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Abstract

We mainly study the unsteady axial symmetry flow of a Newtonian incompressible fluid
in a thin right cylinder whose radius is small with respect to its length. The flow is driven
by a given time-dependent pressure drop between the inlet and the outlet boundary. The
pressure drop is assumed to be small, therefore introducing creeping flow in the compliant
tube. We use Stokes equation to model the fluid and use the Navier equations for the
curved, linearly elastic membrane to model the wall. Due to the creeping flow and to
small displacements, the interface between the fluid and the lateral wall is linearized and
supposed to be the initial configuration of the membrane. We study the dynamics of this
coupled fluid-structure system in the limit situation when the ratio between the radius and
the length of the tube tends to be zero. Using the asymptotic techniques, we get effective
equations (reduced equation).

The applications of this model problem include blood flow in small arteries.
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Chapter 1

Introduction

In this thesis, we study blood flow through compliant vessels. This is a fluid-structure
interaction problem between the incompressible Navier-Stokes equation and the motion of
a compliant vessel wall. Modelling of the compliant vessel wall is a complex problem in its
own right. Even in the simplified case when the anisotropic behavior of the vessel wall is
ignored and angular deformations are neglected, in which case the linear Navier equations
for the curved membrane can be used to model the wall, the analysis of the nonlinear
coupling between the flow equations (Navier-Stokes equations) and wall behavior (Navier
membrane equations) is unsolved. We focus on understanding the coupling between the
Stokes equations (creeping flow) and the Navier equations for a curved elastic membrane.
This is a good model for the blood flow in small arteries. Indeed, it was noted in reference
[4] that in small arteries, viscous effects of blood become more important than the inertia
effects, and normally in small arteries and capillaries, the convective term, the nonlinear
term in Navier-Stokes equations is ignored and therefore Stokes equations without inertia
term are more appropriate.

1.1 The Physical Problem

Arteries can be regarded as hollow tubes with strongly variable diameters and can be
subdivided into large arteries, medium arteries, arterioles and capillaries. The main role

type diameter
large arteries 1—3cm
medium arteries —
arterioles —
capillaries 4 —10pum

Table 1.1: the diameter of arteries



of large arteries is to carry a substantial blood flow rate from the heart to the periphery
and to act as a 'compliant system’. They deform under blood pressure and by doing so
they are capable of storing elastic energy during the systolic phase and return it during
the diastolic phase. As a result the blood flow is more regular than it would be if the large
arteries were rigid. Then we have a fluid-structure interaction problem. The blood may
be considered a homogeneous fluid, with ’standard’ behaviour (Newtonian fluid), the wall
may be considered elastic (or mildly visco-elastic).

Indeed, the blood is not a fluid but a suspension of particles in a fluid called plasma.
Blood particles must be taken into account in the rheological model in smaller arte-
rioles and capillaries since their size becomes comparable to that of the vessel. The
most important blood particles are : red cells(erythrocytes), white cells(leukocytes) and
platelets(thrombocytes).

1.2 Some Terminologies

Axial symmetry All quantities are independent from the angular coordinate 6. As a
consequence, every axial section z=const remains circular during the wall motion.

Newtonian fluid A fluid that has a constant viscosity at all shear rates at a constant tem-
perature and pressure, and can be described by a one-parameter rheological model.

non-Newtonian Viscosity is not a constant and varies with strain rate.

Incompressible fluid A fluid in which the density remains constant for isothermal pres-
sure changes, that is, for which the coefficient of compressibility is zero.

no-slip Velocity of the fluid on the boundary is assumed to be zero.

steady flow means the time derivative of the velocity of the fluid is zero.

1.3 Blood Rheology

The branch of science which studies the behavior of a moving fluid and in particular the
relation between stresses and the kinematic quantities is called rheology.

Human blood is a suspension of cells in an aqueous solution of electrolytes and non-
electrolytes. By centrifugation, the blood is separated into plasma and cells. The plasma
is about 90% water by weight, 7% plasma protein, 1% inorganic substances and 1% other
organic substances. The cellular contents are essentially all erythrocytes or red cells with
white cells of various categories making up less than 1/600th of the total volume and
platelets less than 1/800th of the cellular volume. Normally, the red cells occupy about
50% of the blood volume.



When plasma was tested in a viscometer, it was founded to behave like a Newtonian
viscous fluid (Merrill et al.,1965) with a coefficent of viscosity about 1.2cp (Gregersen et
al., 1967; Chien et al., 1966, 1971). But when the whole blood was tested in a viscometer,
its non-Newtonian character was revealed.

The major features of blood flow in a viscometer are of Couette-flow type. In large
blood vessels, the blood is considered as a homogeneous fluid. But when blood flows in
capillary blood vessels, the red cells have to be squeezed and deformed and move in single
file. In this case, it would be more useful to consider blood as a nonhomogeneous fluid.

For biomechanical studies, the constitutive relations are crucial .

In order to provide a brief acquaintance with the complex field of blood rheology, we
introduce some basic notations from fluid mechanics. Assume T denotes stress tensor of
the fluid and D denotes strain rate tensor, defined as follows:

1
D= §(Vu + VUT)

which is symmetric. Assessing the dependence law of T from D is the field of rheology.
This relation is called the constitutive law and in many cases, it can be expressed by the
equation in the following form:

T=-PI+S

where I is the Kronecker tensor (identified by an identity matrix). In this case, tensor
PI is called the isotropic tensor, P is the pressure of the fluid, while S is the so called
extra-stress tensor.

If S is a linear function of the rate-of-strain tensor, i.e.

S = 2uD = pu(Vu + Vu’) (1.1)

the fluid is called Newtonian. The constant p represents the (dynamic) viscosity of the
fluid. The Newtonian law (1.1) is the simplest one which can be encountered in the study
of viscous flows.

A very important application of blood rheology in clinical medicine is to identify diseases
from any change in blood viscosity.

1.4 Physical meaning of various terms in the equa-
tions for the membrane

Inertia term p,h(¢) 8;25 and pwh(e)% is proportional to the acceleration of the vessel-
wall



term h(e)G(e)k(e) %2:; and h(flfgf) s’ is related to the longitudinal pre-stress state of

the vessl. It is indeed well known that in physiological conditions an artery is sub-
jected to a longitudinal tension.

he)E(e) _n°

> gz 18 the elastic-response function

term

1.5 Something about Navier-Stokes equations
We consider the Incompressible Navier-Stokes equations
Por +,0(u V)u+ Vp — 2V - (uD(u)) = pf
V-u=0

By introducing the kinematic viscosity v = %, then we can write above equation in the
form

0
altl (u-V)u+ vp—zv (vD(u)) = f
V-u=0
94 is the acceleration term, V - (vD(u)) is the viscous term, f is the external forces,

(u-V)u is the nonlinear convective term, if the fluid is highly viscous, the contribution of
this nonlinear convective term may be neglected. The key parameter which allows us to
make this decision is the Reynolds number Re which is a non-dimensional number defined
as

lu|L

v

Re =

where L represents a characteristic length-scale for the problem at hand and |u| is the
Euclidean norm of the velocity. For the flow in a tube L is the tube diameter. Nevertheless
in the situation where Re < 1 (for instance, flow in smaller arteries or capillaries) we may
say that the convective term is negligible compared to the viscous contribution and may
be discarded. Then we have the unsteady Stokes equations,

Ju
8t+ Vp—QV( D(u)) =f
V- u—O

Here, in this thesis, we consider flow in smaller arteries, so Stokes equation is more appro-
priate to model the fluid, since we have mentioned that in small arteries, the viscous effect
is much more important than the inertia effect. So Stokes equation without inertia term
is more appropriate here which is as same as the study of the steady flow. If we use the
complete Stokes equations to model the fluid, normally to model the structure, we will use
the independent ring model.



1.6 An introduction of the thesis

For a nice introduction to human cardiovascular blood flow modelling we refer to ’Math-
matical modelling and numerical simulation of the cardiovascular system’ written by Alfio
Quarteroni and Luca Formaggia. A mathematical and computational challenge in the
modelling of fluid flow in an elastic membrane is the coupling of fluid and elastic equa-
tions. One way to simplify the situation is to use asymptotic analysis and try to derive
asymptotics equations (hopefully reduced equations). These reduced equations might be
different for different size of the vessels.

In this thesis, we follow the work by Canié¢ and Mikeli¢ and study the asymptotic equa-
tions of small (capillary size) vessels. Starting from the coupled Navier equations for the
elastic membrane and the axisymmetric Stokes equation for the flow we derive rigorously
one asymptotic equation, from this equation, we can get a parabolic equation for the pres-
sure when the shear modulus is neglected or zero and a fourth order equation when the
shear modulus is not neglected.

For the two equations, We perform numerical simulations using CG1 and CG2 re-
spectly. We also study the full system numerically by using Comsol Multiphysics.

The thesis is organized as follows:

In section 2, we present the problem and introduce the coupled fluid-structure equations
both in strong and variational form. At the end of this section, we give a sketch of the proof
of the existence and uniqueness of the solution to FSI problems. In section 3 we prove all
the technical a priori estimates. In section 4 , we introduce the rescaled problem and state
and prove the a priori estimates for the rescaled quantities and introduce the appropriate
asymptotic expansions. In section 5, we use asymptotic techniques to derive the reduced
problem, a heat equation for the pressure, indeed there are two possibilities for the reduced
equation. For small and negligible shear modulus , the asymptotic equation is a standard
heat equation. For nonnegligible shear modulus, the asymptotic equation is a fourth order
equation. In section 6, we collect the convergence results in the main Theorem 4, where
we prove that the rescaled system converges to the reduced equation. In section 7, we
present a Comsol Multiphysics simulation of our blood flow in elastic membrane model
in 3D. In section 8, appendix, finally we collect some mathematical results and notations
which are needed in this work.



# | Artery Length(cm) | Area(cm?) | B(kg-s~2-cm?) | Ry
1 | Ascending Aorta 4.0 5.983 97 -
2 | Aortic Arch I 2.0 5.147 87 -
3 | Brachiocephalic 3.4 1.219 233 -
4 | R.Subclacian I 3.4 0.562 423 -
5 | R.Carotid 17.7 0.432 516 -
6 | R.Vertebral 14.8 0.123 2590 0.906
7 | R.Subclavian II 42.2 0.510 466 -
8 | R.Radial 23.5 0.106 2866 0.82
9 | RUlnar I 6.7 0.145 2246 -
10 | R.Interosseous 7.9 0.031 12894 0.956
11 | R.Ulnar II 17.1 0.133 2446 0.893
12 | R.Internal Carotid 17.6 0.121 2644 0.784
13 | R.External Carotid 17.7 0.121 2467 0.79
14 | Aortic Arch II 3.9 3.142 130 -
15 | L.Carotid 20.8 0.430 519 -
16 | LInternal Carotid 17.6 0.121 2644 0.784
17 | L.External Carotid 17.7 0.121 2467 0.791
18 | Thoracic Aorta I 5.2 3.142 124 -
19 | L.Subclacian I 3.4 0.562 416 -
20 | Vertebral 14.8 0.123 2590 0.906
21 | L.Subclacian II 42.2 0.510 466 -
22 | L.Radial 23.5 0.106 2866 0.821
23 | L.Ulnar I 6.7 0.145 2266 -
24 | L.Interosseous 7.9 0.031 12894 0.956
25 | L.Ulnar II 17.1 0.133 2446 0.893
26 | Intercostals 8.0 0.196 885 0.627
27 | Thoracic Aorta II 10.4 3.017 117 -
28 | Abdominal I 5.3 1.911 167 -
29 | Celiac I 2.0 0.478 475 -
30 | Celiac II 1.0 0.126 1805 -
31 | Hepatic 6.6 0.152 1142 0.925
32 | Gastric 7.1 0.102 1567 0.921
33 | Splenic 6.3 0.238 806 0.93
34 | Superior Mesenteric 5.9 0.430 569 0.934
35 | Abdominal II 1.0 1.247 227 -
36 | L.Renal 3.2 0.332 566 0.861
37 | Abdominal III 1.0 1.021 278 -
38 | R.Renal 3.2 0.159 1181 0.861
39 | Abdominal IV 10.6 0.697 381 -
40 | Inferior Mesenteric 5.0 0.080 1895 0.918
41 | Abdominal V 1.0 0.578 399 -
42 | R.Common Iliac 5.9 0.328 649 -
43 | L.Common Iliac 5.8 0.328 649 -
44 | L.External Iliac 14.4 0.252 1493 -
45 | L.Internal Tliac 5.0 0.181 3134 0.925
46 | L.Femoral 44.3 0.139 2559 -
47 | L.Deep Femoral 12.6 0.126 2652 0.885
48 | L.Posterior Tibial 32.1 0.110 5808 0.724
49 | L.Anterior Tibial 34.3 0.060 9243 0.716
50 | R.External Iliac 14.5 0.252 1493 -
51 | R.Internal Iliac 5.1 0.181 3134 0.925
52 | R.Femoral 44.4 0.139 2559 -
53 | R.Deep Femoral 12.7 0.126 2652 0.888
54 | L.Posterior Tibial 32.2 0.110 5808 0.724
55 | R.Anterior Tibial 34.4 0.060 9243 0.716

