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Sweden

Telephone:+46 (0)31 7724000

Telefax:+46 (0)31 7724260

E-mail:info@fcc.chalmers.se

Internet:www.fcc.chalmers.se



Abstract

In the thesis a sphere fiber model is developed and implemented to study flocs
of flexible and stiff fibers in a shear flow. The spheres in the model are bounded
by springs and the bending force is proportional to the angle between the con-
nected spheres. Fiber-fiber and fiber-wall interactions are included to study
flocculation in different geometries. The hydrodynamic interaction is mod-
elled by Stoke drag, which is dependent of neighbouring spheres. To study
different kinds of fibers, flows and walls the simulation parameters can easily
be changed. The model do not include twisting torque and momentum trans-
fer from fibers to fluid and assumes that the flow is a low Reynolds number
flow.

The backward differential and Runge-Kutta methods are implemented to
solve the equations describing the fiber system, where boundary conditions,
step-size and tolerance are dependent of the model. The two methods are
compared and the Runge-Kutta method is determined to be the best suited
method for this problem.

Simulation examples are done to study flocculation in shear flow. Simu-
lated rotational periods and rotation velocities of a stiff fiber are compared
with Jeffery’s simplified equation. The simulations is showed to follow Jef-
fery’s results but is affected by the inertia included in the model. When inertia
effects are made smaller the simulations better approximate the solution of
Jeffery’s equation which does not include inertia.

The simulation program is developed under linux and all the code is writ-
ten from scratch (except the math library) under Dolfin name spaces in C++.
The results in the thesis show how flocculation occur and that the fiber simu-
lation program successfully model fibers and fiber flocs in a fluid flow.
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1 Introduction

1.1 History

Many studies focused on suspensions of rigid particles have been done through
the years. Jeffery (1922) were one of the pioneers, deriving the equation for a
ellipsoid moving in a viscous fluid. The ellipsoid can be used as model of a
absolute stiff fiber. More recently Yamamoto and Matsuoka (1993, 1994) de-
veloped a fiber model were they modelled the fiber as a chain of connected
spheres. The connection between the spheres were modelled by using con-
straints which lead to equations, which had to be solved by iteration. This
drawback lead to long computation times and the model was only used to
look at isolated fibers.

C.F. Schmid, R.F. Ross and D.J. Klingenberg (1997) constructed a complex
simulation method to study suspensions of rigid and flexible fibers. The fibers
were modelled as chains of prolate spheroids connected by ball and socket
joints. To model flexible and rigid fibers they varied the resistance in the
joints. Hydrodynamic interaction and inertia were neglected but fiber inter-
action were implemented.

In 2001 J. Jansson and J.S.M Vergeest developed and implemented a model
for deformable bodies. The model was based on a mass-spring system which
could model an arbitrary body. Behaviors such as motion, collision and de-
formation were included in the model. Their ideas and visualization methods
has been an inspiration to this work.

1.2 Applications

The dynamics of fibers are important in several industrial fields, such as pulp
suspensions in for instance paper processing. The study of fiber flows gives the
industry more information about the properties of the flow, and studies of fiber
flows can be used to improve the process. One property that is particularly
interesting is the flocculation of fibers. The properties of the paper depends
highly on how flocculation occur. Thus changes in the micro structure can
change the properties of the macro structure dramatically. In paper processing
controlling flocculation is one of the keys to success.

FCC Report 200-050128-199 1
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Figure 1: Flocculation in two pipes

In other industrial processes flocculation can give undesirable effects such
as plugs and coating. To avoid coating or plugs in pipes and other flow geome-
tries, the application can be investigated by a simulation program. By studying
the movement of fibers in the simulation, possible sources of flocculation can
be identified, and the application can subsequently be modified to minimize
the problems.

1.3 Aim of thesis

The aim of this thesis is to construct a fiber model and implement it along
with a pair of solvers in C++ and then study flocs of fibers in a homogeneous
shear flow, which is the simplest flow case containing the interesting physical
aspects. The simulation package is however generally written so that other
flow cases can easily be simulated.

1.4 Fiber model

The fiber model in this thesis is similar to Yamamoto and Matsuoka. A sphere
model is used but instead of modeling the connections using constraints, the
connections are modeled as very strong springs connecting the spheres. No
iteration is then needed in the new model, which was a major drawback to the
model by Yamamoto and Matsuoka. The bending force is proportional to the
angle between the connected spheres. The model also includes the fiber-fiber
and fiber-wall interaction. Therefore studies of flocculation of fibers can be
done in different geometries. The drag from the fluid is modelled as the sphere
Stoke drag, where it is taken into consideration that the drag force acting on a
sphere is dependent of the position of the neighbouring spheres. To simulate
the model a system of second order ordinary differential equations have to be
solved.

