
The Incremental

Haplotyping of Incomplete Genotypes

using Perfect Phylogeny Paths

Master’s Thesis in Engineering Mathematics

by William H. Garner

Examiner:
Docent Peter Damaschke

Department of Computer Science

Institutionen för Matematiska Vetenskapar

Chalmers Tekniska
 Högskola

Göteborgs
Universitet

Part I

Introduction

1 Genotypes and Haplotypes

The nuclear genetic information of most multicellular plants and animals
(including humans) is contained in DNA on sets of paired chromosomes. An
individual’s genome contains exactly two specimens of each chromosome,
one inherited from the father and the other from the mother. Organisms
with this genetic arrangement are called diploid. This genetic information
can be represented as a map of sites and nucleotide base pairs. At each
site one of four possible base pairs is present with one base belonging to
each of the two paired chromosomes. An individual’s genotype specifies the
pair of bases at each site, but does not specify which base occurs on which
chromosome. The sequence of bases on each chromosome separately is called
a haplotype.

It is the case then that while there is much genotype variation from
generation to generation, even in families, there is very little change in hap-
lotypes. A chromosomal haplotype passes from parent to child unchanged
unless a mutation occurs. Mutations are generally rare events and usu-
ally alter single nucleotides. Such mutations lead to the genetic variations
within a species. The base sites which show variability of nucleotides within
a population are called single nucleotide polymorphisms (SNPs).

The determination of the haplotypes within a population is thought to be
essential for understanding genetic variation and the inheritance of complex
traits. Especially of interest are inherited disease or disease resistance. The
International HapMap Project, a successor to the human genome project,
seeks to determine the common haplotypes in the human population. How-
ever most of the genetic data thus far gathered on diploid organisms is
genotype data from biochemical tests. Biochemical techniques exist for de-
termining haplotype data as well but are more difficult and expensive. Thus
algorithms for inferring haplotypes from genotype data are of current prac-
tical importance.

2 Perfect Phylogeny

In principle a family tree or phylogeny could be drawn for a given haplotype
(over some subset of chromosomal base sites) with haplotypes as the nodes

1

Figure 1: Example of a Perfect Phylogeny of Bit Strings.

00000000

10000000 00001000 00100000

10000001

00100100 00100010

1001000111000001

e0

e7

e1 e3

e4
e2

e5 e6

and mutation events as the edges. To insure a tree structure, a new edge and
node are added with each mutation. It would of course be possible that some
sequence of mutations exactly reverses a previous sequence and a haplotype
appears more than once in the tree. However mutations are rare events and
occur nearly randomly among the base sites, so such repeats must be very
rare indeed.

This suggests a simplifying assumption: suppose that no base site has
been mutated more than once. If this assumption holds then the haplotype
phylogeny tree has no repeated nodes. Also since every edge is a mutation
event on a unique base site each SNP splits the tree into two components
each with a different value at that site. Such a tree is called a perfect
phylogeny.

3 This project

This paper summarizes the results of a project exploring the application of
the perfect phylogeny assumption for haplotype determination from both
complete and incomplete genotype data. The primary project goal was to
develop a useful haplotyping tool for the incomplete haplotyping problem.
It is assumed throughout that the reader is familiar with the basic concepts
and terminology of graph theory.

In Part II a basic algorithm is developed. Its procedures and rules are
derived from the dependence of the genotype data on the haplotypes and
also from the perfect phylogeny assumption. Later in Part III we describe

2

a cumulative algorithm which repeatedly applies the basic algorithm to a
sample of genotypes and progressively determines the haplotypes more com-
pletely. Both the basic and cumulative algorithms have been implemented
in Java for this project and some program test results are presented.

Part II

An Incremental Haplotyping Algorithm

4 Haplotyping as a Graph Algorithm

In the context of perfect phylogeny then we shall treat the haplotyping
problem as a problem of tree construction over a set of binary labelled
nodes. Binary labels suffice since only two values may appear at any given
site. For the problem at hand then we give a concise definition of a perfect
phylogeny of bit vectors.

Definition 1 A perfect phylogeny (PP) is a tree whose nodes are labelled by
bit vectors of length m and are such that every edge may be labelled e i with
0 ≤ i < m and exclusively represents a change of bit i.

Under the PP assumption then the haplotyping problem becomes: Given
a set of n vectors of m unordered bit pairs, namely (0, 0), (0, 1), or (1, 1),
explain each of them by two bit vectors of length m, so that the distinct bit
vectors fit in a perfect phylogeny.

To simplify matters, we shall henceforth assume that the genotype data
is given as a sequence of values from {0, 1, 2, X} where 0 = (0, 0), 1 = (1, 1),
2 = (0, 1) unordered, and X is unreadable data. If the data admits a PP
haplotype explanation this must be possible.

4.1 Basic Ideas of the Incremental Algorithm

Given a sample of genotypes of length m which admits a set of explaining
haplotypes which fit a PP, we can of course restrict our attention to any
subset of k < m bit sites of the original m and it must also admit a set
of explaining haplotypes that fit a PP. The algorithm presented here builds
up the set of explaining haplotypes one bit at a time. In so doing it uses
both the genotype data and the PP tree structure of the preceding step, to
infer the new PP tree structure. This incremental strategy follows that of
Damaschke [cite paper].