Table 1.2: the values of different parameters of 55 main arteries in the human arterial
system
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Figure 1.1: Connectivity of the 55 main arteries in the human arterial system.Qreproduced
by permission of Luca Formaggia 9



Chapter 2

Presentation of the problem

2.1 Presentation of the problem

We consider the unsteady axisymmetric flow of a Newtonian incompressible fluid in a thin
right cylinder whose radius is small with respect to its length, ¢ = 7, where r is the radius
and L is the length of the cylinder. For each fixed ¢ > 0, introduce €2, to be

Figure 2.1: Wall displacement

Q. ={r eRx = (rcosd,rsin¥, z),r <eR,0 < z < L}. (2.1)

We assume that the cylinder’s lateral wall ¥, = {r = eR} x (0, L) is elastic and that
its motion is described in Lagrangian coordinates by the Navier equations

he)E() [ o 8s°  if O’ *n°

b= _1_702(5 0z 52R2) +hie)Ge)k() 022 puh(e) ot?’ 22
__h(e)E(e) (9*s* o Of 0%s°

.= 1—o? ( 022 eR 0z ) puh(e) ot?”’ (23)

10



Parameters Values Parameters Values
E=7 0.04 Wall density:p, 1.1kg/m?
Characteristic radius:e R | 0.004 m Blood density:p 1050kg/m?
Dynamics viscosity:u 3.4 x 107*m?/s || Reference pressure: P, 13000 Pa
Young’s modulus:E 6000 Pa Normalized pressure drop: | £1/2

Shear modulus:G*k 5 x 10°Pa Wall thickness:h 4x10~*m

Table 2.1: the values

Where 7 is the radial displacement, s° is the longitudinal displacement, h = h(e)
is the membrane thickness, p, is the wall volumetric mass, £ = E(¢) is the Young’s
modulus, 0 < o < 1 is the Poisson ration, G = G(¢) is the shear modulus, k = k(g) is the
Timoshenko shear correction factor, F, is the radial component of the external forces, F,
is the longitudinal component of the external forces, coming from the stresses induced by
the fluid.

For the underlying blood-flow problem, the parameter values are presented in Table 2.1.
Throughout the paper we will assume the following relationships between the parameters
in the model.

Assumption 1 The Young’s modulus E(g), the wall thickness h(e), and the shear modulus
G(e)k(e) satisfy

h(e)E(e) > ¢, (2.4)
lim % — By € (0, +00), (2.5)
limeh(e)G(e)k(e) = Gy € [0, +00). (2.6)

e—0

Initially, the cylinder is filled with fluid and the entire structure is in an equilibrium.
The equilibrium state has an initial reference pressure Py and the initial velocity is zero,
i.e,v® = 0,t = 0. Denote the (membrane) stress tensor by 7T, then in the equilibrium
(unperturbed) state only the T, and Tyy components of the stress tensor T corresponding
to the curved membrane Y. are not zero. Their values are kG and e RA Py/h respectively,
where AP, is the difference between the reference pressure in the tube and the surrounding
tissue. For simplicity we assume that APy = 0, hence Tyy = 0 in the unperturbed state.
The pressure difference between the inlet and the outlet boundary of €2, creates a deviation
from the unperturbed state. We assume that the pressure drop is small compared to the
reference pressure and that the fluid acceleration is negligible compared to the effects of
the fluid viscosity u. Therefore, we can use the axially symmetric incompressible Stokes
system to model fluid velocity v* = (vZ,vj,vS) and the pressure perturbation p® from
the reference pressure Py. Assuming zero angular velocity, in cylindrical coordinates the
Eulerian formulation of the problem reads

11



0%ve 0% 10vE e op°
- T T YV Yr — . Qs 2.
,u( or? + 072 + r or 7"2) + or 0 xRy (2.7)

0%ve 0% 10vE op* ,
—u(aTQ +8z2 +;8T)+82 =0 in Q. xRy (2.8)

ov;,  Ov; vy _
87‘+8z+7_0 in Q. xRy (2.9)

These equations are coupled with the Navier equations for the curved membrane through
the lateral boundary conditions requiring continuity of velocity and continuity of forces at
the wall .. More specifically, we require

a £
Ve = az on L. xR, (2.10)
vy = 8; on Y. xRy (2.11)

and we set the radial and longitudinal forces F, and F, in (2.2) and (2.3) equal to the
radial and longitudinal component of the stress exerted by the fluid to the membrane

—F, = (p°I —2uD(v°))é, - & =p° —2u 3 T on Y. xRy (2.12)
r
8 € a €
=PI wD()G &= p(GE+ G o TxRe (1)

where D(v°) is the rate of the strain tensor, i.e., the symmetrized gradient of the
velocity

D(vF) = %(w + (Vo)) (2.14)

Note: v® = (vg, v§, v%).
We note that in this approximation the interface is identified with the reference elastic
wall .. The initial state of the structure is unperturbed and the initial velocity is zero

. Oonf  0s°

T T T o

and we consider the following boundary data, which give rise to a well-posed initial-
boundary-value problem for the limiting configuration (¢ — 0):

& £

=0 on X.x{0}. (2.15)

vi=0 and p°=0 on (N N{z=0}) xR,, (2.16)

v; =0 and p*=A(t) on (0% N{z=L}) xR,, (2.17)

885 =n"=0forz=0, s5=n"=0forz=L and VteR,. (2.18)
z

12



Notice that the pressure drop A(t) drives the problem. For simplicity we assume that
A(t) is smooth, ie. that A(t) € C§°(0,+00). Note that physically one should expect
nonzero displacements at the outlet boundary. The fixed outlet boundary, required in
(2.18) gives rise to the formation of a boundary layer. Periodic boundary conditions,
although natural in rigid-wall geometries, do not give rise to well-posed limiting problems
when compliant walls are considered.

We summarize the initial-boundary-value problem for the coupled fluid-structure in-
teraction driven by the time-dependent pressure drop between the inlet and the outlet
boundary.

Problem 1 (P?) For each fized € > 0, find a solution to (2.7), (2.8) and (2.9) in domain
Q. defined by (2.1), with an elastic lateral boundary X.. The lateral boundary conditions
are given by the continuity of the velocity defined by (2.10) and (2.11) and by the continuity
of the forces defined by (2.2) and (2.3), where F, and F, are defined in (2.12) and (2.13)
respectively. The boundary conditions at the inlet and outlet boundary are defined in (2.16)
and (2.17), and the behavior of the elastic wall there is prescribed by (2.18), the initial data
is given by (2.15).

2.2 Weak formulation
We define the test function space V¢ and the solution space V¢ as follows.

Definition 1 The space V¢ C H'(§2.)? consists of all azially symmetric functions ¢ such
that ©.|s., 0.ls. € HY0,L), ©,(0,7) = o.(L,7) = 0,0,(L,eR) = 0 for r < eR and
divp = 0 in Q..

Definition 2 The space V¢ consists of all functions (w,,w,,d,,d,) € H'((0,T);V?) x
(H'((0, L) x (0,))2 () H*((0, T); L(0, L))?) such that
Owy
1 ar +
r~tw, € L*((0,T) x Q)

Qw4 B =0 in Q. x Ry
0, (t,0) = da(t, 1) = dy (1, 1) = 0 on R,
w, =0 on (0Q: {2z =0}) x R,
w, =0 on (00 ({z=L}) xR,

wrz%andwzz%onng&.

SN B N )

Recall that for an axially symmetric vector valued function v = v,€, + 1,€,, we have

13



9Yr

D(¥) = 0 " 0
o) 0
Define the matrix norm | - | through the scalar product

U =trace(®- "), d, ¥ e R,

Then, for each fixed € > 0, the variational formulation and weak solution are defined
as follows.

Definition 3 The vector function (v, vs, 1, s°) € VE is called a weak solution of Problem
1 (P?) if the following variational formulation is satisfied:

2u | D(v%) : D(p)rdrdz
Qe
on° O, | h(e)E(e) (l 0s° ne

L
+‘€R/O {h(g)G(g)k(E) 92 02 T 1—o? eR oz T 2R)¥

h(e)E(e) ,0s° 0p, o On° N i
1 — o2 (82 92 2R 02 ©2) ¢ |,_.zd% +eRp,h(e) i |, (n°r + 5°02) |r=crdz
eR
= —/ A)psls=rrdr Vo = @6 + p.€, € V® (2.19)
0
with
vp = 8871 on Y. xRy (2.20)
VS = 8; on Y. xRy (2.21)
and initial conditions
on®*  0s°
== == : 2.22
n°=s 5 5 0 on X.x{0} (2.22)

After attaining the variational formulation, we can state the existence theorem for our
fluid-structure problem.

Theorem 1 For every € > 0, there exists a unique solution (vE,vs, 7%, s%) € V¢ to (2.19).

14



2.3 Existence and Uniqueness of P*

To show the existence and uniqueness of the solution to the coupled problem, we will em-
ploy the widely-used Galerkin approach.

There are three cases: see [*]
e A fized interface. There is no displacement or the displacements are infinitesimal, so
that the interface condition simply reduced to no-slip condition.

e A mowving interface. There exits large stress-induced displacements. And this is not
known generally and must be found as part of the solution process.

e The interface is in a situation between fized and mowving. This is the case we will
study here.

First we simplified our domain, which is easy to deal with. Let £2; be the fluid domain,
Q5 be the structure domain, I'y be the interface between €2; and €2y, i.e. I'g = 02 N 02s.

Q,

L T,

b

Figure 2.2: The domain for the fluid and vessel, 'y = 0€2; N 0€2,

Recall the coupled equations

( ) .
—H 8rr+8z7“+11“81{r 22)+831?I‘_0 wn QEXRF
%ve 2 1 0v3 op _ ;
< —H 6? +82 +7‘87>+8_pz_0 m QEXR"‘ (223)
”; =0 in Q. xR,
\ ( )
; B 92pe 92ne
F, = ) 56)(@% s ) + h(e) G (e)k() 2T — pyh(e) 2L,
A CLEC (,é 2 (25 + LGL) — puh(e)5F, (2.24)
| s*=n"=0, t=0
continuity of force,
Ove
{ —E=pt—2u%e on Yo xRy (2.25)
—F, = -5+ %) on Y. xRy
continuity of velocity,
e _ on°
{v;f:%s on Y. xRy (2:26)
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First we will introduce the whole coupled equations as a system. Let

t 87]5
Upp = / ’U:dt, Urp = ot = Uy = (uT17 U/'I‘Q)
0

t 886
Uy = / Uidt, Uzo = ot = U, = (uzla uz2)
0
Y U

Uy = (uT17 uzl)a U = (uTQa uz2); = U= (Ul,UQ)
In the future, we will multiply the coupled equation with ¢, which will also have the
same definition corresponding to the above.
So we have :

_ e __ 1
Up = Uppy, Uy = Uy
2,.€ t
6—77 — ul /,76 —_— / u 2dt
2 T Yr - T
ot 0

6285 . i /t
— = U, § = U,odt
ot? 22 0

continuity of the velocity : u., = Upe, U, = Uy

Note: u' = %. And we will use the same notation in the following sections.