2 FCC Report 200-050128-199
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θ

Figure 2: A sphere fiber model
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2 General theory

2.1 Low Reynolds number flow

In a fluid flow a characteristic length scale L and velocity scale U are defined.
With these definitions the non-dimensional Reynolds number can be defined
as Re = LU

µ
, where µ is the viscosity. In our model the relative motion of

the fibers in the fluid and the characteristic length scale is small. Therefore the
relative flow around the spheres has a low Reynolds number. Thus we assume
in this thesis that we have low Reynolds number flow around the fibers, but
the Reynolds number of the fluid can be high.

2.1.1 Stokes equations

We define the non-dimensional distance x∗
i = xi

L
, velocity v∗

i = vi

U
and pressure

p∗ = p−p0

µU/L
. Now we can write the non-dimensional momentum equation as

Re
Dv∗

Dt∗
= −∇∗p∗ + ∇∗2v∗

and if we let Re → 0 we get the simplified equation

∇∗p∗ = ∇∗2v∗ (1)

which also can be written in dimension form as

∇p = ∇ · τ . (2)

Flows which have this property are called Stokes flows. Taking the divergence
and the curl of equation (1) we get

∇∗ · ∇∗p∗ = ∇∗ · ∇∗2v∗ = 0
∇∗ ×∇∗p∗ = ∇∗2(∇∗ × v∗) ⇔ 0 = ∇∗2ω∗ .

Due to these equations the pressure can be solved independently of the ve-
locity, which is determined by viscous diffusion. Therefore the equations are
linear and flow fields can be added to form new flow fields. Further the flow
field is reversible, that is, the flow field is symmetric. From this it is apparent
that the Stokes equations do not predict wakes. To predict wakes we need to
include fluid inertia in the equation, meaning that the fluid equations are ex-
panded to the Oseen equations, c.f. Panton (1996). However, this is not done
in the present work.

Now the global equations for stokes flow are investigated, first the momen-
tum equation (2) is integrated over a arbitrary volume V and Gauss divergence
theorem is used

0 =

∫

V

−∇p + ∇ · τdV =

∫

S

(−p + τ · n)dS ⇔

∫

S

pdS =

∫

S

τ · ndS .

4 FCC Report 200-050128-199
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∴ the pressure and viscous forces always are in balance. The drag force is
defined as

F =

∫

Sb

(p − τ · n)dS (3)

where Sb is the surface of the body and the global force which balance the drag
force is defined as

F =

∫

S∞

(p − τ · n)dS

where S∞ is the surface of the remote boundary. The influence of the global
force extends far away from the body in all directions. But the Stoke flow is
not valid for infinite distances from the body, so once again the Oseen theory
is needed.

2.1.2 Flow around a sphere

Let us consider a spherical coordinate system (r,θ,φ) with its origo at the center
of the sphere with the radius r0. Because of symmetry of the flow in φ, it can
be shown that the stream function is

[

∂2

∂r2
+

sin θ

r2

∂

∂θ

(

1

sin θ

∂

∂θ

)]2

Ψ = 0 (4)

where the velocity components can be written as

vr =
1

r2 sin θ

∂Ψ

∂θ
, vθ = −

1

r

∂Ψ

∂r
.

The non-slip conditions become

Ψ(r = r0) = 0,
∂Ψ

∂r

∣

∣

∣

∣

r=r0

= 0 (5)

and the free flow conditions become

vr ∼ −U cos θ, vθ ∼ U sin θ as r → ∞

which are satisfied by the uniform stream function

Ψ ∼ −
r2

2
U sin2 θ as r → ∞ (6)

If we solve equation (4) with the boundary conditions (5) and (6) we get the
following known solution

Ψ

r2
0

= −
1

2

(

r0

r

)2

sin2 θ

[

1

2

(

r0

r

)3

−
3

2

(

r0

r

)

+ 1

]

. (7)

From this solution the velocity field can be derived, from which the pressure
and viscous forces can be calculated. The drag force can then be calculated
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from equation (3) by integrating the forces over the surface of the sphere and
get

F = 6πµr0U (8)

where µ is the dynamic viscosity. Equation (8) is called Stokes’s law and is
valid for small Reynolds numbers. Due to the equations of the pressure and
the viscous forces are linear, the drag can be seen as a superposition of several
drag components, which is also done in the fiber model. For more details see
Panton (1996).

2.2 System of ordinary differential equations

2.2.1 Existence and uniqueness of solutions

A first order system of ODE:s can be written as

y′
1 = f1(x, y1, . . . , yn)

... ⇔ y′ = f(t,y)
y′

n = fn(x, y1, . . . , yn)

(9)

and if it is assumed that f(t,y) is continuous in a domain D ⊂ Rn+1 and an
initial condition is added to the system the following initial value problem is
generated

y′ = f(t,y)
y(ξ) = η

(10)

where (ξ, η) ∈ D. Further assume that f(t,y) satisfy the Lipschitz condition
equation (11) with respect to y in D. It is then known that there exists an
unique solution to equation (10).

|f(t,y1) − f(t,y2)| ≤ L|y1 − y2| (11)

In our fiber model there also exists second order derivates but a second order
system of ODE:s can be transformed into a first order system. This is showed
below for one of the coupled ODE:s.