3

We shall refer to the explaining haplotypes as a decoding. The process
of advancing a haplotype from k bits to (k+1) bits shall be called the (k+1)
extension step. A k-haplotype is one which has been extended to k bits.
Generally when discussing k-haplotypes or (k+1)-haplotypes in the context
of the (k+1) extension step we shall represent the first k bits by an arbitrary
letter. For example x0 and x1 denote (k +1)-haplotypes which differ only in
their last bit, while y or z would be distinct k-haplotypes that have not yet
been extended in the (k +1) extension step. We shall refer to the perfect
phylogeny tree of the k-haplotypes as Pk.

Next we define a graph which exhibits the sample data together with the
decodings at a given extension step.

Definition 2 For any k, we define the sample graph Gk as follows. The
k-haplotypes are the nodes of Gk. For every genotype in the sample, the two
nodes (k-haplotypes) which are the decoding of that genotype’s k sites are
joined by an edge in Gk. These edges are labelled by type according to the
corresponding data of site k +1 of the genotype.

There is one edge for every genotype and thus Gk may contain loops, parallel
edges, and nodes of high degree. The edges maybe of type 00, 11, 01, or
X. We shall always refer to the edges of Gk using their type. It is natural
to do so and we must take care to be clear whether we are referring to edges
in Pk or in Gk since they have the same nodes.

The algorithm proceeds by inferring and assigning either 0 or 1 to each
k-haplotype to extend it to a (k +1)-haplotype. If the algorithm is not
able to extend a k-haplotype then in the next extension step it and all the
genotypes for which it is part of the decoding must be dropped. Those
genotypes shall be only partially decoded. We shall call the assignment of
the new bit, coloring. In describing the process it is at times convenient to
represent the two values as blue and green without specifying them since all
of our observations and inferences are the same if the roles of the actual bit
values are reversed.

Two rules for extending haplotypes are immediate from the very nature
of the genotype data.

Extension Rule 1 A k-haplotype x which is incident to a 00-edge is ex-
tended to x0. If x is incident to a 11-edge it is extended to x1.

Extension Rule 2 A k-haplotype x which is incident to a 01-loop is ex-
tended to both x0 and x1.

4

These rules are trivial but either Rule 1 or 2 may lead to a k-haplotype being
extended by two different bit values or in other words being colored both
blue and green. If this happens we call that k-haplotype a split node for
extension step (k +1). Finding the split node is important to advancing the
decoding as G0 and P0 have only one initial node whose label is an empty
binary vector. If j different haplotypes are to be found then j−1 split nodes
must be determined.

If x is a split node for extension step (k +1) then for all genotypes for
which it was part of the k bit decoding we need to determine if x0 or x1 is
the correct (k +1)-haplotype for its extended decoding. If the genotype has
1 or 0 for its k-site data then the answer is easy. If the k-site data is 2 or X
then we must turn to the PP assumption.

4.2 Consequences of Perfect Phylogeny

The following is a well-known characterization of a perfect phylogeny:

Lemma 1 A population of haplotypes fits a PP if and only if, for no pair
of bit sites, all four combinations 00, 01, 10, 11 appear in the population.

Suppose that in extension step (k+1) we find that two distinct k-haplotypes,
x and y are split nodes. Now choose i < k, an earlier bit site where x and
y differ, say xi = 1 and yi = 0. Then looking at bit sites i and k we find
y0(i,k) = (0, 0), y1(i,k) = (0, 1), x0(i,k) = (1, 0), and x1(i,k) = (1, 1). And by
Lemma 1 the (k+1)-haplotypes do not fit a PP. On the other hand given any
two xi and yi bit values it is impossible to obtain this complete quadruple
with a single split at extension step (k +1).

Thus Lemma 1 implies a very important fact relating the PP property
and our haplotype extension process:

Lemma 2 If the k-haplotypes fit a PP, then the (k +1)-haplotypes fit in
a PP if and only if, at most one of the haplotype nodes of Gk is split in
extension step (k +1).

Assuming the PP property we know from Lemma 2 that there is at most
one split node at each extension step. Define a solid node to be a node
which has been extended in the current extension step and is known not to
be the split node. If the split node has been determined then many of the
01-edges and X-edges in Gk may be resolved owing to the fact that they are
incident to a solid node or nodes. By resolve we mean unambiguously extend
both of the k-haplotypes which the edge couples into a genotype decoding.
The notion of solid nodes shall be central to several of the inference methods
employed by the algorithm.

5

Figure 2: Key to Nodes, Edges, and Paths in Diagrams.

green extended green extended
 non-solid node solid node

blue extended blue extended
non-solid node solid node

split node unextended node

edge or path in Pk

01

coupling-edge in Gk

5 Applying the PP Assumption

First we consider how to determine solid nodes when no split node has
been found. Often it is only possible to determine the split node based on
inferences using nodes determined to be solid. Later we explain the set of
PP inference rules used by the algorithm.