The system becomes :
( 824! O / Ope .
(T T 12 ) L0 i Q. xR,
82/ du d -
. _“(ar“"'az”"‘iail)"‘p_o in xRy

V.uy =0 in Q. xRy
u;=0,1t=0

13 13 t
V Fe = M (Z [ ) + 52 uradt)) = puh(e)ul,
UTQ—uzQ—O, t=0

\
continuity of force,

—F, =p" - 2uau’1 on de X Ry
F _ _M(Burl + 8 ) on EE X RF
continuity of wvelocity,

{u'ﬂzurg on Y. xRy

Uy =Uzp on X x Ry

Variational formulation :
Bilinear forms
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(2.27)

( 3 a > !
Fr = =M (2 ([} u.adt) + s (Jy uradt) ) + () G()k(E) s (fy wradt) — puh(E)us,

(2.28)

(2.29)

(2.30)



® ai(u,p1) =24 fgs D(u1) : D(1)dS2e

Me)E(e) (o 0 /t 1 /t
F o (Chgs U, vt + (] weadt)) o

h(e)E(E) 0, [t 0p,s o 0, [
1 (g7 vad 52 ~ | waddea) i

M
! L{( ’
b (UQ’ @2) = SRpwh(&T) fo (uﬁ(pﬂ + uz2(pz2) dz
o (A(t),9x1) = [;" A@t)@ar|o=rrdr,
o a(u,p) = ai(ur, 1) + az(us, ¥2)
Find v € V¢ such that :
(uh, p2) + a(u, p) + (A(t), ¢1) =0, Yo € V* 9 31
u=0, t=0 (2.31)

boundary conditions
p°=0and ul, =0, on (0. N{z=0}) x Ry
p°=A(t) and u,y =0, on (02 N{z=L}) xRy
%(fot Uyodl) = fot Upodt =0, for z=0,Vt € Ry
fot Uyodt = fot upodt =0, for z= LVt € R,

(2.32)

The weak existence theory for (2.31) and (2.32) requires that a; (u1, 1), a2(us, ¢2) and
(A(t), ¢.1) are continuous (bounded) and that a;(u1, 1), aa(us, @2) are coercive (positive
definite). We have no doubt that operator a; is bounded and coercive, what’s more, we
have from next chapter, energy estimate, we can see that operator a, is bounded, now
the problem is that whether operator a, is coercive or not? We found that operator a, is
indeed positive definite for the case of small deformations (linear elastic approximation),
then by the Hydrodynamic Lemma, the © term will be small enough or vanish.

The rest steps are similar to the next section, the existence and uniqueness of the
solution to F'SI problems.

2.4 Existence and Uniqueness of the solution to FSI
problems

Here we will use the widely-used Galerkin approach to show the existence of a solution the
weak formulation (2.19).

17



First we enlarge the area near the boundary, then we set fluid domain as €2y, the lateral
wall as €9, these two meet on the surface Iy, i.e. [y = 91Ny, we denote that 'y = 92\,

FQ — 8Q2\F0
Governing equations
% — pAu = fi — Vp, in Q1 = x (0,7)
V.-u= 0, n Q1
u(z,0) = ug(x), in
{ %—As:fg{; in Q=0 x (0,7)
s(z,0) = sq, 5 (,0) =51

Transmission conditions, continuity of velocity and the force

{ u = %, on L'y, continuity of velocity,

uVu-ny —pny = Vs ng, on 'y, continuity of force.

The coupled equations as a system : Let u; = u, us = %

so that s(z,t) = f(f ug(x, 0)do + so(x).

The system becomes :

M Ay = fi — Vp,V-u; =0, in Q,

% - A(fot usdo) = fo + Asg, in Qa,
ur = ug(x), in U
ug = s1(x), in

The transmission conditions read :

Uy = ug, on [y
uVuy-ny —pny = f(f Vusg - nodo + Vsg - ng

Variational formulation :

We let
e Let Q be the interior of Q; U Qy,
*v= {U1:U2}7 V; = U|Qi,7; = 1,2,

o V={ve(H;Q))",V-v=0, in Q, v, =vy on [y}
Bilinear forms :

18
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(2.34)

(2.35)

(2.36)

(2.37)



ay(u1,v1) = /J,IQI Vu, - Vuidz,

as (g, v) = sz Vs - Viodz
(f,v) = (fi,v1)1 + (f2, v2)2 — aa(s0, v2) ,
(fivi)i = le Jividz,

(u,v) = (u1,v1)1 + (uz, v2)2

Find u = u(t) € V such that :

{ st)v):—i-{zéj(zﬁm) + ag( [, uedo, v2) = (f,v), Yo €V, (2.38)

The weak existence theory for (2.38) requires that a;(u,v), as(u,v), (f,v) are continu-
ous (bounded) and that a;(u,v), as(u,v) are coercive (positive definite).

We have :

a1 (ur, v1)] < Cilluslvlvelv

|as(uz2, v2)| < Collus|lv[[vally
By the Korn inequality we also have

a1 (ur,u1) > Csllua |}

az(us, uz) > Cullur[f5
We now consider the equation (2.38) as a parabolic problem,

u+Au=f, in @Q=Qx(0,7),
u=ug, on Qx{t=0} (2.39)
u=20, on 002 x (0,T)

Next step, we will show the existence of the weak solution to this problem, but we will
not give it in details, only give a sketch of it. Mainly here we will employ the widely-
used Galerkin approzimation. Let {wy}52; be orthonormal basis with respect to the inner
product in V.

Fix m and define

(2.40)

from this we get :

ay (um (1), wi) = 3121 ey (t)
@ (um (1), we) = Y1 € [y €x(0)do (2.41)

where ey, = ai(wg, w;), €2 = as(wy, w;)

19



and we define a new operator a as the following, ¢ (%) fo &k(o

a(Up (t), wi) = a1 (U (1), wE) + a2 (um(t), wg)

where u,, is the projection of u onto the m dimensional subspace V,, of V' spanned by
{wi}it ;. Since (up(t), wy) = &(t), termwise differentiation yields (u.,(t), wx) = &.(t), we

also put fx(t) = (f(t),wx), k=1,---,m
We obtain a linear system of ODE’s in (0, 7))

&) + 2000 ewe(t) + 205 eid(t) = fi(t),k=1,---,m
Pk (1) = &k (1),
2.42
£:(0) = (uo(), wg), (242
¢e(0) =0
The matrices My = (e};)mm and My = (€2,)mm are symmetric and positive definite and
&(t)
standard theory for ODE’s yields the existence of a unique vector £(t) = | : and
&m(t)

thus unique up,(t) = ., &(t)wy we then study the variational problem for fixed m

(U k) + @ty wi) = (f, wy) (2.43)

2.4.1 Uniform estimates—a priori estimates
We have that
mazo<i<r||tm ()| 2) + ([tmllL2(v x0,0)) + Ul L20vix0,my) < CULFI - [oll)

here the norms of forcing and intial data are || f||12(ax(0,r)) and ||uo||r2(o)
Proof :

Take the Galerkin equation :

(Ups Wi) + (U, wi) = (f, wi)

multiply by & (t) to get
(u:n’ Um) + @(Um, Um) = (f, Um)

by the coercivity
AUy Up) > Cllt|?,C > 0

1 1
[, um)] < S FUEag@) + 5 lem @)
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we get

d

mazosicr|[tm(t) 220y < C (Iluol + 17117, Gronwall Inequality
20y < € (Il + [1£]12). Poincaré Inequality

lum@lzz) + 2C1um @I < Crllum(@)lIz20) + Coll fllz2(),

Estimate for time derivative : Fix any v € Hy(Q) with ||| 51q) < 1 and write v =

vy + ve with vy € Span{wg}i,, (ve,wg) =0,k =1,---,m, obviously

lvillaze) < lvllaze) <1

we get

<u'Im7 U) = (u;na ’U) = (u',rm 7)1) = (f7 7)1) - a(uma Ul)

using continuity of a(-, -)and||v1|| < 1, and we can obtain

(s )| < CUIfl2@) + tmll 2 o)
= luplla-1@) < CUIfllz2@) + umll g2(0)

T
= / ||Ulm||H—1(Q)dt < C(“f”%?(n) + ”“0”%2(9))
0

By the a priori estimates

[t L2(v <01y < C,

|t L20v1 0,1y < C

|| | oo (22(2)x (0,1)) < O,

we conclude that there exists a (sub)sequence {up, }52; C {un}_; and a function v € V

Uy, = U, 1V,
! ! - 1
Uy — U, 0V

Identification of limit : Fix N and let

(2.44)

{vg(t)}_, is smooth in [0,7). Multiply the Galerkin equation by v as in (2.44) and

integrate from 0 to T',

/ (o), v(0) + alun(o),0(e) ) = / (o). vleNdo

21
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let m = my, and pass to the limit:
/0 ((t/(0),0(0)) + a(u(0), v(0)) ) do = /0 (f(0), v(0))do (2.46)
recall that u(0) = ug and from (2.46) we have
/0 (=(', u) + a(u, v))dt = /0 (F, v)dt + (u(0), v(0)) (2.47)
for all v as in (2.44) with v(T") = 0. From (2.45) we have
/0 (= (0, ) + @t )t = /0 (f, 0)dt + (u(0), v(0)) (2.48)

a limit passage in (2.48), using u,,(0) — ug in L?*(2) gives the result.

Uniqueness
Enough to show that for f = ug = 0, trivial solution, u = 0 is unique. Put v = u in (2.46)

[l oo 22 x 0y T T2y 0.y <O (2.49)

shows that v = 0 is a solution. u # 0 contradicts (2.49).
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Chapter 3

Energy estimates

The energy of this problem, obtained by using the velocity field as a test function in (2.19)
consists of the elastic energy of the membrane, the viscous energy of the fluid, and the
energy due to the external forces.

We define the time derivative of the elastic energy as :

dselastic _ L 5776 827’5 h(‘S)E(‘S) g 776 8778
dt N 5R/0 {h(g)G(g)k(g) 92 020t T 1- 02 (ER * 7)2R2) ot

Os 02s° o 0nf 0s° 32776 on° 025 Ost
+( 02 020t <R 0z Ot )) +p‘“h(8)( o ot T or ot )}dz (3.1)

which also can be expressed as follows.

Lemma 1 The displacements n° and s° satisfy
2 0s®

dselastic _ d r 8776 2 /
ol 5R2—dt{pwh(s) /0 (\ " o)z necere [ |G

N T AR (AL

2

L €
On dz

1— o2 0z ¢R eR 0z
I o | o 2)] dz} (3.2)

0z ¢€R 0z
We are interested in the oscillations of the membrane that are due to the time-dependent
pressure drop A(t). These occur at a different time-scale than the characteristic physical
time. In particular, as we will see later that the fluid velocity is greater than the velocity
of the displacement. This, in turn, gives rise to long-wavelength elastic waves. It is
these waves that we would like to keep in our asymptotic reduced problem. Therefore we
introduce a new time-scale

2 85
Nk
eR

+o(

t = wht,
where the characteristic frequency w® will be specified later, in order to include both the
waves that occur at the leading order time-scale as well as the oscillations of the membrane
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caused by a response of the elastic material. The pressure drop is supposed to be a function
of £.

From now on we will use the rescaled time ¢ and drop the tilde. By keeping the rescaled
time in mind and by using the expression for the elastic energy, we obtain the following.

Lemma 2 The solution (v, v, 0%, s°) to (2.19) satisfies the variational equality

RN T o s onF
R >28Rpw(ugu;w,m 121 o) + HECERIZEI 0
g)eR[ 0s° 1f 0s°
|l + o 1= D (125 + 15 )
on* s on* s°
Fol 2= R o —a<ugu;w ; H@H;(O,L))}}
—|—2,u/ | D (v HFrdrdz = / A(t)vi(t,r, L)rdr (3.3)

with vi = wfagt and v§ = w*% on B, x (0, 7).

