+1) + hi−1 (2hi + 3hi+1))

(hi + hi+1)
2 (hi−1 + hi + hi+1)

2

+
hi+1

hi+1 + hi+2
− (hi−1 + hi)h3

i+1

hi−1 (hi + hi+1)
2 (hi + hi+1 + hi+2)

+
hih

3
i+1

hi−1 (hi−1 + hi + hi+1)
2 (hi−1 + hi + hi+1 + hi+2)

(A.38)

d =
hi (hi−1 + hi)h2

i+1

hi+2 (hi+1 + hi+2) (hi + hi+1 + hi+2) (hi−1 + hi + hi+1 + hi+2)
(A.39)

A.3.4 Coefficients of the IU22EC4 scheme

γ = 0 and the system becomes:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 −1
−hi hi + hi−1

2
hi

2 −hi+1
2 −hi+1 − hi+2

2

h2
i

1
3hi−1

(
h3

i − (hi + hi−1)3
) −h2

i

3 −h2
i+1
3

1
3hi+2

(
h3

i+1 − (hi+1 + hi+2)3
)

−h3
i

1
4hi−1

(
(hi + hi−1)4 − h4

i

) h3
i

4 −h3
i+1
4

1
4hi+2

(
h4

i+1 − (hi+1 + hi+2)4
)

h4
i

1
5hi−1

(
h5

i − (hi + hi−1)5
) −h4

i

5 −h4
i+1
5

1
5hi+2

(
h5

i+1 − (hi+1 + hi+2)5
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.40)

The coefficients are:

β =
(hi−1 + hi)hi+1 (hi+1 + hi+2)

hi−1 (hi + hi+1) (hi + hi+1 + hi+2)
(A.41)

a =
h2

i hi+1 (hi+1 + hi+2)
hi−1 (hi−1 + hi) (hi−1 + hi + hi+1) (hi−1 + hi + hi+1 + hi+2)

(A.42)

49

b =hi+1

(
2hi−1 (2hi + hi+1)

2 + h2
i−1 (3hi + 2hi+1) + hi

(
6h2

i + 8hihi+1 + 3h2
i+1

)
(hi−1 + hi) (hi + hi+1)

2 (hi−1 + hi + hi+1)

− h2
i (hi−1 + hi)

hi−1 (hi + hi+1) (hi + hi+1 + hi+2)
2

+
hi (hi−1 + hi) (hi (hi + hi+1) − hi−1 (2hi + hi+1))

h2
i−1 (hi + hi+1)

2 (hi + hi+1 + hi+2)

− h3
i

h2
i−1 (hi−1 + hi + hi+1) (hi−1 + hi + hi+1 + hi+2)

)
(A.43)

c =
h2

i (hi−1 + hi)
(hi + hi+1)

2 (hi−1 + hi + hi+1) (hi+1 + hi+2) (hi + hi+1 + hi+2)
2 (hi−1 + hi + hi+1 + hi+2)(

hi+1 (hi + hi+1)
2 (2hi + 5hi+1) + (hi + hi+1)

(
h2

i + 8hihi+1 + 10h2
i+1

)
hi+2

+
(
3h2

i + 12hihi+1 + 10h2
i+1

)
h2

i+2 + (3hi + 5hi+1)h3
i+2 + h4

i+2

+ hi−1 (hi + 2hi+1 + hi+2)
(
2hi+1 (hi + hi+1) + (hi + 2hi+1)hi+2 + h2

i+2

))
(A.44)

d = − h2
i (hi−1 + hi)hi+1

(hi+1 + hi+2) (hi + hi+1 + hi+2)
2 (hi−1 + hi + hi+1 + hi+2)

(A.45)

50

Appendix B
TDMA

The present schemes requires to solve the system Aũ = Bū described in (3.1). Instead of
using i/2 indices for the interfaces, they are numbered from 1 to n so that an interior node i
(numbered from 1 to n − 1) has left interface i and right interfaces i + 1. For simplicity,
d = Bū is set.

The TDMA (Tri-Diagonal Matrix Algorithm) has 2 steps:

1. the first consists to forward sweep the matrix in order to obtain a matrix with two
diagonals, and so that the main diagonal is only made of 1. The algorithm starts by
setting:

P1 = γ1, Q1 = d1 (B.1)

Then β are removed in the subdiagonal and the main diagonal is made of 1 by com-
puting:

Pi =
γi

1 − βiPi−1
, Qi =

di − βiQi−1

1 − βiPi−1
, i = 1 . . . n − 1 (B.2)

For the last interface, one gets:

Qn =
dn − βnQn−1

1 − βnPn−1
(B.3)

And (3.1) becomes:⎛⎜⎜⎜⎜⎜⎝
1 P1

1 P2

. . .
. . .
1 Pn−1

1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
ũ1

u2

...
ũn−1

ũn

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
Q1

Q2

...
Qn−1

Qn

⎞⎟⎟⎟⎟⎟⎠ (B.4)

2. the second step is to backward sweep:{
ũn = Qn

ũi = Qi − Piũi+1, i = n − 1, . . . , 1
(B.5)