5.1 Identifying Solid Haplotype-Nodes

Determining solid nodes during an extension step is crucial to the success of
the algorithm. How may we find solid nodes when we have not determined
a split node? To do so we must make use of the structure of the perfect
phylogeny tree. It would of course be possible to store or reconstruct the
tree structure but this is not necessary. The algorithm shall make use of a
fast method of checking inclusion of paths in the phylogeny tree.

5.1.1 Efficient Phylogeny Path Checking

When no split node has been found the algorithm relies on checking nodes
for path inclusion in the current phylogeny tree. Later we shall also intro-
duce several extension rules based on this same test. For the algorithm to

6

be computationally feasible then it requires a fast operation for checking
phylogeny path inclusion.

Consider two k-haplotypes, x and y in Pk. For any bit i for which x
and y share the same value they must be on the same side of the edge ei

that marks the unique change of that bit. So must any k-haplotypes on the
path between them. Thus all k-haplotypes lying on the x-y path in Pk must
agree with x and y on the bits where they agree with each other.

On the other hand let z be a k-haplotype that does not lie on the x-y
path. The first edge eb on the z-x path cannot be part of the x-y path.
Further eb must lie on the z-y path otherwise there would be two distinct
paths from z to y, one with eb and one without it. Thus x and y are on the
same side of eb and z is on the opposite side. So x and y agree on bit b but
z has the opposite value. This establishes:

Lemma 3 Let x, y, and z be k-haplotypes which fit a PP . Then z lies on
the phylogeny path between x and y if and only if, z agrees with x and y on
all the bits where they agree with each other.

The lemma gives a simple and fast method for checking path inclusion.
Say we want to check if z lies on the phylogeny path between x and y. Let
m = Xor(x, y) then z lies on the x-y path if and only if Or(z,m) = Or(x,m)
where Xor() and Or() are the familiar bitwise logical operations. Implemented
in a computer language which allows bit level programming, path checking
in this way can be done at least as quickly as exact integer multiplication
for large values of k.

5.1.2 Using Blue-Green Paths

If during the (k +1) extension step two k-haplotypes have been colored
differently, then the path between them in Pk must contain the split node.
(If it exists among the k-haplotypes.) This is a consequence of the blue and
green subgraphs each being a single connected component. Given a blue-
green path in Pk any extended node whose k-haplotype can be determined
not to lie on this path may be labelled solid. In practice this may be done in
one pass through the list of extended nodes. Say we begin with the end nodes
x0 and y1, if we find z0 which lies between x0 and y1 then x0 is labelled
as solid and is replaced by z0 as an end node. Continuing in this fashion
at most two candidates for the splitting node are found, one blue and one
green. All other extended nodes are solid. If a second pass is made through
the node list it may be possible to label one or both of these candidates as
solid as well, for the split node must lie on all blue-green paths.

7

5.1.3 Using 01 Genotype-Edges

Sometimes when there is an imbalance among the edge types in Gk only
extensions of one color can be made, at least initially. Here no blue-green
path is available to determine solids and candidates. Yet there is another
way to find such a path. Consider any 01-edge in Gk. If both its nodes have
been extended by opposite colors then we simply have a blue-green path
as already discussed. But if its ends are not extended with opposite colors
then it still gives k-haplotype end nodes of a path from the two components
in Pk+1 which are to be connected by the edge ek+1. This glimpse of the
situation in Pk+1 again allows us to find solids by looking at the paths in
Pk. If the k-haplotype end nodes are not oppositely colored, then there are
three cases:

Case I Neither end node has been extended. All that may be said is that
the candidates lie on the path. Thus any extended node not lying on
the path between the two end nodes may be labelled solid.

Case II Both of the end nodes have been extended blue. In this case one
of the two end nodes must also be extended green. Thus the two
end nodes are the only candidates for splitting and all other extended
nodes are solid.

Case III One end node, x·blue, has been extended blue and the other, y,
is unextended. The node x·blue might be split and so is a candidate
for splitting. If x·blue were not to split then y should be colored green
and it is as though we have a blue-green path from which we find
candidates. From that path the candidates are y (the only green node
on the path) and the blue extended node on the path from x·blue to y
which lies nearest y, call it z·blue. Thus all the extended nodes except
two, x·blue and z·blue, may be labelled as solid. (Figure 3 shows an
example.)

5.1.4 Additional Comments About Solid Node Determination

Once a node has been labelled as solid this will not change during the ex-
tension step. As more nodes are extended it is not necessary to recheck the
nodes already labelled solid. A candidate may however later be found to be
solid. It is not true that one of the candidates must be the split node. There
might be an unextended node between the two candidates which ought to
be the split node.

8

Figure 3: Example of Case III. All the blue extended nodes can be labelled solid
except x0 and z0.

01

x0

y

z0

In applying the 01-path method, one pass through the 01-edges suffices
to label all the solid nodes that can be determined by the method. And as
mentioned before when executing the blue-green path method two passes
through the node list labels all the solids which the method can discover.
Iterating these solid checking methods is of no use.