We now investigate how the energy of the forcing term controls the elastic and the
viscous energy of the coupled fluid-structure interaction. We start to transfer and estimate
the right-hand side. Since we do not have no-slip condition for the velocity at the lateral
boundary, the situation is more complicated than in the derivation of Reynolds’ equation.
Furthermore, since on the LHS we only have the L? —norm of D(v¢) and not the L? —norm
of the Vv#, a standard approach based on using the Gronwall estimate and the L2—norm of
the velomty, P fQ |vé(t)|>rdrdz, is not sufficient to guarantee the correct order of magnitude
of the velocity. To get around this difficulty we transfer the right-hand side of (3.3) to a
combination of a volume term and a lateral boundary term by integrating (2.9)xz in Q,
and both sides we multiply by A(¢). Then we get the following identity

—/OERA(t)Uj(t, r, L)rdr = —/ #Ujrdrdz—i-aR/OL Alt )L v (t,eR, z)dz (3.4)

Then we get new variational equality by replacing the right-hand side by above equality.
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Proposition 1 The solution (vi,vs,n%, s%) to (2.19) satisfies the variational equality

3 d £ ang
w h(E)Q—dt{(w )2€R,0w(H ot HLQ (0,L) ” HL2 0,L ) + ME)G(QSRH@HZ(O,L)

E(e)eR[ ,0s° 1 ne 0s°
O S + Ll + 0 = (1 55 oy + 1 5 o)

on° s* .
+UH Oz &-RHLQ(OL (H HL2 0,L) HEHZ(O,L)H } + 2#/9 HD(U )Hiﬂ"dez

= —/ @v rdrdz+eR/ vi(t,eR, z)dz

Recall (2.10), vi(t,eR, z) = 657;.

We will use the following strategy :

e First, we add an auxiliary term

E‘ff A(t)%(/o 5 (1, 2)d2)

(3.5)

(3.6)

on both sides of equation (3.5), which helps to estimate the energy of axial displace-

ment.

e Second, since this is an equality, and our goal is to estimate the energy of the whole

system, the way to do this is like this: --- < LHS = RHS < ---

e The first quantity we estimate is the RHS of (3.5),

e The next step is to estimate the LHS of (3.5), and we begin by estimating the viscous

energy and the axial and radial displacements energy.

e After we have proved estimates for each part we can state the energy estimates for

the whole system.

e The energy estimate will now guide us to determine the leading order behavior of an

asymptotic expansion.

We have that k(¢)G(e) — %5 E(¢) is positive, and collect positive terms, we take

care

of the negative terms and then see which positive term we will need, so we do the following
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arrangement:

wfh<e>21dt{<wf>zez%pw(|\%H;(w I o) + (MG - PO er) T2

e o5+ 2l + 0= (125 o + }\3%||12<O,L>) +olgr ~ Zalkuon
ol 2 }+2u | D)2 rdrdz — = / 20i(t, 2R, 2)dz

tw 252 32 / §°(t, 2)dz = — / E#virdrderwfgzwA(t)% /0 Cehad (3

First we estimate the RHS of (3.7) and this is variant of Biot Law which will relate
the forcing term with the volume shear stress term in the viscous energy and the elastic
energy of the membrane.

Lemma 3 The following estimate holds:

1 0vg n ov;,

‘/Evirdrdz—w8€22R2%/oL s°(t, Z)dz‘ < R22L;€2 ( 8z) 20
Proof: /Q vyrdrdz
Tl eR 2
:/0 /0 vid(%)dz
= /OL vi(eR,t, 2)822Rde - /L /gR 22 aav:d dz
=w OL %Sts EQQRQdZ —/Q ;(a(;; Yrdrdz
= o vjrdrdz—w‘ngzRQ%/o s°(t, z)dz = —/Q g(?;f)?"drdz
:>| o, vi¢drdz—w5€22RQ%/ “(t, 2 dz| |/ 3 87°
:>| o, vyrdrdz — w 22R2 8t/ “(t, 2 dz| ‘/ ; 661;
< (/ETQTdez)l/z(/ (;(881; 881) ) rdr dz)l/2
1 81} -

A .
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The following estimate relates the viscous energy to the forcing term,

2R2\/_ 1 81} Ove 1,0v¢  Ouvf R*L
a0l GE+ 50| <3G+ 5 AWP,
2" or 0z £2(9.) 2" or 0z £2(9.) 81
Proof :
2R2\/_ 1 31} e EQRQ\/_ 1 81} ot
ADN3 (5, T 5 :( 221 V )
“ L2 .) LQ(QE)
Then using Cauchy-Schwarz Inequality, we can get the result. |

3.1 The viscous energy estimate

The viscous term in the equality, 2u [, ||D(v°)||%rdrdz, satisfies the following energy es-
timate:

1,005 ot |
o [ ||D<vf)||%rdrdz>2uH—< E 0| [ D) v
Q. 2 87' 82 LQ(QE) Q.
since
||D(U5)||§,~rdrdz
Qe
{'avf |l +‘av§ 2 +2H1(av 0ur) 2 }
:/j/ —_
or L2(Q:) T L2 0z L2(9) or 0z L2(Q:)
1 0v; Ov;
2uH (e, Oy
2° Or 0z £2(0.)

Throughout the text we will use the following notation:

t
A = mazocr < AP + [ 10,A(r)Par
0

3.2 Estimate of Axial Displacement s°

An estimate for the axial component of the displacement in the energy equality is given
by the following lemma.

Lemma 4 The z derivative of the axial displacement, %, satisfies the following estimate:

ol ;M+if/jA<f><%/ff<w>dz>df
> 50 a6~ L1500 ) i 1405
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Proof: First we have this equality
OA(T)

/OtA(T)((% /OL & (r, 2)d2)dr = A(t) /OL 255 (1, z)dz—/ot( - /OL #(r, 2)dz)dr

plug in this equality to the LHS, we get:

‘ (;E_i(_g ] H LZ(OL €;§2 (A(t) /OL s°(t, z)dz — /Ot 6137(_7—) /OL s(r, z)dsz)
- (H o TG0 [, 6
*1
422 &s(;/o —
*2

> MOEOR )~ il Dol

af < 6’1l;(L ()7;28(2})%2%%““'%1( ;m L)

|*2‘ 62;02232/ 0, A(T)|?dT + = /H— o) dr ]

Lemma 5 The axial displacement, s°, satisfies the estimate:

h(e)E(¢)eR s€ |2 2R2 [t o [t

m(_a)’ a L2(0,L)+ 27, A A(T)(E/ S (T,Z)dz)dT
h(e)E(e)o el b2 (1 - 0?)e5 RS ,

> 10 (110~ [ 15 )~ S O

Proof : First we have this equality
b OA(T)

/OtA(T)(%/OLSS(T,z)dz)dT:A(t)/oLzsg(t,z)dz—/o (%5 /OLSS(T,z)dz)dT
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by inserting this equality to the LHS, we get:

h(e)E(e)eR e2R? /L . t9A(T) /L .
o157 CO 2Rl o, * p (A0 | @z = [ S55[G 2)dear)

_ ‘M(HSEHE(O,M N i LA /OL s (t, 2)dz

2(1 —0?)eR \Lh(e)E(e)a )
*1
(1-0%)e*R? [P 0A(r) [V .
T IhOBE) /0 or /0 s Z)dZdi)

*2

h(e)E(e)o i
> o sy — sl = el }
(1 — o2)25RS

1| < 2Lh(e ) 2(e)o smazo<r<|A(T)[* + _HSEHiZ(o,L)
1 _ 2 6R6 t
92| < 2Lh2 o / 8, A(T)[2dr + = / HSEHZ(O,L)CZT n

3.3 Estimate of Radial Displacement n°

An estimate for the radial displacement is given by the following lemma:

Lemma 6 The radial displacement, n°, satisfies the estimate:

h(e)E(e 2 cR P L
%H E(t)HLQ(O,L) I / A(r )37_(/ ZWE(T,Z)dZ)dT
h(tf)E(:S) € 2 ! £ 2 (1 + U) 3R3L
/@Eﬁiﬁ(”@Lm@‘A "WLWMT)‘TWaaTWM”M

Proof : First we have the following equality:

0
we replace the second term by this equality, and obtain

£)oe 2 € " tOA(r) [*
%H”E(twm(o,m_TR(A(t)/O zns(t,z)dz—/o (%/0 Z?’]E(T,Z)dz)dT)

_ | he)E(e) N 2e2R%*(1 + o) L

- m(” (t)Hm(o,L)—WA(t)/O 21 (t,z)dzJ
x

22R*(1+0) [* 0A(r) [* .

+meEe Jy Cor )

*4
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h(e)E(e 2
> 0y = el = e}

2L(1 + 0)%*R*

1
%3] < ) ) magocr<t|A(T)* + —H"EH; 0.L)
2L1+ 24R4
Y| << 3h2(z 7) /|8A )[Pdr + 5 /Hn HL20L u

3.4 An energy estimate for the whole system

Lemma 7 The radial displacement n®, the axial displacement s, the viscous energy u [o_ ||D(*)| 5rdrdz,
and the energy induced by the pressure drop A(t) satisfy the following energy estimate

€ h l-o € 2 l-0 0st
N 45R {H ”LZOL) TH” (t)HLz(OaL) + o 'R’ 0z () L? oL)}
+,U/ / HD(UE)HFrdrdsz
0 Ja.
€ h(S)E 1—0 9 1—0 0s°
S w W/ {H ”LZ(OL H?? HL2(0L) + — > 2R2 o () , OL)}dT
R4 9 . 5(1+0-) 3R3L (1_0_)5R5} ,
+on /O A(t)Pdr + w { ohoEe + imeEes [ AOk (3.8)

By applying the Gronwall inequality to (3.8), we get an estimate which is crucial to deter-
mine the leading order behavior in asymptotic expansions.

Proposition 2 The solution (vE,vs, 1%, s%) to (2.19) satisfies the estimate:

0s®
25,

. hle) l—0o, . l1—-0o
ot L O gy + IOy + + 2R

L2(0,L)}
+,u// HD(’UE)”FTdeZdT

R'L (1+0)e3R3L (1 — 02)e®R® e
\{ 164 /‘A fr +w< EOEE LG )”A()“H}e (3.9)

To capture the elastic response of the membrane to the oscillations in the pressure drop
between the inlet and the outlet boundary, w® is chosen so that both terms on the right-
hand side are of the same order in ¢. We notice that the term which contains € determine
the equation when ¢ is small. Using the assumptions in Assumption 1, we get




We are now ready to obtain the a priori estimates in terms of . In the following text,
we denote all constants independent of € by C'. Define:

T
41 = " (Il + | (040 + 4 )ar)

and simplified the following notation

106 0y = | 106 rira

Proposition 3 The solution (vi,vs,n°,s%) to (2.19) satisfies the a priori estimates:

vE |2 ove ||2 e2\2 112
A { Y e L L
€ 2 € 2
200 @Hﬂ (t)||L2(0,L) < CWH [ (3.11)
L ovs ovs
€112
/IlvzlleQ dT</ ( 32 |2 ) el I QE)dT (3.12)
2 t ov; |2
/ (H—\ )d¢<20(—) 42 +2 [ ]| 52 o
v L2(9.) [ L2(@.)
t £ D)
w )2/0 ||6T35(T)||%2(0’L)dT+52R/0 8; (eR, z,7) L2(0,L)dT (3.13)
Proof :
1. From (3.9), we have
g2\ 2
/ Io Hm) s < c(S) Il
1 81} ov; B
L2(9) r L2, L2(0) H or ) L2(Q:) 1D )HLQ(QE)
2. Also from (3.9), we have
. h(e)E(e)o [1—0oy ...\ 2 1—0 5 o105, |2
“ 45R(1—02){ o ||77 (t)HLQOL)—i_ s - R Hg(t)‘ L2(0,L) S C( ) HAH
YN 2 2|05 € 2
= HT/ (t)HLz(OL R 82 ( ) 12(0,L) < Ch(E)E(E) HAHU