y′′ = f(t, y)) and

{

g1 = y
g2 = y′ ⇒

{

g1
′ = g2

g2
′ = f(t, y)

(12)

Further the forces do not explicitely depend on the time or are constant, there-
fore the system of ODE:s is autonomous and homogeneous. Thus if it is as-
sumed that f is linear equation (10) can be rewritten on matrix form.

y′ = Ay

y(ξ) = η
(13)

6 FCC Report 200-050128-199
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2.2.2 Stability of solutions

A stable solver is needed to solve the system of ODE:s. Absolute-stability is
defined as

|P (Ah)| < 1, where yn+1 = P (Ah)yn (14)

P (Ah) is called the stability polynomial of the numerical solver and A is the
matrix in equation (13). If A is replaced with its biggest eigenvalue the step-
size h for which the solver is A-stable can be calculated by the definition. This
is done in the solver sections.

2.2.3 Stiff ordinary differential equations

A system of ODE:s is called stiff when the eigenvalues of the Jacobian matrix
J of f(t,y) differ greatly. We can define stiffness in the following way

If λ1, . . . , λn is eigenvalues to J and

• R(λk) < 0, k = 1, . . . , n

• max |R(λk)| >> min |R(λk)|

the system is said to be stiff.

The stiffness quotient S = max |R(λk)|
min |R(λk)|

is a good measure of the stiffness of a

system. A large quotient implies that there exist at least one large eigenvalue,
which forces a small step-size of the solution method, to keep the numerical
solution stable. To lower the computational cost different methods exists, of
which two are implemented in this work.

2.3 Numerical solvers for system of ODE:s

2.3.1 Runge-Kutta methods

Runge-Kutta methods are widely used to solve system of ODE:s. The reasons
for this are that the methods are explicit, self starting and no differentiation
is needed. The RK-formulas are not unique, so the parameters can be chosen
to get stability and a small error norm. The four stage RK-methods are most
popular but in this thesis we deal with a highly stiff problem and therefore a
more accurate method is needed. The RK45M formula developed by Prince
(1979) is chosen, which has a much smaller error norm than the four stage
formulas. The formula is given by

yn+1 = yn + hn

∑5
i=1 bifi

f1 = f(tn, yn)

fi = f(tn + cihn, yn + hn

∑i−1
j=1 aijfj) i = 2, 3, 4, 5

(15)

FCC Report 200-050128-199 7
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ci aij bi

0 13
96

1
5

1
5

0
2
5

0 2
5

25
48

4
5

6
5

−12
5

2 25
96

1 −17
8

5 −5
2

5
8

1
12

(16)

where hn is the present step-size determined by a step-size control. To deter-
mine the step-size the stability of the method is investigated. It can be shown
that any order of stability polynomial to the RK-formula can be written as

P (r) = 1+r
∑

i

bi+r2
∑

ij

biaijcj+r3
∑

ijk

biaijajkck+· · ·+rs
∑

ijk...vw

biaijajk . . . avwcw = 1+
s
∑

i=1

Wir
i

(17)
where Wi = 1

i!
. For the fifth stage formula we get

1 + r +
r2

2
+

r3

6
+

r4

24
+

r5

120
(18)

and to obtain stability we have that

|1 + r +
r2

2
+

r3

6
+

r4

24
+

r5

120
| < 1 ⇔ (19)

−2 < r +
r2

2
+

r3

6
+

r4

24
+

r5

120
< 0 . (20)

For real values the method is therefore stable in the interval −3.22 < r < 0.
If we let r = λh the largest stable step-size h can be derived. If we look at
this region for the four stage method, it can be shown that the stable region
becomes larger and therefore also the step-size, but the increasement in step-
size due to stability is destroyed due to the larger error norm.

2.3.2 Backward differemtial formulas

Backward differential formulas are more stable than RK-formulas but they also
have drawbacks. The method is implicit and a non-linear system of equations
is solved in each time-step. To solve the equations a LU-factorization is per-
formed and a Jacobian is calculated, which are expensive operations. Another
drawback is that the method assumes that there exists a number of back-values
at the beginning, therefore also a starting method is needed. A BDF method of
order p needs p − 1 back-values in the beginning. The method can be written
as

z0 = zp(tn+1) = yn + ∇yn + ∇2yn + · · · + ∇pyn

zk = hkbf(tn+1, zk−1) + c, k = 1, 2, 3, . . .
c =

∑p
k=1 αkyn−k+1

(21)
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and for a constant step-size the parameters can be calculated by first setting
the values to

βj = αj = 0, j = 1, . . . , p, α0 = 0, b =

(

p
∑

k=1

1

k

)−1

(22)

and then calculate them by the following relation

αj = αj − αj−1

βj = βj + 1
k
αj

}

, j = k, k − 1, . . . , 1 k = 1, 2, . . . , p (23)

where αk = bβk. BDF methods of higher order than one is not stable every-
where but for methods with order less than 7 the whole negative real axis is
stable. Therefore if infinitely long time-steps are taken and all eigenvalues to
the system of ODE:s are negative, the solution should still be stable. But in each
time-step a non-linear equation has to be solved, which is done by Newton it-
eration. This iteration also has to converge, and for stiff problems the norm or
the Jacobian is large. Therefore the step-size is restricted for stiff problems and
the benefit of A-stability is destroyed.