However the blue-green path method and 01-path method may be used
in combination. After the blue-green path method has found one or two
candidates and labelled all other extended nodes solid, the non-solid candi-
date node(s) may be quickly checked using the 01-path method and possibly
found solid.

5.2 PP Inference Rules

Now that we have developed the notion of solid nodes and characterized
perfect phylogeny paths we are ready to describe the set of PP extension
and resolution rules for the algorithm. The rules are in order of simplest to
most complex.

9

5.2.1 Direct Implications of Solid Nodes

Two simple rules using the solid nodes are evident. These two together
address directly the resolution of the 01-edges and the X-edges of Gk for
which the first two extension rules did not apply.

Extension Rule 3 Let x and y be nodes of Gk joined by a 01-edge. If x is
blue extended and solid then y shall be extended green.

This is the simplest but also the most powerful of the PP extension rules.

Recovery Rule for Missing Data Given an X-edge in Gk both of whose
end node k-haplotypes have been extended and are solid, the genotype data
site X value from which this edge’s type comes shall be replaced with the
value corresponding to the two extension values.

Being able to resolve the X-edges is important for otherwise the geno-
type concerned must be dropped from the current run of the incremental
algorithm and there are fewer edges (i.e. less data) to work with. Also
if recovered data is applied to additional runs it can greatly increase the
efficiency of the algorithm.

5.2.2 Path Based Extension Rules

The next two rules aggressively use the fact that the blue and green compo-
nents of Pk+1 when regarded as k-haplotypes in Pk are subtrees with only
one common node. Together they help complete the coloring of the blue and
green subtrees particularly in problems with much missing data or relatively
small genotype sample.

Extension Rule 4 Let x and y be nodes of Gk both colored blue, then any
k-haplotype on the Pk path from x to y shall also be colored blue.

Extension Rule 5 Let x and y be nodes of Gk where x is colored blue and
is solid and y is colored green. If z is a k-haplotype such that x lies on the
Pk path from z to y then z shall also be colored blue and labelled as solid.

Rule 4 is implemented by fixing an extended end node of one color and
considering all the possible second end nodes of same color. All unextended
nodes are checked for inclusion on each of these paths as are any candidates
of the opposite color. This is done for both colors and suffices to cover
all paths for which the rule applies. Similarly Rule 5 is implemented by
fixing an extended end node of one color and considering all the possible

10

Figure 4: Example where Rules 4 and 5 may be applied. By Rule 4, nodes b
and d may be colored green since they lie between a and e, also nodes e, h,
and j may be colored blue since they lie between f and m. By Rule 5, nodes
g and k may be colored blue. Notice that if Rule 5 did not require the middle
extended node to be solid it would cause node g to be incorrectly colored green
since the green node e lies between it and the blue node i.

a

c

e

b

d f h

g j

m

i

k

Figure 5: Example where Rule 6 may be applied. By Rule 6, all nodes except
a, b, c, and d may be colored green. In this case Rule 6 will find e to be the
split node

01

y

a

b c

d

e
f k

g

h

i j

l m

n

o

11

solid in-between nodes of the opposite color. For all unextended nodes, the
in-between nodes are checked for inclusion on each of these paths from the
unextended node to the fixed end node.

Figure 4 gives an example of a situation in which Rules 4 and 5 may be
applied. Notice that in this case Rule 4 is able to determine the split node.
After doing so all the newly colored nodes would be labelled solid and the
two remaining uncolored nodes could be colored by another application of
Rule 5. The figure also illustrates the necessity in Rule 5 of the in-between
extended node being solid.

5.2.3 An Inference from a 01-edge and a PP Path

One additional extension rule was found.

Extension Rule 6 Let x and y be nodes of Gk joined by a 01-edge. Let z
be a blue colored node such that y lies on the Pk path between x and z. Then
y shall be colored blue; also color blue any node v for which y does not lie on
the Pk path between v and z.

The derivation of this rule is as follows. The split node s must lie on the Pk

path from y to x because of the 01-edge. It is the case then that there is a
Pk path from x to s to y to z. Since s and z will both be extended blue so
will y. (This is true of course even if y is the split node itself.) Further we
may now use y as a root for a blue subtree. Any green node must be on the
opposite side of y as z, thus if y does not lie on the Pk path between v and
z then v is certain to be in the blue subtree.

In some circumstances Rule 6 can be quite powerful. See Figure 5 for
such an example. It can fill in the blue and green subtrees and occasionally
finds the split node when the other rules cannot. However in typical decoding
situations the extensions which it can infer are also inferred by Rule 4 or
Rule 5. In fact if the split node has been found then Rule 6 is totally
redundant to Rules 4 and 5.

6 Summary of the IncH Algorithm

Having described the basic methods and decision rules for incremental hap-
lotyping (IncH) , we now summarize the complete algorithm.

The algorithm takes as input a list of genotypes in the previously de-
scribed format of strings from {0, 1, 2, X}. For each genotype it returns a
haplotype pair composed of symbols from {0, 1, X} which together explain

12

(at least partially) the genotype and such that all the haplotypes fit in a
perfect phylogeny tree.