3. The third one comes from Poincaré Inequality.
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4. From the proof of the first inequality, we have

Pl ,ove ovs e2\2, 2
[ 2365 + 5 tr < [ 10t < () 141
then we get:

// /R( az : ?z E;; ((2,;) )rdrdsz 20( )HAH

The difficulties come from the term which is the product of two off-diagonal gradient
terms 88”; a;:. Estimate this term by using the boundary behavior of v*,0,v; = 0 at

z =0, L and we have:

Lo ek gue ovs
/0 / 82 8 rdrdz

(%Z I [ (G )dr)dz

5 a,UE
o “(eR, z)eRvi(eR, z)dz —/ / Vg, ( o )drdz

*1
ov; \ |eR 83 ER
_/0 (62)0 // rdez
we have used the relation in (2.11) v (eR z) = % and since
/ / 88 (—U—T 881) ))dez
z 2

using(2.9)

L
-, /0
8 E
/ (v Td?“ + / / rdrdz
0 82
now we can add this result and get:
2
/(15 )
L2(Q
ovs, R L 0s°
< —
\2/ 0z llL2(q.) dT+20( HA” / / 0 ot

For the last term in the above inequality, we have used the Cauchy—Schwarz inequality
and the result follows. [ |

L2(Q.)
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From (3.12) of Proposition 3, we can get the estimate for vZ , since

82
8

2
€

< C—|lAlly
1

L2(Q:.x(0,T))

2
13
"

L2(92:x(0,T))

then we add these two to (3.12), and we get the estimate for v}

2
€ 3
v 1|22 (0. x(0,1)) < C;||A||v

and always have this relationship in mind:

v =i +uid, ol = Rl [l

Now it is time for us to summarize the most important estimates in the following
theorem. Here we recall the asymptotic behaviour (¢ — 0) of assumptions (2.4), (2.5)
and (2.6) and use the same notation, Ey and Gy to denote the expressions % and
G(e)k(e)h(e)e respectively. Thses estimates will now be used in the determination of the

asymptotic expansions.
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Theorem 2 The solution (v5,vs,n°%,s%) to (2.19) satisfies the a priori estimates:

1
g||77 )l z200,0) < CllAlly (3.14)
1
g”ss(t)”m(o,L) < ClA]ly (3.15)
0
H - <Al (3.16)
12(0,L)
< Ol Al 3.17
H o <O (3.17)
52
<o 4], 3.18
87" L2(Q%(0,T)) 1 14l ( )
5 2
L <=l (3.19)
or 1L2(9:x(0,1)) U
8’05 82
< C—||4]f, (3.20)
or lL2(Q.x(0,1)) 7
ove g?
< C—||A]f, (3.21)
0z llL2(9.x(0,1)) 1
Ove g?
< C—||Alf, (3.22)
0z 1lL2(Q.x(0,T)) 7
> <ol (3.29)
0z llzzex(01) v '
Vil 220 x(0,7) _||A||v (3.24)
5
[VEl[r2 (0. x(0,7) E”A”v (3.25)
52
0¥ L2020 x (0,1) ;||A||,, (3.26)
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Chapter 4

The rescaled problem and asymptotic
expansions

4.1 The rescaled problem

In order to study problem P° when ¢ — 0, it is more convenient to use a rescaling which
maps domain €2, to a fixed domain 2 = {2; corresponding to € = 1. This, in turn, rescales
the variables and their derivatives in the following manner.

QE — Ql e=1 (41)
v® — v(e)
v = vie, + vie, = v(e) = v(e), €, + v(e),E,
Define new variable: (y, z) := (er, 2) Er = r = —y,

Y =
New scaled functions: v(e)(r, z) = v°(er, 2) = v*(y, )
Derivative: %(vf(y, z)) = %(U‘E(ﬂ“, z))g—; = %a@( (5) (r,2))

Let v(¢) be an axially symmetric function defined in Q. € R®, v(e) = v,(€)é, + v,(¢)e,,
Q= Ql

The rescaled incompressible Stokes’ equations (2.7), (2.8) and (2.9), defined on Q2 xR,
read

1 0%v(e), 0%v(e), 110v(e), 1 wv(e), 10p(e)
WG o tErar TE ) e = 44)
1 %v(e),  0%(e), | 110v(e), op(e)
B <5_2 o2 "o 2 o ) T T 0 (4:5)
. 10v(e), Ov(e), 1lwu(e),
div.v(e) = - 8(7“) + 8(2:) + . (r) =0 (4.6)
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since the quantities defined on the lateral boundary are invariant under this scaling, we
use the same notation for the wall displacements of the rescaled problem as for the original
problem, namely, n° and s°. The lateral wall’s motion is described in Lagrangian coordi-
nates by the Navier equations, and recall that we have rescaled the time, and still we use

the same symbol t, we have

h(e)E(e) [ o 0s°  nf *n et Py
1—o02 (5R 0z €2R2) + hie) Gle)k(e) 0.2 (E),MQ ot?’
h(e)E(e) 10?s* o Onf et 0%s°
1—o0? ( 022 eR 0z ) puh(e) u? o2’

F,=-

F, =

The lateral boundary conditions read:

g2 onf
v(e)r—; 55 O Y xRy
2 €
v(e), = %a;t on Y xR,
—F. =p(e) - 21&181)(8),» on Y xRy
e Or
_p, = (2 [ 10E)y s R,

0z e Or
where D.(v(€)) = 3(Vo(e) + (Vu(e))T). ie. if ¥ = 4,6, + 1,€,,

1 9y 1( oY, 10,
cor 0 3 (W + ;W)
D.(¥) = 0 é% 0
1 (0 | 100 o,
5( oz T & or ) 0 Dz
The initial conditions read:
. . On° 05

=== =0 on X x{0}.

The boundary data :

v(e), =0 and p(e)

=0 on (02N{z=0}) xRy,
v(e)y =0 and p(e) = A(t)

on (0QN{z=1L}) xRy,
os =n"=0forz=0, ss=n9"=0forz=L and VieR,.

0z
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(4.7)

(4.8)

(4.9)
(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
(4.15)

(4.16)



4.1.1 Weak formulation
We define the test function space V' and the solution space V as following.

Definition 4 The space V. C H'(Q)? consists of all azially symmetric functions ¢ such
that ©,|s, 0.l € H'(0,L), ©,(0,7) = o.(L,7) = 0,0,(L,R) = 0 for r < R and div.p =
0 in Q.

Definition 5 The space V consists of all functions (w,,w,,d.,d,) € H'((0,7);V) x
(H'((0,L) x (0,7))*( H*((0,T); L*(0, L))?) such that

1 10 4 O 4 18 =0 in QX Ry
(er)'w, € L*((0,T) x Q)

dy(t,0) =d.(¢t,L) = d.(¢t,L) =0 on R,
w, =0 on (0QN{z = 0}) x R,

wy, =0 on (02N {z=L}) xR,

— &2 9dr — &2 9d,
r = andwz—u 5 on X X R,

DY X AN

Then rewriting variational equality (2.19) in rescaled variables, multiplying (2.19) by
¥(t), and integrate on Q x (0,7) we obtain the variational formulation of the rescaled

problem
on° 0, | h(e)E(e) o 0s°
//{ 8)3 0z * 1—o02 (eRaz
h(e)E(e) ,0s°0p, o O
2R2)g0 1— o2 (az 0z eR 0z 9z Y7 ) |T:Rw(t)d2dt

P [t
#rn@ 5 [ EU [T, + o)ttt

eélastic(nga 86: ®, % E)

+

1 —
spressure(A’ 2 w) = / / szw Tdet

0@, 0 05¢) = 2u / / D.(v(2)) : D (@) (t)rdrdzds

Definition 6 (Weak formulation of the rescaled problem P(g)) (v(€),,v(€),,n%, %) € V is

a weak solution of problem P(g) if the following variational formulation is satisfied:
e}luid(v(‘g)’ P w; E) + eclzlastic(ng’ 85’ Ps w; ) 6]1)7'8381”'6( ) P w)’ VQO € ‘/’ Vw € C(R+)

The initial conditions at the lateral boundary are:

on®  0s°

ot ot

€ £ __

n=s

=0 on ¥ x {0}
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Later we will also need the weak formulation which includes the pressure. For this
purpose we consider the test functions ¢ which is not divergence-free. Namely denoted by

Vdivsv(s)yéo = {(P € HI(Q)3|<P is azial symmetry, (pr‘Ea QOZ‘E € Hl(oa L)a
@:(L, R) = ¢r(L, 1) = ¢, (0,7) = 0}

Then the weak formulation of the problem, cast in terms of the velocity and pressure,
reads as follows.

Definition 7 (Weak Formulation of P(c) in the pressure-velocity form) Vector function
(v(€)r,v(€),, 1%, 8°) €V and p(e) € L*(Q x (0,T)) form a weak solution of problem P(g) if

agoz 10p, 1o
1 _——
€ fuia(v(€), @, Y3 €) / / £l e o + - V() rdrdzdt

+€ila5tic(77 75 )y Ps w’ ) s;rlJressure( » s w)’vw € VdiveU(S);ﬁO and vw € C(R+)

4.1.2 Energy estimates

Now we start to derive the energy estimates for the rescaled problem, which are crucial
to determine the asymptotic expansions. We can now use the estimates from the previous
section and we observe that we only need to change the terms which are rescaled. We have
the following changes which inherit from the Proposition 3, write down those which are
very important for the future use.

(=

From (4.17), we get the estimate for v(e),,

n Hgav(e)r

e Or + Hav(g)z

2
€
< C—||A]l, 4.17
i e @

)L2(Qx(o,T)) =

3
g
[v(e)rll 2@x(0,1)) < C;||A||U

and (4.17) is the only equation we can find to estimate v(¢), more precisely, even if we
can use Poincaré Inequality to estimate it just like what we have done for v(g),. The
other estimates are straightforward consequences from Proposition 3. We just have to
compensate for the rescaling in those terms which have derivative of r, we state these ones:

ov(e), el
< C—||A]], 4.18
or llr2@x(0,1)) ,u” I ( )
ov(e), g3
< C—||A]l, 4.19
or llr2@x(o,1) ,u“ I ( )
ov(e) o
< C—||A]l, 4.20
or llL2x(0,1)) ,u“ I ( )
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Since now we have the estimates for v(¢), and v(¢),, and recall v(e) = v(e),€, +v(¢g) €,
then we have

2
£
lv(e) |l 2@ 0,m)) < CE”AHv

Here we summarize the results which we will use for the asymptotic expansions in order
to determine the leading order terms.

Theorem 3 The solution (v(€),,v(€),,p(e),n%, s°) of the rescaled problem as stated in
Definition 6 satisfies the following estimates

3

lv(e)rllz2ax(0,1)) < C%HAHU (4.21)
52

llv(€) 2]l 2(ax 0,1 < C;“A”v (4.22)
6.2

lv(e)lL2@xo,r) < C;HAH” (4.23)

lp(e) | L2(ax0,r)) < CllAll (4.24)

1n° ()]l 220,y < Cel| Al (4.25)

[[s° ()| 20,) < Cel|All (4.26)

4.2 Asymptotic expansions

Since now we have uniform estimates for (v(¢),, v(€),, p(€), n%, s°), which are valid for their
time derivatives as well, here we call this vector X¢, i.e. X® = (v(¢e),,v(€), p(e), 1%, 5°)
which will be specified later in the chapter of convergence theorem. We can define the
correct asymptotic expansions for X*. The usual difficulty is to determine the leading
order term of €. In general, they follow from the a priori estimates, but here we did not
follow the a priori estimates strictly to determine the leading order term for s*. We have
seen 7°, s° have the same estimate, but we observe that in our Navier equations for the
elastic curved membrane, if we set the same leading order term, it will not lead our goal
and they do not match each other, so we use the following a priori estimate for s since
0 < & < 1, we have the following estimate from (4.26):

Is*)ll20.0) < Cll Al
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Asymptotic expansions I

vy = = > ei(z, 7, 1), (4.27)
p(e)(z,m,t) = 225%%ATJL (4.28)
n(z,t) = gzgémgxy (4.29)
s°(z,t) = giéfgix (4.30)

and we have another asymptotic expansion which is also feasible and more compatible
to the energy estimates we have used.
Asymptotic expansions II

v(e)r(2,7,t) = ZQNE%x%nﬂ’ (4.31)
v(e).(z,m,t) = %M el (2,7, 1), (4.32)
p(e)(z,r,t) = Z;eipi(z,r,t), (4.33)
n(zt) = ;;gini(z,t), (4.34)
$(z,t) = ggisi(z,t), (4.35)

In the following chapter we will show the two ways to get the reduced problems, the
differences between them are v(¢),. But both ways lead to our goal. And I feel Asymptotic
expansions II is better than Asymptotic expansions I no matter from what point.
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Chapter 5

The reduced problem

5.1 The reduced problem P

5.1.1 Using the Asymptotic Expansions I to get the reduced

equations of Stokes equations

In this section, we will use asymptotic expansions to derive the reduced problem. As we

will see it will be second-order accurate in €.