FCC Report 200-050128-199 9
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3 Modeling fibers in a fluid

3.1 A sphere fiber model

The sphere fiber model is chosen to model the fibers due to the known the-
ory of flow around spheres. Spheres are also symmetric and the mapping be-
tween cartesian coordinates and spherical coordinates are easily done. Further
it is assumed that we have a low relative Reynolds number flow around the
spheres, but the global Reynolds number of the flow can be large.

3.1.1 Formalized definitions

The cylindrical fiber is modelled by N spheres s with the radius a. The set of
spheres, set of connections, spheres connected to sphere s, and the Newtonian
suspending fluid are defined in table 1.

1 2 3 N-1 N

2a

2aN

a)

b)

θ

Figure 3: Properties of the model. a) Properties of the sphere, b) the bound
angle θ

10 FCC Report 200-050128-199
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S Set of spheres s(~r,~v,m, a,C)
~r position
~v velocity
m mass
a radius
C set of connections connected to the element

C Set of connections c(s1, s2, ks, kb, r0, θ, θ0)
s1,s2 spheres comprising the connection
ks Stretching force constant
kb Bending constant
r0 nominal distance (rest distance)
θ bound angle
θ0 bound rest angle

S(Cs) Spheres connected to sphere s

Newtonian suspending fluid F(~w(~r), κ, µ)

~w(~r) = κ · ~r velocity field
κ velocity gradient tensor
µ dynamic viscosity

Table 1: Properties of S, C, S, S(Cs) and F.

3.1.2 Global forces

The global forces ~FG acting on sphere s are the gravity force ~Fg, fiber-fiber

collision force ~Fff and the wall-fiber collision forces ~Ffw which are defined as

~FG = ~Fg + ~Fff + ~Ffw (24)

~Fg = −4
3
πa3∆ρgzẑ

~Fff =

|S|
∑

i=0,i6=s

−
1

2
βfiber(1 + sgn(2a − |~rs − ~ri|)e

γfiber(2a−|~rs−~ri|)~nsi, ~nsi =
~rs − ~ri

|~rs − ~ri|

~Ffw = −1
2
βwall(1 + sgn(2a − min(walldist))eγwall(1+sgn(2a−min(walldist))~nwall

(25)
where γ and β are collision parameters and ∆ρ is the density difference be-
tween the fiber and the suspending fluid F. ~nsi is the direction vector between
the two colliding spheres and walldist is a vector with the distances to all the
walls. min(walldist) gives the distance to the closest wall, and ~nwall is the nor-
mal vector to the closest wall or point on wall.

FCC Report 200-050128-199 11
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3.1.3 Connection forces

The connection forces between the spheres are the stretch force ~Fs and the

bending and torque force ~Fb.

~Fs =

S(Cs)
∑

i

−ks(|~rs − ~ri| − r0)~nsi

ks = πa
2

E where E is Young′s modulus

~Fb = kb(θ − θ0)

S(Cs)
∑

i

(~rs − ~ri)

∣

∣

∣

∣

S(Cs)
∑

i

~rs − ~ri

∣

∣

∣

∣

θ = acos

(

Π
S(Cs)
i ~rs − ~ri

Π
S(Cs)
i |~rs − ~ri|

)

(26)

Here θ is the angle between the two connections to sphere s and θ0 is its rest
angle. If a fiber with a curved rest form is modelled the rest angle is changed.
Π is defined as a scalar product summation operator and kb is the bending
constant.

3.1.4 Hydrodynamic force

It is assumed that the local flow around the spheres is a low Reynolds number
flow, due to the relative velocity between the fluid and the fiber is low and the
length scale is small. Therefore by Stokes’s theorem equation (3) the drag force
acting on sphere s can be written as

~Fh = −6πµa|~v − w(~r)|
~v − w(~r)

|~v − w(~r)|
.

This drag force can be divided into two parts due to linearity of the pressure
and the viscous equations. One half of the force is due to friction and the
second part due to pressure difference. The friction force is constant but the
pressure force is dependent on the orientation of the fiber against the fluid. If
a sphere is shaded by an other sphere the drag becomes smaller. Therefore
this part is proportional to the norm of the scalar product between the velocity
field and the vector between the shaded sphere and the sphere p in front. The
total drag force then becomes

~Fh = −3πµa(1 +
~w(~r)

|~w(~r)|
·

~rs − ~rp

|~rs − ~rp|
)|~v − w(~r)|

~v − w(~r)

|~v − w(~r)|
. (27)

.
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w(r) (p-r)=

w(r)

s

p

Figure 4: Sphere p shades sphere s

3.2 Implementation of the model

The model and the solvers are written in C++ under Dolfin names paces where
the math library is used. Dolfin is a research project developed and written
by Hoffman and Logg, with support from other people at the mathematical
department at Chalmers. More information can be found at
http://www.fenics.org/dolfin.