For each genotype in the sample we create a coupling-edge; these are the
edges of Gk, the sample graph. The correspondence between these Gk edges
and the genotypes is maintained throughout the process. The extension
process begins with one node (a zero-haplotype) and for each genotype in
the sample a G0 edge from this node to itself is added. The edge type is set
from the first data site value of its genotype. After the node and edges have
been initialized in this way, the inference rules are applied.

Extension Rules 1 and 2 are applied to all the edges of the proper type.
None of our inferences will increase the scope of these two rules so they
need not be repeated during the extension step. Extension Rules 3, 4, 5,
and 6 are collectively iterated until no new extension can be found by any
rule. These rules are iterated because a node extension found by any of
the rules may provide information which will allow that rule or another
rule to infer some other extension. (An interesting optimization detail is
how these inference rules should best be prioritized. See Figure 6 for our
specific scheme.) After a rule has succeeded in extending one or more nodes,
unresolved 01-edges incident to a newly extended node are correctly resolved
if possible. Next, the solid status of the non-solid extended nodes is checked.
Once no more nodes can be extended by the extension rules the Rule for
Recovery of Missing Data is applied. This rule actually corrects X data
sites in the genotype data sample.

If data sites remain, a new extension step is initialized. All nodes suc-
cessfully extended in the previous step are used in the new round. For the
new extension step the coupling-edges with both end nodes extended and
found solid in the previous step may be used. All such edges have their type
updated from their genotype. The Gk (or k+1 step) type label for each edge
is got from its genotype’s k+1 data site. The unresolved edges which cannot
be unambiguously drawn in Gk may not be used in the (k+1)-extension step
but provide a partial decoding of their genotypes in their (k −1)-haplotype
end nodes. We now go back and apply the inference rules to the newly
updated Gk.

This process is repeated until all the data sites have been processed when
the decodings of the remaining edges are recorded and the algorithm ends.

13

Figure 6: Activity diagram for the Incremental Haplotyping (IncH) algorithm.

Done Last Extension Step

Initialize Gk edges excluding
edge data for unextended nodes

Improved by Rule 3

Update Solid Nodes

Run Rules 1 & 2

[No]

Record Decodings

Improved by Rule 4

Improved by Rule 5

Improved by Rule 6

[No]

[No]

Resolve 01-edges

[Yes]

[Yes]

[Yes]

Recover missing data

[No]

[Yes]

[No]

[Yes]

Run Rule 4

14

Part III

An Implementation of Cumulative

Incremental Haplotyping

7 Overview of the Algorithm

The incremental haplotyping (IncH) algorithm which we have described can
be applied to any sequence of data sites from a sample of genotypes to in-
crementally decode those genotypes. It is very possible that if the IncH
algorithm used a different sequence of bit site data it would produce a dif-
ferent set of decodings. If the PP assumption held, these decodings would
be compatible with the first set but for any given genotype the set of data
sites successfully decoded may not be the same. The cumulative incremen-
tal haplotyping (CIncH) algorithm repeatedly permutes the data sites of
the genotype data sample and applies the IncH algorithm then merges the
decodings to construct an improved decoding for the genotype sample. For
even relatively small genotypes (say ≥ 15 data sites) the number of permu-
tations is so great that for practical purposes the process may be continued
indefinitely. This general iterative scheme is outlined in Figure 7.

7.1 Permutation Strategies

For haplotyping problems large enough to be of practical interest the number
of site permutations is far more than could be processed by the IncH algo-
rithm in an acceptable amount of time. Thus it is significant what method
is used to generate the permutations in the CIncH algorithm. Some per-
mutations may be more fully decoded by the IncH algorithm than others.
Certain data sites or subsequences of sites extend better and lead to more
complete decodings when they appear early in the site sequence processed
with IncH. The iterative algorithm works effectively when it obtains IncH
decodings that it may combine to form cumulative decodings which are as
complete as possible. But such IncH decodings may not necessarily be very
complete themselves.

Creating an optimal permutation strategy would be a very complex un-
dertaking so we have implemented two simple strategies which merely try
to avoid repetitions of “bad” subsequences which might block progress of
the cumulative decoding.

• Natural Order Strategy: The data sites are shifted then processed in

15

Figure 7: Activity diagram for the cumulative incremental (CIncH) algorithm.

Read In Genotype Sample

Initialize Decodings

Permute Original Data

Run IncH Algorithm

Unpermute New Decodings

Create Permutation

Run of Permutation
Strategy Complete

Merge New Decodings with
 Cumulative Decodings

[No][Yes]

Write Decoding Report

16

their natural (original) order or its reverse. The shift value is incre-
mented for each run.

• Random Permutation Strategy: A starting data site is incrementally
chosen and the remaining sites permuted randomly.

Several variations on the Natural Order Strategy have been implemented
with the total number of permutations available 2M where M is the num-
ber of data sites. For the Random Permutation Strategy all M ! permuta-
tions are possible. No precaution has been taken to avoid repeated random
permutations but clearly this is of no practical importance.