We derive the effective (reduced) equations, second-order accurate in e, which hold for

small €.
e Insert (4.27) and (4.28) into (4.4):

2,920 2,1 2,2 2 52,0
wle (81)7, v, 0% ) 5 € (81}7«
= +e—L+e + o) e = +
g2 [ W\ or? or? or? W\ 022

1 g2/  ovl  ,0v2 1 &%/, L 9o
+;-;(8;+88;+6 a;+---)—T—2-;<v,+sv,+evr+---)
1eop® = opt | ,0p° )

- =0

6(87' +€(‘3r Te 87‘+

we collect the terms of the same order starting from the lowest order:

op°
-1
. — =0
¢ or ’
2,,0 1 0 1 1
KR _(8% +_6vr _ 3)4_%:0’
or2 r or r? or
o%vl  1ov! 1 op?
1 r r 1
- it P
¢ ( Or? + r Or TQUT) + or ’
2 _(3%3 10y vy LUQ) ap°
’ or2  r or 0z2 r2’7
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T
—8z2 + “ e

(5.1)
(5.2)
(5.3)

(5.4)



From (5.1), we get

P’ =1°(1).
e Insert (4.27) and (4.28) into (4.5)

(5.5)

ple? 0% %l ,0%? , e2/0%) 9%l 0%
= 5(87"2 +887‘2 Te or? * .”)+6 .;(822 +8622 Te 022 +)
1 &2/ ovl 02 op° opt  ,op?

F'ﬁ(ar “or T o +"')}+(a+€a+fa+“')—°-

we collect again the terms of the same order starting from the lowest order:

%0 1000 op°
0 z z
— - — =0 5.6
€ ( or2  r or ) + 0z ’ (5.6)
0%vl 10w} op!
! — Z 4z — =0 5.7
¢ ( or? r or ) + 0z ’ (5.7)
0?02 10v2 0% op?
2 z z z
- -2z — =0. 5.8
c (87“2 r or 8z2)+ 0z (5.8)
e Insert (4.27) into (4.6):
i(av;? +€8vr1 +626Uf N ) N g? 5(6U2 +88v; N 5 OV? N )
u\or or or 1 0z 0z ¢ 0z
2 1
+E. —<vf+5vrl+52vf+ ) =0
[T
we collect again the terms of the same order:
o’ 1
e 81;’ +-of =0, (5.9)
ot 1 o’
e s S sult T2 =0, (5.10)
o2 1 ovl
e? atf ~0? a”; = 0. (5.11)

; 1 9(rvy)
Using (5.9), we conclude that =7

this says that only constant = 0 has meaning, and we get

0 _
v, =0

= 0. This yields rv? = constant as r — 0. Physically

(5.12)

Notice that (5.12) indicates that in this coupled fluid-structure problem for creeping flow,

the radial component of the velocity is by one order of magn
component.
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1

By inserting (5.12) into (5.2), we get %LT = 0, which says that p! is independent of r,

p' =p'(21),

e Insert (4.27) and (4.29) to the lateral boundary conditions, we can get:

i(vo—i-evl—i-s%Z—i— )—isa(o+sl+622+ )
o T T _N 81577 n n

2 26
%(Ug'*‘w;*‘@%?‘f"“):%a(so-i-ssl—i—ﬁs?—i—---)

In order to simplify the notation, we introduce

p=p0+€P1,S = 80+881,7}= 770+£nl,vr = v} +evf,vz = vg—l—evi
(5.5) and (5.13) implies
p=p(z1)
(5.14) and (5.15) imply that

vr(2, R, t) = %(z, t)

0s
(2, R,t) = (2,1
wle k) = 2 ()
(5.10)+ex(5.11), using the notation v, = v} + ev?2, imply:
0 0

E(rw) + a(rvz) =0

(5.6)+&x(5.7),using the notation p = p° + ep' and v, = v? + v}, imply:

9 _ Q( ‘%2)
T@z © or ’ or

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

Equations (5.2) (5.19) and (5.20) are the standard asymptotic equations obtained from

the flow equations before any boundary conditions are taken into account.

e We insert (4.28), (4.29) and (4.30) into (2.2) and (4.11), and obtain :

h(e)E(e) [o 0
(1—-0%)e | ROz

2 84 2

1
F.=— (80+€Sl+"')+ﬁ(770+€771+"')

T hEGEkEe L 0 4 en' + ) — (@) e L ent + 1)

922 12" ot

2

10 e
Fo=—p"4+ept+ -) 4+ 2u—=—(—(ev! 202 4 ...
(P° +ep ) ugar(ﬂ(sv,,qts vi+ )
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By using the assumptions, (2.5) and (2.6) as € — 0 with the notation p = p° +ep', s =
9+ est,p=n+en', we get:

Ey Os 1 0%n 9
_ o5 Nl _g o0 21
b R(1—0?) [aaz N R] G08z2 +0() (5:21)
e We next insert (4.28), (4.29) and (4.30) into (2.3) to obtain:
_ h(e)E(e) * 1 o 0 0 1
4 62 0 )
pwh(s)—Q?(s +es 4 o)

e )

Using the assumptions (2.4), (2.5) and (2.6), we get:

90 1 B 1,8, cd, .
5(vz+evz+ ...)_Eom(@(s tes' o)+ g (0 +en' + )
we get:

a'Uz _ Eo 8 88 g 9

Wh:R T 1—020z (82 + Rn) +0(e) (5.22)

We now focus on (5.21) and (5.22). Our goal is to obtain a PDE for the pressure only.
So our task is to eliminate 7, v, and 2 from (5.21) and (5.22).

e For the equation (5.20), first integrate from 0 to r, then integrate again from r to R
and use the continuity at the boundary (5.18), i.e. v,(z, R,t) = %(z,t) to get
R?2 —720p Os

1 a(z,t) + E(z,t). (5.23)

v,(r, 2,t) =

e From (5.23), we get

dv, _Opr _ Ov, op R

_- — = r—= = —— 5.24

or 0z2 or r=r 0z 2 (5:24)
Combining (5.24) with (5.22), we get

ROp Ey 0 /0s o

it — =+ = 5.25

20z 1—028z(8z+Rn> (5.25)
An integration on both sides of (5.25) for z from 0 to z, yields

R Ey (0s o

— = —— 4+ = 2

pP(z:1) 1—02(8z+R"> (5-26)
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e An integration of (5.19) from 0 to R in r, yields
on R*O?p R 0%s

U ST 2
9t 16022 T 2000 " (5.27)
and an integration with respect to t, gives
os R?9* [ 2n
= dt) — — 5.28
0z 8 022 (/0 pet) R (5:28)
We can now insert (5.28) to (5.26), which gives
n  R(1-o0?) RE, 0? /t D
— = — - = 5.29
R~ B2—o)\80 -7 02 ), P~ 3 (5:29)
By inserting the expression for 7 into (5.28), we obtain
2 2 2yt R(1 — o2
9s _(R° R 6_(/ pdt)_w_ (5.30)
0z 8 4(2-0)) 022"/, (2—0)Ey

e Further by using (5.21), we get

op E, or 0s 7 a2 0*n
s S I PSR ) e Sl 31
0z (2:1) R(1 —0?) 0z [Oaz * R] Go 8z(8z2) (5:31)
insert (5.31) into (5.25),implies
2 E, (0s o\ _ K o1 0s n a9 ,0%n
R1 - o2 (& * E") - R(1-02)0z [082 * R] Goaz(ﬁzQ)
Ey(2-0) 9% | Eo(20-1) ﬁ(ﬁ) -G 2(@)
R(1-02)022  R(1—02%) 0z'R’ 92 022
integrating with respect to z from 0 to z, we obtain
Ey(2-0)0s Ey(20-1)17 0%n
=7 - G .32
RO—o%0: T RO=09) R 52 (5:32)
Finally, we insert (5.29) and (5.30) into (5.32) to arrive at
d/(,5 2 GoR*&p\ _ 0* (EqRp GoR®d%p
a5 2w aE) = g (- a) 6

Depending on the problem, the coefficients containing shear modulus Gy may or may
not be negligible. In the following two subsection, we summarize the initial-boundary-value
problems corresponding to the two cases. But before do this, first we show how to deduce
the reduced equation by using the Asymptotic expansion II, only differences are the
Stokes equaitons, which will be showed next step.
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5.1.2 Using the Asymptotic Expansions II to get the reduced

equations of Stokes equations

First recall Asymptotic expansion II

v(e)e(z,mt) = — ) eWi(z,r,t),
P iso
g2 .

v(e),(z,mt) = — vy (z,r,t),
N

pE)ert) = S ewi(ant)
i>0

e Insert (5.34) and (5.36) to (4.4)

1 [3 10200 R, 5240 vl 0%
__[_(W b kg ) e (az2 T T g
+1 i(avf 6%+628v3 + )—i 6—3(1)0-1-61)1-1-521)2—1- )

rou\or or or r2 o\’ " "

1 /0p° ap ap )

(2 =0

(87" te or te or t

Collecting the terms of the same order starting from the lowest order results in:

op°
1
. — =0
g or
op'
0. = =0
¢ or
020 1000 1 op?
1 T T 0
= - - — =0
€ (8T2+T87‘ T2r)+87‘

From (5.37) and (5.38) , we conclude

P =p"(z,1), p' =p'(2,1)
eNow insert (5.35) and (5.36) into (4.5)

ple? 0% 0%l ,0%? , €200 9%l 0%
3 E( +e +e —i—---)-l—g -—( +e +et——+ -

or? or? or? 022 022 022

1 g2/ ovl 002 Oop op* 6p
+F'ﬁ(ar T T ar+"')]+(a_+ “Gr TG ) =0

Collecting the terms of the same order starting from the lowest order again yields:
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(5.34)

(5.35)

(5.36)

(5.37)
(5.38)

(5.39)

(5.40)



0200 1000 op°

0o . _ 2 - z —

e ( 5t s ) +5-=0, (5.41)
0%vl 10wl op*

r . 2 - z —

g ( 52 + o ) + 5y 0, (5.42)
0%v?  10v?2  0%° op?