These steps are described in algorithm B.1. This basic algorithm can easily be improved
both in term of memory and processor time: in line 6 of B.1,an array can be avoided by
saving Qi in di since the rhs di is not needed in the next iterations. By saving d in ũ and

51

Algorithm B.1 TDMA
Require: the implicit coefficients β, γ, the rhs d = Bū

1: forward sweep
2: P1 = γ1

3: Q1 = d1

4: for i = 2 to n − 1 do
5: Pi =

γi

1 − βiPi−1

6: Qi =
di − βiQi−1

1 − βiPi−1

7: end for
8: backward sweep

9: ũn =
dn − βnQn−1

1 − βnPn−1

10: for i = n − 1 to 1 do
11: ũi = Qi − Piũi+1

12: end for
Ensure: ũ the interpolated value of u at the interfaces

then Q in ũ(in line 11, ũi only requires Qi), d and Q are not stored explicitly in a new
array.

The vector P only depends on the coefficients β and γ and so is constant through all
the computations (if the mesh is not moving). So it can be computed only once. And the
coefficients γ are not directly used in the further computations, so P can be stored in γ
saving one more array. And finally, the denominator of P and Q is the same and constant,
so it can also be computed only once. This require one additional array to store it. The final
algorithm is B.2.

Algorithm B.2 Memory-saving TDMA
Require: the coefficients β, γ, a, b, c, d, ū the cell-average value of u

> Pre-Processing (done only once)
for i = 2 to n do

mi = 1 − βiγi−1

γi =
γi

mi
end for
> then for each system to solve
compute the rhs (saved in ũ)
for i = 1 to n do

ũi = aiūi−2 + biūi−1 + ciūi + diūi+1

end for
forward sweep (Q is also saved in ũ, replacing the rhs)
for i = 2 to n do

ũi =
1

mi
(ũi − βiũi−1)

end for
backward sweep
for i = n − 1 to 1 do

ũi = ũi − γiũi+1

end for
Ensure: ũ the interpolated value of u at the interfaces

52

Appendix C
Modified Runge-Kutta Algorithm

The following algorithm is described in [5]. It is used to solve the ordinary differential
equation coming from the semi-descetized equations:

∂f̄i

∂t
= − v

hi
(fi+1/2 − fi−1/2) (C.1)

The Runge-Kutta formula takes f̄n
i and tn and calculates an approximation for f̄n+1

i at a
brief time later, tn + ∆t. It uses a weighted average of approximated values of the right
hand-side at several times within the interval [tn, tn + ∆t]. The algorithm is C.1.

Algorithm C.1 Modified Runge-Kutta of order p (RKp)

Require: f̄ known at times tn, a time step ∆t
f̄ (0) = f̄n

i

for k = 1 to p do
Compute the flux f̃ (k−1) using the algorithm B.2
Ck = 1

p−k+1

f̄
(k)
i = f̄n

i − Ck∆t
v

hi

(
f̃

(k−1)
i+1/2 − f̃

(k−1)
i−1/2

)
, ∀i

end for
f̄n+1 = f̄ (p)

Ensure: f̄n+1 known at time tn + ∆t

53

54

Bibliography

[1] Tim BROECKHOVEN, Sergey SMIRNOV, Jan RAMBOER, and Chris LACOR. Finite
volume formulation of compact upwind and central schemes with artificial selective
damping. Journal of Scientific Computing, 21(3):341–367, December 2004.

[2] Fotini Katopodes CHOW and Parviz MOIN. A further study of numerical errors in
large-eddy simulations. Journal of Computational Physics, 184:366–380, 2003.

[3] A. CLEARY and J. DONGARRA. Implementation in scalapack of divide-and-conquer
algorithms for banded and tridiagonal linear systems.

[4] L. GAMET, F. DUCROS, F. NICOUD, and T. POINSOT. Compact finite-difference
schemes on non-uniform meshes. application to direct numerical simulation of com-
pressible flow. International Journal for Numerical methods in Fluids, 29:159–191,
1999.

[5] Klaus A. HOFFMANN and Steve T. CHIANG. Computational Fluid Dynamics, vol-
ume I. Engineering Education System, 4th edition, August 2000.

[6] Marcelo H. KOBAYASHI. On a class of padé finite volume methods. Journal of
Computational Physics, 156(1):137–180, 1999.

[7] Chris LACOR, Sergey SMIRNOV, and Martine BAELMANS. A finite volume formu-
lation of compact central schemes on arbitrary structured grids. Journal of Computa-
tional Physics, 198(2):535–566, 2004.

[8] Sanjiva K. LELE. Compact finite difference schemes with spectral-like resolution.
Journal of Computational Physics, 103:16–42, 1992.

[9] B. P. LEONARD. A stable and accurate convective modelling procedure based on
quadratic upstream interpolation. Computational methods applied in mechanical en-
gineering, 19:59–98, 1979.

[10] T.K. SENGUPTA, G. GANERIWAL, and S. DE. Analysis of central and upwind com-
pact schemes. Journal of Computational Physics, 192:677–694, 2003.

[11] Robert VICHNEVETSKY and John B. BOWLES. Fourier Analysis of Numerical Ap-
proximations of Hyperbolic Equations. SIAM, 1982.

55

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