7.2 Applying the Inference Rules

The IncH algorithm operates as a module which is passed a list of permuted
genotypes to which it adds the set of decodings that it infers. As explained
earlier, in each extension step Rules 1 and 2 are applied only once for none of
our inferences will increase the scope of these rules. Rules 3, 4, 5, and 6 are
iterated as a group. The iterated extension rules are executed prioritized by
effectiveness, so that Rule 4 is applied if Rule 3 has failed, and so on. (See
Figure 6). It should be noted that as an optimization Rule 4 is executed
once ahead of the iteration loop. The idea of this is that Rule 4 does not
require any determination of solid nodes, so it is done ahead of the first solid
node determination.

At the end of each extension step a check on the extended nodes is
done to see that they fit a perfect phylogeny. A PP violation has occurred
if a phylogeny path from blue to green to blue exists. Checking this is
very similar to implementing Rule 4. If such a violation is detected the
IncH algorithm terminates and the decodings up to the previous step are
recorded.

7.3 Merging Decodings

An idea that is central to the CIncH algorithm is that decodings of a par-
ticular genotype produced by repeated runs of the IncH algorithm may be
merged into more complete decodings. If two inferred haplotypes have no
site at which one has a 0 and the other a 1 then they can be merged. Merging
is creating a new haplotype with a 1 or 0 where either of the two originals
has a 1 or 0. The process just amounts to using one string to replace some
X’s in the other.

17

However deciding whether to merge two haplotypes is more complicated
than deciding if they can be merged. To insure correct decodings we must
unambiguously determine which inferred haplotypes from each decoding pair
should be merged. We will write ha ∼ hb if the haplotypes ha and hb can
be merged and ha 6∼ hb if they cannot. The haplotype that is produced by
merging ha and hb we shall represent by ha ⊕ hb

Decoding Merge Rule Let h0, h1, h2, and h3 be strings of equal length
from {0, 1,X} with the unordered pairs (h0, h1) and (h2, h3) partial decodings
of a genotype g.
• If h0 = h1 and h0 ∼ h2 and h1 ∼ h3, then (h0 ⊕ h2, h1 ⊕ h3) is the correctly
merged decoding of g.
•If h0 ∼ h2 and h1 ∼ h3 and either h0 6∼ h3 or h1 6∼ h2, then (h0 ⊕ h2, h1 ⊕ h3)
is the correctly merged decoding of g.
•If h1 ∼ h2 and h0 ∼ h3 and either h1 6∼ h3 or h0 6∼ h2, then (h1 ⊕ h2, h0 ⊕ h3)
is the correctly merged decoding of g.

The first part of the rule covers a special case in which one decoding is
homozygous and either merge order is correct. The last two parts handle
the usual situation in which one merge order is possible but the other is
not. This amounts to finding a 2 in the genotype which both decoding pairs
have explained. If this can be done the site unambiguously shows which
haplotypes correspond to one another.

It may be that no common 2 has been decoded. In such a case either
merge order is possible and we cannot merge the decodings with certainty.
When this happens the algorithm retains both decodings and attempts to
merge them both with any new run decodings that are obtained. Often after
a third decoding is merged with one of them, the two can be merged. Stor-
ing multiple decodings can lead to eventual complete decoding or capture
potentially useful information about the complete decoding.

There is however the worry that unsuccessful merging might cause the
number of unmerged decodings to grow in proportion to the number of 2’s in
the genotype. This would not be desirable for several reasons. An important
one is that merging can become computationally complex: each run decoding
must be checked for merging with all existing decodings; and if a merge is
done its result must be checked for merging with all others. The problem of
accumulating unmerged decodings is analogous to the well-known “Birthday
Problem” with the 2 sites as the days and a decoding’s decoded 2 sites as
its birthday(s). In fact the probability of adding an unmerged decoding is
lower than adding an individual with an unique birthday in the “Birthday

18

Problem” solution because the decodings can have more than one birthday
(i.e. decoded 2 site) and some birthdays can be common (i.e. some 2 sites
are easier to decode). The probabilities weigh heavily against long lists of
unmerged decodings just as they do against large sets of people with no two
sharing a birthday.

8 Design of the Java Program

Our theoretical development of the IncH and CIncH algorithms has been ac-
companied by development of a computer program which implements both.
The development and testing of the program has been a large part of this
project and occasionally aided development of the algorithms themselves.

We here give a brief description of the program design. The implementa-
tion is in Java and in this portion of the paper it is assumed that the reader
has at least a casual acquaintance with Java and object-oriented program-
ming. Figure 8 shows the major classes and their use relations. We shall in
turn describe each major class and the role it plays in the algorithms. In
the text the names of Java classes appear in bolder font.

8.1 Suite

The class Suite is the main class. Suite extends the Java class JPanel and
provides the basic user interface. That interface is a JTabbedPane with
four JFrames. Suite creates an instance of JenHap and an instance of Geno-
typer, each of which supplies one of the four JFrames. These two classes are
described below. The other two JFrames come from two simple classes How-
ToUse and About. These JFrames display information of the type indicated
by their names. The classes Suite, HowToUse, and About are essentially the
same as in M. Ewald’s implementation of Damaschke’s IHI algorithm.