2 o 2 - z z —

c ( or? + r Or + 022 ) * 0z 0. (5:43)

e Next insert (5.34) and (5.35) into (4.6)

261}’%4_ ...)+%2.5(8U2+58U;+526_U2+ )

T+<€

or ¢ or or

g (8?},9 v}
1 0z 0z 0z

e 1/, 1, .22
+;';(UT+SUT+€ v, + ---):0

Collecting again the terms of the same order gives:

ol 1 o’

3 r 0 z
: - =0 5.44
€ o + rvr + ER ( )

ovl 1 ol

4 r 1 z
: - =0 5.45
e e (5.45)

o2 1 ov?
P Ll 2 =0 5.46
¢ or r " 0z ( )

We use the following notation for v, and the others are as same as before.
v = vf + ev}
From (5.37) and (5.38), we deduce

p=p(z1)
From (5.41) and (5.42), we deduce

9p _ 2( ‘%z)
Taz - or ’ or

From (5.44) and (5.45), we deduce

0 0
E(Tvr) + &(TUZ) =0

And we found these are exactly the same as using the Asymptotic expansion I. The
remaining part to derive the pressure equation is analogous.
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5.2 The reduced problem P; when shear modulus G
is 0 or negligible

In this subsection we study the case when the coefficients containing shear modulus G is
zero or negligible. After taking into account the obvious regularity of p® with respect to
z, we see that p = A(t) for z = L. The reduced initial-boundary-value problem for the
effective pressure reads

(2 —20)% = Bk &p in (0,L) x (0,7)
p(0.) = 0. p(Lot) = At) in (0,7T) (5.47)
p(z,0) =0 in (0,L)
and the relationship between % and n becomes
Os 1—20n
— = — 5.48
02 2—-o0 R (5:48)
We insert (5.48) into (5.21) and get:
_ R*(2—0) ds _ R(1-20)
N 2E0 P, 0z N 2E0 p

Then we get the radius of the tube is = R + 1. We will plot the pressure p = Py + A(t)
where Py is the reference pressure. It is well-know that equations (5.47) has a unique
smooth solution p.

For incompressible materials, ¢ = 1/2, in which case (5.48) implies s = 0 and from
(5.25), with 0 = 1/2 we have
4F,
@77
This is the Law of Laplace or the independent ring model, found in*’

In general for the negligible shear modulus, the pressure is directly related to the radial
displacement via

p:

“R@2-0)

We see that , for general o, the diffusion equation for the effective pressure can be easily
written in terms of the radial desplacement.The resulting equation is parabolic, reflecting
the fact that acceleration terms in the fluid equation have been ignored. More precisely,
if the acceleration terms were present, the resulting equaitons would include the second
derivative of n with respect to time and give a hyperbolic problem. Hyperbolic problems
are typically obtained when the reduced Navier-Stokes equations are coupled with the
independent ring model, see®!?.

Here we will show the numerical simulation and the pressure drop A(t) prescribed on
the right boundary z = [, given by A(t) = 950sin(27t) Pa. Figure 5.1 shows that pressure
distribution using CG1 to simulate. Figure 5.2 and Figure 5.3 show how pressure and
displacements change at different time.

p
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Figure 5.1: pressure distribution of P;.
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Figure 5.2: Effective displacements for P; with the given pressure drop A(t). The reference
pressure is 13000 Pa, above figure at t=0.35, down figure at t=0.42.
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Figure 5.3: Effective displacements for P; at another time, t=0.5 and t=0.75
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5.3 The reduced problem P, for nonnegligible shear
modulus

In this case when the shear modulus coefficients are not small, we need more boundary
conditions for(5.33). Furthermore,for Gy > 0 the boundary conditions for the radial dis-
placement are preserved in the limit. By using (5.29) we get the boundary conditions for
0,,p at z=0, L.

2 2
i( (320} 1—0)‘2%%22z)—§2 (52 - 5= 52)
azp 0 t) 0 _S(Eofz)' gzg(L t) = %% te (0,T)

p(2,0) =0, z€(0,L)
Remark: If A € C§°(0,+00),then p € C*([0, L] x [0,T]).

5.4 The reduced problem Pj; in the pressure-velocity
form

It is useful to cast the above reduced problem in terms of the leading order velocity and
pressure. In next section, we will show that the solution of the original problem converges
to the solution of the reduced problem written in terms of (v,,p,n, s)

Find (v,, p, 7, s) such that the following equations describing conservation of mass and

momentum hold :
op 0 (1 (&
a5t + E (E/o v, (7, z,t)rdr) =0

8p 0 ( Ov,
6,2 or r or

the lateral boundary conditions are

0s
UZ(ZvRat) 6t(z t)

I ds 0%n
Pzl = g (“& + E) oz
ov, _ Ey 0/0s o
or lr=r  1—0202 (82 + Rn>

and the inlet and outlet boundary data and the initial data are given by

=% 0,0=0

0z
( ,)= ( ) 0,  p(Lt)=A(t)
=0
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Chapter 6

Convergence Theorem

In this section we study the rescaled problem P(g) in the limit situation when ¢ — 0. And
in this section, we will deduce the form of the limit problem namely we call it P(e — 0).

The following we will verify that the rescaled problem converges to the reduced problem.
We will depend on the a priori estimates for the variables. But first we would like recall
the a priori estimates for (v(e),,v(€).,p(€),n°, s°) which was used to to determine the
asymptotic expansions.

3
E
lv(€)rll2@@x(0,1)) < C;HAHU

82

[v(€)2l L2(ax(0,r)) < CE“AHU
82
[v(E)llz2@x(0my) < C;||A||,,
£)

Ip(e)llL2@x 0,y < ClIAllL
17" (8)ll 20,y < Cel| Al
[Is* (Dl z20,2) < CllAll
- h(e)E(e) (0 d 82 4 5?2
e)E(e) [ o 0s° n° n° e* on°
Fr:—i(— ) h(e)G(e)k(e) S L — poh(e) =L
(1—0%)e \R 0z, eR? + h(e) Gle)k(e) 5.2 P (8)#,2 ot?
NSGEEATE A ~ -
Y 2 3 4 p
e Ase — 0, we have term 1 «~ 1 = ¢°
e From ||5°]|z2(0,2) < C||Al|s, we have 2= 1 =£°, so term 2« 1 =¢°

0

From Z|7°(t)]

Since the assumption is lim._oh(e) G(e)k(e)e = Gy, so k() G(e)k(e) « L, so we
have term 4 «~ 1 = &°

2,0) < C||Ally, we have n° «~ e, s0 term 3 v~ 1 =¢

We have h(g) v~ g, so term 5 «~ 1 = &b
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We take care of the terms which have the same order of €°, then term 5 will
disappear.

Fr _ —p(E) n 2u180@(€)r
13 - r

C||Al|,, we have p(g) v~ 1 = &°

From |[|p(¢) | L2(ax(0,7)) <
<

From ||v(g),||L2(ax(0.1)) C%HAHU, we have % v g3, so term 6 « g2

We take care of the terms which have the same order of €°, then term 6 will
disappear.

F, =

h(e)E(e) ( s o O ) B (g)éa%f
1-02 \ 022 ¢€R Oz YN o2
7 8 9 10

h(e)E(e)

£

We have the assumption lim,_, = FEy, so we have h(e)E(e) « ¢, so

term 7 ¢

From above we know term 8 «~ 1 = £°

term 9 v~ 1 =¢°

We have ||s%(¢)]|12(0,) < C||Al]v, 50 s°* 1 =€, 50 term 10 «~ 1 =¢°

We take care of the terms which have the same order of €, then term 10 will
disappear.

P ,u( ov(e), N 10v(e), )
z 0z e Or
—_—— S —

11 12
We have [|v(e).||z2@x(or) < CE[|Allns0 2525 < €%, 50 term 11 v &3
We have ||[v(€),||r2@x(0,r) < C’%HAHU, so 24z 22 50 term 12 v~ ¢

We take care of the terms which have the same order of €, then term 11 will
disappear.

=0

( 1 0%v(e), 0*v(e), 110dv(e), 1 v(a)r> N 10p(e)
ez 52 02?2 e?r Or g2 r? e or
[v(E)rll 20y < CENAlly and [Ip(e)l|z2@xory < CllAlly, so this equation

-1 Ip(e)

has the lowest order of e™!, so we have 2= = 0 = p = p(e)(z, t)
—_——

or
*1

o7



=0

1 0%v(e), 0%v(e), 110v(e),\ 0ple)
B (5_2 or? N 022 +52r or ) * 0z
13

o |lv(e):llr2(ax(or) < C£||A||U, so only term 13 is of order &2, the others are of

0/ 0 0
order 1 = £, so we have 5(2)" + 1‘9”( E 8’(;(;) = @7 (r g(:)) = g(z)
%2
, 10v(e), Ov(e), 1w(e),
div, = - - =0
wev(e) e Or + 0z +6 r
e All of these terms are of order 2, we have 8—(7‘1}( €)r) + a—(rv(s) )=20
T z
*3
ov ov(e), 1 0v(e),
D.(v(e)) = 0 Lee) 0
ov(e ov(e),
F(75r + 1250=) 0 2
e The lowest order term is * 8”6(, £ which is order of . We have
0 0
D, o(v(e)) = 0 0 0
ov(e),
0 0 g
Then we have the following definitions:
2 2 e)E(e h(e)E(e) o
PR IO h(s)g()s)(k)(s)% + MABE) 1 = )77??%( - )
- eVE(e) ¢ 8 5] e)E(e) 9
— T iR D puh(€) gm — 0 52
- (1)
s
1 92 i) 119 11 19
—N<s—2w+azz+s—z;a—g—zﬁ) 0 cor
B - : u(a+ e aig) £
3 3
th T iy A 0
v(e),
we = v(e),
p(e)

o8



FF = r = (e € (?}Ts — e.0r We
()= (idaids, ) - (o 0y o
Ff
o E Ego 0
A0 — (_GOW+R2(1002) R(loaz)&)
- ___Ego 8 _ By 9%
R(1-02) 8z 1—02 922
UO — n
S
o)
0 20 3r
0 _ o) 10 o)
B = 0 —(?7“;5) 72
T 5 0
Uy
wo = v,
p
D 0 0 1
o ()2 4 i)
— ) 0 —5 0

Now we can present the main convergence theory in a very transparent form!

Theorem 4 We consider the rescaled fluid-structure interaction problem matriz form

(4 3)(8)-(5)
D S S

with F* = FYWe.
The limit problem
A 0 U FO°
(v ) (we)=(5) 02
—_——— —
B X0 YO
with FO = FYW?.

£

The solution ( I(/ijg ) to (6.1) converges weakly to the solution (

solution of (6.2) in'V ase — 0.
Proof :

0

Wo ) which is a weak

We show that U — U° and W& = WO as e — 0.
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[F2 = FOl = |]A7-U° =A% U7
= AU - AU+ AU - A U°|
= (|47 (U =T) + (A7 - A) - U
> AUT =T = (14T = A%l
= AT =T <P = FP (1A = AP

since we know that F* — F° and A°* — A% ase — 0, and ||B?|| and |U°|| are bounded, so
we have
Us=U° as ¢—0

0 = ||B*-W¢-B"- W’
— ||BE-W6—BE-WO—}—BE-WO—BO-WO”
= [|B- (W= W)+ (B° = B°) - W||

> |BEIWe = WOl —[|B* = B||[[W°

= [1BElwe = WO < 157 = BY[[[[W]

since we know that B¢ — B® as e — 0, and ||B¢|| and W° are bounded, so we have

We—=W° as e—0

6.1 The limit Problem P(¢ — 0)

Actually here the limit problem is identical to the problem (5.49) which is well-defined and
has a unique solution p.