The fiber model is implemented as a class FiberSystem. The constructor
is called with two parameters, M and N . M is the number of fibers and N is
the number of spheres per fiber. In the constructor the global and fiber prop-
erties are set and the fibers are randomly put into the simulation box without
colliding. The properties of the simulation is also saved on the hard drive.
Then one of the implemented solvers are called to solve the system of ODE:s,
which are set up by the subroutine ODEsystem. In the implemented solvers
the out data is calculated and saved to the hard drive.

3.2.1 ODEsystem

Newton’s second law gives the ODE system to be solved for each sphere, this
system is of second order but can be rewritten to a first order in the following
way

mr′′x = Fx

mr′′y = Fy

mr′′z = Fz

⇔

r′x = vx

v′
x = Fx

m

r′y = vy

v′
y = Fy

m

r′z = vz

v′
z = Fz

m

(28)

where F is the sum of all forces acting on the sphere, r the position and v the
velocity of the sphere. Therefore each sphere has six unknowns and the total
ODE system as 6NM unknowns. The system of ODE:s for sphere j with po-
sition (x,y,z) and velocities (vx,vy,vz) is implemented in the subroutine
ODEsystem. The implementation is done in the following way

j=0,1,2 ... 6*N*M-1
// dy=F(y)/m
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dy(j) =y(j+1) // y(j) =x
dy(j+1)=Fx/m // y(j+1)=vx
dy(j+2)=y(j+3) // y(j+2)=y
dy(j+3)=Fy/m // y(j+3)=vy
dy(j+4)=y(j+5) // y(j+4)=z
dy(j+5)=Fz/m // y(j+5)=vz

where (Fx,Fy,Fz) are the calculated forces acting on the sphere and dy is
the returned right hand side of the ODE to be solved.

3.2.2 Forces

Each time the ODE subroutine is called the forces acting on the spheres are
calculated. To reduce computation time the distance and bound angle between
all spheres is first calculated and saved into the vectors d and angles. The
distance is the Euclidean norm and the angle is calculated by equation (26).

Then the drag force is calculated for each sphere. First it is tested if the
sphere is shaded by another sphere and if so which sphere it is shaded by.
This is done by looking at the scalar product of the fluids direction vector and
the direction vector of the connection between the spheres. The drag is then
calculated by equation (27). For unshaded spheres the drag force is set to 3

4
of

the Stoke drag.
When the stretch force is calculated the precalculated d is used and each

end sphere have the double stretch coefficient, so they are equally bounded as
the other spheres in the fiber. The force is calculated by equation (26).

The collision force is calculated by searching through the space after spheres
near the present sphere, and if a sphere is close to another sphere a second and
lower tolerance in the implemented solver is used. Thus when a collision occur
the eigenvalues of A in equation (13) becomes large. This means that the Jaco-
bian of the ODE system becomes large and therefore the system becomes stiff
and a smaller step-size and a lower tolerance are needed to solve the system.
The collision forces is then calculated by equation (25).

When the bending force ~Fb is calculated the precalculated angles and a sub-
routine written to return the direction of the force are used. The direction of
the force is calculated by

S(Cs)
∑

i

~rs − ~ri

∣

∣

∣

∣

S(Cs)
∑

i

~rs − ~ri

∣

∣

∣

∣

.

The wall collision forces are calculated in the same way as the collision forces,
but the tolerance is not changed. Due to smaller transients in the wall collision
forces.
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3.2.3 Simulation data

Simulation data is written to the hard drive at a desired sampling rate, the
position and velocity of the fibers are saved in a xml-format which then can be
rendered to a png-file. These pictures can then be encoded into movies. The
render and the encoder are provided by Johan Jansson.

The number of collision per time-step and the fiber curl is saved into a
octave- or matlab-file. The curl is defined as the distance between the end
spheres divided by the full length of the fiber (2aN ).

The distribution of the spheres is also calculated to study flocculation. The
3D space is divided into a rectangular 2D mesh. Thus the y-axis in the 3D
space is ignored to get a 2D picture of the simulation box. Then the number of
spheres in each rectangle is calculated and saved in a matrix.

3.3 Implementation of solvers

The simulation model is integrated into the solvers in the following ways: The
solver keeps track of where the fibers are inside a pre-defined simulation box.
If the fibers leaves the box they are moved back into the beginning of it, in
such a way that they do not collide with another fiber. The tolerance is also
changed if there is a possibility that a fiber collision will occur. The solver also
calculates and saves solution data to the hard drive.

3.3.1 Runge-Kutta solver

First the initial conditions is set and the first right hand side f1 = f(tn, yn) is
calculated before the main loop. In the main loop the five right hand sides are
calculated.

f1 = f(tn, yn)

fi = f(tn + cihn, yn + hn

∑j−1
i=1 aijfj), i = 1, . . . , 5

The error is then calculated as = hmax(abs(df)) where d is a array of error
coefficients. If the error is less than the tolerance the solution of the step is
calculated as

yn+1 = yn + hn

5
∑

i=1

bifi

and the next step-size is calculated as max(0.9hntol/error, 2h). Else a new step-
size is calculated as max(0.9hntol/error, hn/10) and the main loop begins again.