8.2 Genotyper

The class Genotyper extends JPanel to provide its own interface and may
be used to generate test data. The user sets the number of data sites for
the sample and the sample size. Genotyper builds up a PP set of haplo-
types through a process of random exclusive site mutations. The number
of haplotypes generated is always one greater than the number of bits. The
generated haplotypes are randomly selected (with replacement) and paired
to create the genotype data. The user may specify a maximum ratio of the
frequency of the most common haplotype in the population to the least.

19

Figure 8: Class diagram for Java implementation of the cumulative incremental
haplotyping (CIncH) algorithm.

Suite

main()

JenHap

Genotyper

1 1

creates

0012X200X...
110XX1000...
X10011121...
1011222010...
1X00212100..

Genotype
Data File

 can
 generate

1

1
creates

readsG1: 0012X200X...
 h1: 001100000...
 h2: 001001000...
G2: X10011121...
 h1: 110011101...
 h2: 010011111...

Genotype
Decoding File

writes

HaploSorter

has

1

1

GenoDecoding

runRecord

1
1

has

1 1

n

n

has a
list of

has a
list of

Permuter

has

(un)permutes

1

1

1

1

has

processes

Edge

Vertex

has a
list of

1

n

has a
list of 1

n
1

2

has two

1

1

has

InferenceEngine

1

0

gives answers

20

This to simulate natural haplotype frequency variations in populations and
samples. Both the haplotypes and genotypes are written to files specified
by the user.

This class is largely the same as in M. Ewald’s implementation of Dam-
aschke’s IHI algorithm. One important addition is that when Genotyper
generates data for a new problem it passes the generated haplotypes to the
helper class HaploSorter. This is done so that when testing the program
on generated data, HaploSorter which helps in reporting the results of the
decoding, may check the correctness of the inferred haplotypes and report
it. If a sample file is used which has not been newly generated then no check
for haplotype accuracy is done.

8.3 JenHap

JenHap also extends JPanel to display the interface for the CIncH algorithm
and is the control class for the cumulative algorithm. The user directs
the program to the sample file and specifies an output file into which the
program writes the accumulated decodings. The user selects a run strategy
and JenHap controls the overall execution. The JPanel also displays a large
text area in which status and decoding results are available to the user.

At start up, Jenhap creates an instance of the Permuter class, the Infer-
enceEngine class, and the HaploSorter class. It uses the Permuter to permute
data and decodings for individual runs of the IncH algorithm. The Infer-
enceEngine executes the IncH algorithm. The HaploSorter aids in reporting
the inferred haplotypes. For each new haplotyping problem JenHap creates
and maintains ArrayLists of GenoDecodings and runRecords which contain
both the sample data and inferred decodings.

The JenHap class executes a run strategy as a series of single run steps.
For each single run step JenHap invokes the IncH algorithm but it must
also pre-process the genotype data and post-process the run decodings. The
single run step process then is as follows:

1. Permute, using Permuter, the sample data in the list of runRecords.

2. Call the InferenceEngine to infer the haplotypes from the list of per-
muted runRecords.

3. Un-permute the decodings which the InferenceEngine has written into
the runRecords.

4. Call each GenoDecoding in the list to try to merge the new run decod-
ings in the runRecords.

21

This single run process is repeated until the chosen run strategy is complete.
The user has the following run strategy options:

• Even Start Positions (ESP) - Use the natural ordering of data sites
and starting from every even data site execute a single run.

• All Start Positions (ASP) - Use the natural ordering of data sites and
starting from every data site execute a single run.

• Reverse - Add the reverse permutations to either of the above options.
With the reverses added these options are designated as RESP and
RASP respectively.

• Random Permutations (RPM) - Execute a specified number of runs
using pseudo-random permutations.

• RPM forever - The program continues to run with pseudo-random
permutations until stopped by the user.

Upon completion of the run strategy the program writes to file the genotype
decodings. These are also displayed in the text area of the JPanel along with
a list of inferred haplotypes and a few relevant statistics. If the decoding
has been done using a sample file newly generated by Genotyper then the
correctness of the inferred haplotypes is reported. When the program is run-
ning the RPM forever strategy, the status and decoding results are updated
occasionally.

When one strategy option has been completed another may be applied to
the same problem so that the decodings are either improved or unchanged.

8.4 GenoDecoding and runRecord

The GenoDecoding class stores the accumulated decoding information and
handles the details of merging decodings. GenoDecoding contains one pri-
mary decoding but if additional decodings are found which cannot be merged
they are stored in a LinkedList. The runRecord is a simpler class with a geno-
type and a single run decoding.

When a new genotype sample file is read by JenHap, it creates a Gen-
oDecoding for each unique genotype. The GenoDecoding in turn creates a
runRecord and an exclusive one-to-one relation holds between the two for the
life of the problem. JenHap maintains lists of both classes and clears them
when a new genotype input file is read. The list of runRecords is the internal
data which is permuted, passed to the InferenceEngine, returned with the in-
ferred decodings, and un-permuted. The list of GenoDecodings accumulates

22

the decoding information with each merging its own runRecord after every
IncH algorithm execution. If the new run decoding can be correctly merged
with an existing decoding so to improve it then GenoDecoding will attempt
to merge all the existing decodings. If however the new run decoding cannot
be safely merged, it is added to GenoDecoding’s list of decodings.