We call the domain in the limit situation is €2y, the lateral wall ¥,

For the lateral wall we have the equation
AU = F°, (6.3)
For the fluid we have the equation
B W%=0, in Qx (0,7) (6.4)

We have rescaled D, () in the limit situation call it Dy(¢) which is define as following,
for ¢ = €, + p,€,:

0 0 1%
Do(¢p) = 1g 0 0
1% 0 0




Proposition 4 For P(e — 0), we have the following initial-boundary conditions:

w0 =20 for (z,1) € (0,1) x (0,7)

(R0 = 2 for (s1) € ((0.1) x (0,7))
0 0

n:sza—?:a—izﬂ, fort=20

6_:77:0,27:0, fOTZZO,tE(O,T)
z
S=77=0,p=A(t)a forzzL,tE(U,T)

Motivated by the weak formulation of the rescaled problem P(g), assumptions and the
compactness result, we define the following weak formulation for P(¢ — 0) . Define :

T
€ jiid—o(v, ¢, 1%;0) = 2/ g (Do(v) = Do())(t)rdrdzdt

on 8% E cds 1
eelastic—>0(na S, ©s 10; 0) = / / { 82 9z 1 _00.2 (E& + ﬁ) r
Ey (0sdyp, o0n
‘H_ﬁ(&az‘ﬁa% p(t)dedi
€pressure—>0 / / QDzw TdT'dt

Definition 8 (Weak formulation of the limiting problem P(e — 0)). Let Gy > 0.(v,p,n, )
s a solution if following conditions are satisfied

Efluid—)O (U; @, wa 0) + Eelastic—)O(na S, ©, wa 0) = _epressure—)O(Aa ©, ¢): ’LTL C(R+)’ VQD € V
From the expression of € fi4—0(v, ¢, 1;0) and Dy(p), we have for P(e — 0)

v, =0
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Chapter 7

Modelling Blood Flow in the
Compliant Tube using COMSOL
Multiphysics

This section is too much to do actually, but limited by our time, we can not go that far.
So far as what I understand, COMSOL Multiphysics is a very powerful tool to simulate
things and you can use COMSOL Script to implement your things if you can not find
the things you needed in application modes. You can generate your own graphical user
interface(GUI) for an application generated in COMSOL Script, or for a COMSOL
Multiphysics model. And a user-defined GUI is implemented in an m-file creating a
graphical environment that uses predefined JAVA components such as menu bars, tabs,
panels, buttons, check boxes, axes, tables, etc. To generate a GUI you first need to create
a frame. This is the main window for the application. To the frame you can add menus
or panels. In the panels you add different graphical components such as labels, text fields,
buttons, combo boxes or even other panels.

7.1 Introduction

Here we show how to use COMSOL Multiphysics to model fluid-structure interaction
problem. It illustrates how fluid flow can deform the surrounding structure as well as how
to solve the flow in a continuously deforming geometry using the Arbitrary Lagrangian-
Eulerian (ALE) technique.

7.2 Model Definition

Here, the compliant tube has a length L(m) which we can change and the inner radius
r = 0.004m, the wall thickness is h = 4e — 4m, with the density p, = 1.1kg/m?, the Young
modulus is £ = 6000Pa, and the shear modulus is G' * £ = 500000Pa.
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The fluid is incompressible, and we assume here the blood is an incompressible fluid
even only in some situation we can have this assumption, further, with the density p =
1050kg/m? and dynamic viscosity p = 3.4e — 3Pa - s.

The model consists of a fluid part, solved by Incompressible Navier-Stokes equations
in the compliant tube, and a structural mechanics part, which will be solved by Navier
equations in our model, but inside of Multiphysics, we just use what they provided, namely
is Solid,Stress-Strain (transient analysis). Since here we have a compliant structural
part, so it is reasonable to use ALE(Arbitrary Lagrangian Eulerian) method. And
this Moving Mesh application mode makes sure the fluid-structural interaction movement
which means that the fluid will deform the lateral wall and have the displacements which
will change the domain of the fluid. For the equations, first for the fluid to structure,the
fluid solution provides the values of one term which is function of the fluid stresses at the
wall, for the structure and fluid, the movement of the vessel wall changes the geometry
on which the fluid equations must be solved. In addition, the proper boundary conditions
for the fluid velocity in correspondence to vessel wall are not anymore homogeneous ,but
they impose the equality between the flluid and the structure belocity. They express the
fact that the fluid particle in correspondence of the vessel wall should move at the same
velocity as the wall.

The model accounts for transient effects in both the fluid and the structure. It models
the structural deformation using large deformations in the Plane Strain appli-
cation mode. The displacements and its velocities are denoted by u, v, ug, vi. The Stokes
equations describe the fluid flow, where the velocity components and pressure are denoted
by us, vy and ps.

7.3 Fluid Flow

We describe fluid flow in the compliant tube with Incompressible Navier-Stokes equa-
tions,sloving the velocity field, u = (u,v) and the pressure p in the spacial (deformed)
moving coordinate system :

p%—? +p(u-ViIu=V:[-pl+ p(Vu+ (Vu)")]+F

V-u=0

where F is the volume force affecting the fluid. But here, we assume no gravitational
or other volume forces affecting the fluid, so F = 0. The coordinate-system velocity is

u, = (uma VUm, wm)

'Inlet’ where z = 0, as we call it, we assume the pressure p = P, on the ’outlet’ where
z = L, we assume the pressure is p = A(t)+ Py where P, is the reference pressure, along the
lateral wall, there is no no-slip condition imposed. We assume the rate of the deformation
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du

is equal to the fluid velocity, uy = %7

pressure difference A(t).

and vy = %. And the whole system is driven by the

7.4 Structural Mechanics

The model solves for the structural deformations using an elastic formulation and a nonlinear-
geometry formulation to allow for large deformations.
The lateral wall experience a load from the fluid given by

Fr = (—pI + p(Vu+ (Vu)"))n

where n is the normal vector to the boundary. This load represents a sum of pressure and
viscous forces.

7.5 Discussion

An advantage with a 3D ALE simulation is that it visualizes the actual FSI movement. The
drawback is that there are many sources for error accumulation in the numerical algorithm
and a rigorous error analysis based on a posteriori error estimation is still an unsolved
problem. Also a time discretization with a fine resolution leads to a time consuming costy
computation even for a linear approximation with small deformations. Therefore we have
focused the study in this thesis on an alternative approach based on asymptotic analysis
which yields a reduced limit equation (for the pressure) which preserves the major features
of the original FSI problem thanks to the convergence result (Theorem 4). The other
important quantities, like velocity and displacement can then be resolved from the reduced
equation for the pressure.

7.6 Modelling in COMSOL Multiphysics

This model we use three application mode:

1. using Incompressible Navier-Stokes to model the fluid .It is active only inside of
the tube.Further,

2. using Moving Mesh(ALE) to model the moving boundaries, notice that both In-
compressible Navier-Stokes and Moving Mesh(ALE) are working under frame
ALE

3. using Solid,Stress-Strain to analysis the displacements,stresses and strains that
results in a 3D body given applied loads and constraints.
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7.7 Modelling Using the Graphical User Interface

MODEL NAVIGATOR

1. In the Model Navigator select 3D from the Space dimension list and click the
Multiphysics button.

2. From the list of application modes select
COMSOL Multiphysics>Fluid Dynamics>Incompressible Navier-Stokes>
Transient analysis , then click Add

3. Under Application Mode Properties set Weak constraints to Non-ideal and
set Frame to Frame(ALE).

4. Under COMSOL Multiphysics>Structural Mechanics>Solid,Stress-Strain>
Transient analysis , then click Add

5. Under Application Mode Properties, set Large deformation to On, set Frame
to Frame(xyz) and set Weak constraints to Non-ideal.

6. Under COMSOL Multiphysics>Deformed Mesh(ALE)> Moving Mesh(ALE)>
Transient analysis , then click Add

7. Under Application Mode Properties set Smoothing method to Winslow and
set Defines frame to Frame(ALE) and Motion relative to: to Frame(xyz)
and set Weak constraints to Non-ideal.

8. click OK
GEOMETRY MODELLING

1. Select Axes/Grid Settings from Options,to set the axis, uncheck Auto box,set
both r spacing and z spacing to 0.002,then clickOK .

2. select Specify Objects;Circle from Draw,set Radius to 0.004, then click OK.

3. then repeat above step to draw a circle whose radius is 0.004-(4e-4).And choose both
circles using Ctrl+A.

4. select Extrude from Draw,set Distance to be the length of the tube L.
PHYSICS SETTINGS
1. From the Options menu choose Constants

2. In the Constants dialog box define the following names and expressions, after
this,click OK.

SUBDOMAIN SETTINGS
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Figure 7.1: the blood vessel with headlight
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. From the Multiphysics menu, make sure Incompressible Navier-Stokes(ns) is

selected.

Under Physics menu, select Subdomain Settings and in the dialog box select
Subdomain 2 and set the density and dynamic viscosity of your material and corre-
sponding volume force in x,y,z directions.Here we do not have any volume force, so
set all to zero.

From the Multiphysics menu, make sure Solid,Stress-Strain(smsld) is selected.

Under Physics menu, select Subdomain Settings and in the dialog box select
Subdomain 1 and set all quantity.

From the Multiphysics menu, make sure Moving Mesh(ALE) is selected.

Under Physics menu, select Subdomain Settings and in the dialog box select
Subdomain 1 and under Mesh,check Physics induced displacement and set them
to u,v,w separately, and select Subdomain 2,check the box Free displacement

BOUNDARY SETTINGS

1.

From the Multiphysics menu, make sure Incompressible Navier-Stokes(ns) is
selected.

Set boundary 5,6,10,11 which are the lateral boundary to Slip/Symmetry and
the inlet 7;set Outflow/Pressure,to zero and the outlet 8,set the pressure you
want,mainly because our system is driven by the pressure drop.

From the Multiphysics menu, make sure Solid,Stress-Strain(smsld) is selected.

Only set boundary Rof three directions x,y,z of the inlet and the outlet between the
layer to zero

From the Multiphysics menu, make sure Moving Mesh(ALE) is selected.

set mesh displacement of the boundaries inlet and outlet 7,8 to zero and set the
others to u,v,w in x,y,z directions respectively.

MESH

Here you can try different mesh generating methods depending on how fast and how
accurate you want by changing values in Mesh parameters. Here, we consider the
efficency, so we did not use so fine meshes, otherwise it will take a long time to run.

SOLVE

This is the last step. and you just click the Solve button on the menu.
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Figure 7.2: the mesh
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Time=1 Isosurface: x-displacement [m] Max: 2.6809e-18

xlo~ 8
2.689

1.561
0.434
-0.694

-1.821
Min: -1.821e-...

Figure 7.3: Isosurface plot after using Incompressible Navier-Stokes equations to model
the fluid.
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Time=1 |sosurface: x—displacemeant [m]

Max: 2,689,

Figure 7.4: Isosurface plot after using Stokes equation to model the fluid.
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Chapter 8

Appendix

8.1 Gronwall Inequality

Let f be a non-negative function which is integrable in I = (%, t1) and g, ¢ be two continuous
functions in /, with g nondecreasing. If

(1) < g(t) + /tt f(m)p(7)dr, Viel

Then .
6(1) < g(t)exp( /t f(rydr), Vel

8.2 Poincaré Inequality-multidimensional case

Let f: RY — R be a function in H'(2), with f=0 on T C 9 of strictly positive measure.
Then, there exists a positive constants C, (depending only on the domain € and on I'),
such that

Il fllzo) < Coll V|2

8.3 Navier-Stokes equations

0
'0(8_1; + (u-V)u) = -Vp+ F+nAu,— — —Momentum equation
v.u=0. - - ——-———————— Continuity equation

where u is the velocity of the fluid, p is the pressure, F' is the body force, p is the density

of the fluid, n is the dynamic viscosity, v = % is the kinematic viscosity. In the following
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we will give the equations under cylindrical coordinates with the components of the
velocity vector given by u = (u,, ug, u,), the continuity equation is:

ou, u, 1 % ou,

6T+T+;89+6z

=0

and the Navier-Stokes equations are given by

a TV T T T

_ Op n<82ur 10u, wu, 10%u, 0%, 2 Ouy

_% - - _ = F
or o Trer T T eee T e T e 80>+ "

) ( ou, Ou,  ugOu, Ou, U_§ )

6u9 811,9 Ug Uy 8u9 811,9
(G + g+ g i)
_ _1op n<82ue 10ug wg 1 0%uy 0O%up 2 8ur) 7

90 a2 Tror 2 2o T 92 12 oe

p((?uz tu ou, n @auz ‘u %)
ot " or r 00 “ 0z

op %u, 10u, 10%u, O%u,
=5 Gr e e T e

)+ F.

8.4 Lax-Milgram Lemma

Let ¢ be a bounded, coercive, bilinear functional on a Hilbert space H. For every bounded
linear functional f on H, there exists a unique z; € H such that

f(@) = é(z,zy)
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