3.3.2 Backward differentiation formulas

To begin with the required coefficients are calculated from equation (21) and
the first p− 1 steps are calculated by the RK45M method. In the main loop the
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predictor is calculated as Pn+1 = yn + ∇yn + ∇2yn + · · · + ∇pyn and then it is
corrected by the solution of

F (z) = z − hnbf(t, z) − c where c =

p
∑

i=1

aiyn−i+1 .

The equation is solved by Newton iteration, which looks like this

zk = zk−1 + ∆zk−1, k = 1, 2, . . .

where

(I − hnbJac(f))∆zk = −F (zk) .

As can bee seen a non-linear system of equations must be solved in each it-
eration step, which is an expensive operation. To reduce the calculation cost
the Jacobian is only calculated once per time-step, and the LU-factorization of
the right hand side to be solved (I − hnbJac(f)) is also only performed once
per time-step. Then a forward substitution is only needed to solve the system
in each Newton iteration, which gives a major improvement of the calcula-
tion time. When the iteration has converged, the solution is saved and the old
solutions are updated.

3.3.3 Comparing solvers

To compare the performances of the two solvers, they are tested on our fiber
model with parameters taken from table 2. The run times for the two solvers,
for different number of spheres in the fiber is displayed in table 3. In the table
the RK45M solver has the shortest run-times for all tests. The runtime for the
BDF solver seams to be exponential but the RK45M solver is almost linear.

Number of fibers 1
t0-T 0-5
shearconstant -100
mu 10
rho 1
displace 10
gravitationconstant 0
timestep 0.1
kStretch 14000
kBend 300
kHydor 0.1
tol 10−4

Table 2: Simulation parameters for the test runs
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Number of spheres per fiber 30 50 70 100
RK45M method 31.74 s 60.23 s 94.52 s 161.14 s
BDF method 82.52 s 271.88 s 666.27 s 1814.55 s

Table 3: Run-times for the two solvers for different number of spheres per fiber
(N )

In the fiber simulations fast run-times are interesting and accurate solu-
tions of the model is not so important. The BDF solver gives a more accurate
solution to stiff problems but the run-time is to slow. Another benefit of the
BDF solver is that it is more stable than the RK45M solver. The step-lengths
of the BDF solver is ∼ 6 times longer, which reflects the better stability. But
the gain in step-length is to small to compensate the expensive calculations
needed. The tolerance of the BDF solver determines the step-size and not the
stability, thus the Newton iteration has to converge. If the iteration did not
have to converge, almost infinitely long step-sizes could be taken due to it is
stable on the hole negative real axis. Therefore it is finally concluded that the
RK45M solver is the best solver to solve equations generated by the simulation
model.
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4 Simulations of the model

4.1 Output/input data setup

The standard simulation parameters have been tested out to the values in table
4. These parameters is used in all simulations if nothing else is mentioned.
The kStretch constant is much larger than the kBend, due to the fact that
the fibers considered rarely stretch. Thus we try to keep the distance between
the fibers constant. The length and thickness ratio on the standard fibers are
1/50 which is a common ratio for larger fibers. The betaFiber constant is
dependent of the kBend constant because when a fiber-fiber collision occur
the fiber bends and the two forces have to be in balance. Otherwise the fibers
would just go through each other. The simulation box is made so long that
there is time for flucculation to occur, the size of the box can be canged by
the displace parameter. The simulation box is used to visualize the fibers
and construct a fiber suspension without needing a large amount of fibers. In
our standard simulation setup we have simulated the fibers in a homogeneous
shear flow.

Program name Physical name Standard value

M Number of fibers 16
N Number of spheres per fiber 50
a Diameter of spheres 1
kStretch ks

πa
2

E, stretching constant 14000
kBend kb, bending constant 300
kHydor 3πµa, hydrodynamic constant 5

t0-T Time interval 0-5 s

shearconstant ∂ ~w(~r)
∂z

-100
mu µ dynamic viscosity of fluid 10
rhofluid ρfluid density of fluid 1
rhofiber ρfiber density of fiber ∼ 1
gravitationconstant g 0

displace Length of simulation box 80
timestep Sample data once per timestep 0.005
tol Error tolerance 5 · 10−5

t0-T Time interval 0-5 s

betaFiber βfiber kBend
gammaFiber γfiber 1000
betaWall βwall 10
gammaWall γwall 5

Table 4: Standard simulation parameters
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The fiber position and velocity are saved in the xml-format to visualize
the fiber dynamics. Further the curl of the fiber is an important property of
a physical fiber and the measure is widely used by researchers in the field.
Further the distribution and collision frequency of the fibers is saved to trace
possible fiber flocs.

In figure 5 a typical output data of the curl of the fibers and collisions are
plotted versus time. In the plot the collision is set to one if a collision occur
during the sample time. In the figure the rotation period is visualized by the
period of the fiber, we can also see how the curl changes at fiber collisions.
The 2-D distribution of a typical fiber simulation is shown in figure 6. White
squares indicate many spheres of the fiber in the area and black squares almost
no spheres.
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Figure 5: The curls and collisions of the fibers are plotted versus the time for a
simulation with 18 fibers
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Figure 6: The 2-D distribution of the spheres of the fibers.

At this point the question is which parameters should be varied to study
flocculation, collision frequency and curl of fibers. If the number of fibers M is
varied the collision and the flocculation should be expected to change. If there
are more fibers, more collisions should occur and therefore also more fiber flocs
should be generated. Another parameter to vary is the bending constant - a
small bending constant should alsobe expected to generate more flocs because
the fibers should tend to twist around each other more easily. Moreover, the
curl of the fiber would change more in each fiber rotation period, due to the
fibers forms a ”s” when they rotates in a shear flow. The s-form should also be
more distinct with a smaller bending constant. The results of these studies can
be found in the results and conclusions section.

4.2 Single fiber

To visualize the dynamics of a single fiber in a shear flow a single fiber with
21 spheres is simulated. In figure 7 the fiber forms an ”s” as it rotates around
its middle sphere. This s-shape is similar to the s-shape that Yamamoto and
Matsuoka found, which also agree with the known theory and experiments.
The rotation velocity is found to be largest when the orientation of the fiber is
perpendicular to the direction of the flow.
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Figure 7: The characteristic s-shaped fiber rotating in a shear flow.

4.3 Fiber collision

When fiber flocs are formed fiber-fiber collisions necessarily occur. To visualize
such collisions one fiber at rest in the fluid and another one that follow the fluid
is simulated (see figure 8). The fibers then collide and twist around each other
forming a small floc. The floc then follows the fluid and rotates until the fibres
separate again and straighten out. In figure 9 the collisions and curls of the two
fibers are shown. In the figure the curl of the fibers becomes smaller when they
collide and keeps shrinking until the fibers starts to separate. When the fibers
starts to straighten out the curl also starts to grow. If there exists other fibers
in the fluid there is a possibility that they collide with the small floc, forming a
larger floc. In this way small flocs can grow into larger ones, as has been seen
in simulations, c.f. Schmid and Klingenberg 2000. This is also seen in the next
example. If the bending constant of the simulation is made smaller the fibers
tends to twist more around each other and therefore they do not separate as
easily.

FCC Report 200-050128-199 21



A Numerical Study of Fibers in a Fluid Flow

Figure 8: Six consecutive snapshots from a fiber collision simulation
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Figure 9: Collisions and curls of the colliding fibers

4.4 Flocculation of fibers

To study flocculation 18 fibers with the standard parameters (table 4) are simu-
lated a number of times. In figure 10 a number of snapshots from a simulation
are displayed. In the beginning the fibers are set straight, and the velocity is
set to follow the surrounding fluid. The fibers start to rotate due to the shear
flow and collide with each other. As the fibers become more and more random
the collision frequency grows. In some of the collisions the fibers twist around
each other forming small flocs, which later on, as in the last snapshot form
larger flocs.
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Figure 10: Multi fiber simulation. In the last snapshot we can see that a fiber
floc has been formed

4.5 Wall collision

In a pipe flow we have a wall with a velocity profile that can locally be sim-
ulated as a shear flow where the non-slip condition gives zero velocity at the
wall. To simulate this 14 fibers moving with the fluid above of the wall is sim-
ulated. Some snapshots of the simulation are shown in figure 11 where a floc is
formed when the fibers bounce into the wall and up again into the other fibers.
The collision parameters of the wall can be adjusted to simulate different types
of walls.
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w(r)

Figure 11: Shear flow with zero velocity at the wall

Figure 12: Wall collision simulation

5 Compare the fiber model to the Jeffery’s equation

In this section the fiber model is compared with Jeffery’s equation for a rotating
ellipsoid. If the fiber lay in the x-z plane, in a flow which also is planar in the
unperturbed region away from the fiber, Jeffery’s equation reduces to (Folgar
and Tucker 1984)

θ̇ =

[

r2
e

r2
e + 1

]{

− sin(θ) cos(θ)
∂vx

∂x
− sin2(θ)

∂vx

∂z
+ cos2(θ)

∂vz

∂x
+ sin(θ) cos(θ)

∂vz

∂z

}

−

[

1

r2
e + 1

]{

− sin(θ) cos(θ)
∂vx

∂x
+ cos2(θ)

∂vx

∂z
− sin2(θ)

∂vz

∂x
+ sin(θ) cos(θ)

∂vz

∂z

}

(29)
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where re is the ratio between the length axis and the width axis. The angle θ
which describes the orientation of the fiber is defined by figure 13.

x

z

θ

Figure 13: Definition of the angle θ.

Moreover, Jeffery’s equation is only valid when the inertia can be neglected
and there exists no external forces or moments acting on the fiber. In a simple
shear flow

vx = shearconst · z
vy = 0
vz = 0

(30)

the fiber rotates and the period of one rotation can be derived roughly to

T =
2πre

shearconst
(31)

when re > 10.

5.1 Fiber rotation period

To compare the rotation period of the model with equation (31) a fiber with 11
spheres is modelled with different shear constants. ( kHydor=1 ). In figure 14
the simulated and Jeffery’s rotation period are plotted versus the shear con-
stant. Where re becomes 11, thus the fiber has 11 spheres with diameter 1. The
fiber model gives a little bit higher period time than Jeffery’s equation. This
is due to the model include inertia and Jeffery’s equation is not valid when
inertia cannot be neglected.
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Figure 14: A plot of our simulated rotation period T and Jeffery’s equation (31)
versus the shearconstant.

5.2 Angular velocity

To derive a expression for the angular velocity Jeffery’s equation (29) is simpli-
fied by noticing that

1 ∼

[

r2
e

r2
e + 1

]

>>

[

1

r2
e + 1

]

when re > 10 and using the simplified shear flow (30). Leading to

θ̇ =

[

r2
e

r2
e + 1

]{

−sin(θ) cos(θ) ·0−sin2(θ)shearconst+cos2(θ) ·0+sin(θ) cos(θ) ·0

}

⇔
ω(θ) = θ̇ = −shearconst · sin2(θ) . (32)

To verify this expression a stiff fiber (kBend=1.4e4) is simulated with 21
spheres. In figure 15 the simulated angular velocity is plotted versus the ori-
entation angle. In the same figure Jeffery’s expression is plotted as unfitted
and fitted to the simulation. The simulation data has the same frequency as
Jeffery’s expression and the over all shape is the same but the simulation is a
little bit asymmetric. It is sharper in the minimas and blunter at the maximas.
The maximum at θ = −π/2 comes also a little bit after Jeffery’s maximum. This
is once again due to that the model includes inertia and Jeffery’s theory do not.
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Figure 15: A plot of the simulated angular velocity ω(θ) and Jeffery’s theory
versus the angle θ for a fiber rotating in a shear flow. The orientation of the
fiber at a specific θ is visualized in the bottom of the plot. Note that the simu-
lation time goes from right to left.

To study how the model depends on inertia the fiber is simulated with dif-
ferent hydrodynamic constants. The result can be found in figure 16, where the
simulated middle maximum moves towards −π/2 as the hydrodynamic con-
stant grows. This means that when the hydrodynamic constant is increased,
the inertia effects becomes smaller. But when the hydrodynamic effects be-
comes larger the asymmetry grows due to the forming of the s-shape of the
fibers. If the bending coefficient grows together with the hydrodynamic co-
efficient such effects should be reduced, and we should get closer to Jeffery’s
theory.
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Figure 16: A plot of the simulated angular velocity ω(θ) versus the angle θ for
a number of different hydrodynamic constants.
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6 Results and conclusions

To study flocculation in a statistical manner a number of long simulations have
been done, increasing and decreasing the number of fibers and the stiffness
with 20 procent. In this work, enough experiments could not be made to get
reliable statistics, but the following tendencies have been noticed. The num-
ber of collisions in a simulation grows with the number of fibers simulated.
Flocculation increases with the number of collisions and decreases with the
bending constant. The curl of the fibers increases with the bending constant.
The s-shape becomes more distinct when the bending constant is small.

These rough results are taken from only a few simulations, to get quantita-
tive results more simulations has to be done in order to get enough statistical
data. The main topic in this thesis is the development of a tool for studying
flocculation on the micro level. Now that this tool has been developed, further
studies can establish the relations between micro and macro properties of the
flows of interest.

In the thesis it is showed that the RK45M method is better suited to solve
the system of coupled ODE:s that the model generates. The fiber collisions
makes the system very stiff and therefore a faster method with small step-size
is to prefer.

Moreover, the simulation examples shows how flocculation can occur in
a shear flow, at a wall and in the free streaming shear flow. The simulations
have also been shown to be consistent with Jeffery’s theory for stiff non-inertial
ellipsoids. Finally it is concluded that our developed simulation program suc-
cessfully model fibers and fiber flocs in a fluid flow.
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7 Further work

Further work that can be done are

• Develop a fiber tracker program using the model and solver from this
thesis, where a solved fluid field and geometry can be imported into the
program. The fiber dynamics could then be simulated through the ge-
ometry. The results from the simulation could then be used to optimize
the geometry.

• Change the bending force such that not only the neighbouring spheres
interact with each other.

• Implement a twisting torque between spheres into the model.

• Let the movement of the fibers influence the fluid by a momentum trans-
fer.

• Develop a completely stiff fiber model where the space between each
connection is modelled by a cylinder. With this model stiff paper fibers
could be simulated.

• Perform more simulations with varying coefficients to find a relationship
between the coefficients in the model and flocculation.

• Study in more detail the influence of the inertia.
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