8.5 Permuter

A single instance of the Permuter is created and used by JenHap. This util-
ity class has functions to process the list of runRecords it is passed when
called. It is called first to permute the (original) genotype data for every
runRecord and later to un-permute the new run decodings for each run-
Record. It handles both the natural order and pseudo-random permutation
situations. When the program is running the random permutation strategy
the Permuter generates the next permutation to be used by incrementing the
start position and then choosing the other sites randomly. The permutation
is stored as an integer array and used to un-permute the new decodings.

8.6 InferenceEngine

The IncH algorithm is implemented here as shown in Figure 6. A singleton
InferenceEngine is created and used by JenHap. When called by JenHap to
execute a run of the algorithm, the InferenceEngine is passed an ArrayList of
runRecords. One initial Vertex is created, as is an Edge instance for each
runRecord. Each Edge has two (not necessarily distinct) Vertexes. The
Edges realize the edges of the sample graph Gk and the Vertexes realize
the haplotype-nodes. There are member functions for each of the inference
rules, for solid checking, edge adjustment, etc.

As the program has been designed to run indefinitely no member in-
stances are created by the InferenceEngine. The lists of Edges and Vertexes
that it uses for inference are automatic objects. When control passes back
to JenHap from the InferenceEngine after a run of the IncH algorithm all
Edges and Vertexes are de-referenced and that memory may be freed by the
garbage collector.

8.7 Edge and Vertex

When the InferenceEngine is called to infer the haplotypes from the list of
runRecords that it is passed, it creates a single initial Vertex and creates
one Edge for each runRecord’s (permuted) genotype. Each Edge knows its
runRecord and two (not necessarily distinct) Vertexes but not vice versa. As

23

the algorithm proceeds through the extension steps the resolved Edges reset
their type from their runRecords. When an Edge cannot be resolved it writes
its partial decoding (that is the last certain values of its two Vertexes) to its
runRecord, then it is dropped from the list and de-referenced. The Vertex
list grows as split nodes are found. Each Vertex stores its inferred bit vector
as both a StringBuffer and as a BitSet. The BitSet representation allows for
fast phylogeny path checking.

9 Algorithm Complexity

We shall now consider the computational complexity of the major operations
of in the CIncH and IncH algorithms. First we must consider how to reckon
the complexity of path checking which is based on bitwise operations on
the k-haplotype bit vectors. With or without using the bitwise operations,
checking if a sequence of three k-haplotypes lie in a Pk path is O(k). How-
ever using the bitwise operations reduces the time by a very large constant
factor because of Java’s handling of arbitrarily large integers and BitSets.
Indeed it is very likely that for the lengths (< 500 bits) of the bit vectors
of interest in the haplotyping problem all testing will show path checking to
be constant time operation. We shall note this practical complexity along
with the theoretical.

Let m be the genotype length and n be the sample size.

9.1 The IncH Algorithm

9.1.1 Inference Rules

Rules 1, 2, 3, and the Recovery Rule for Missing Data each require one pass
through the Edge list. Their execution then is O(n).

Rules 4 and 5 each fix an end node and allow two other path nodes to
range all possibilities. Thus if we use the linear complexity for path check-
ing we get a fairly high worst-case complexity that is O(m3). However this
reduces to quadratic complexity if we use the constant time path checking
estimate.

Rule 6 seeks, for each 01-edge, an extended node and then checks all unex-
tended nodes for path inclusion. This gives a complexity that is O(m2n). If
we take path checking to be constant time then this reduces to O(mn).

24

9.1.2 Solid Checking

The blue-green path method requires at most two passes through the Vertex
list with the extended nodes being checked in the first pass and the candi-
dates in the second. Thus the operation is O(m2) or O(m) if we take path
checking as constant time.

The 01 path method if done in the case where only one color extension
is made, requires checking path inclusion for each non-solid extended node
on every 01-edge path. This gives a complexity that is O(m2n). If done to
the candidates from the blue-green method the complexity is O(mn). These
reduce to O(mn) and O(n) respectfully if path checking is taken as a con-
stant time operation. Notice about the one color O(m2n) case, this will be
done at most four times per extension step because if only one extension
color exists then Rule 3 has never been successful.

9.1.3 Conclusions

In order to make a final judgement on the computational complexity of
the IncH algorithm a bound must be set on how many times each of these
operations may be executed during an extension step. Clearly Rules 1, 2,
and the Recovery Rule for Missing Data are only done once per extension
step and so together are only O(mn) for an IncH run. So the question of
complexity comes down to a question of how many times iterations of the
main loop (in which Rules 3, 4, and 6 are called) is possible for a given
extension step. The loop is of course iterated so long as nodes are being
extended but how long can that process drag out?

The Rules 4, 5, and 6 all by nature fill in subtrees of one color. And if
the three are all run twice they have completely filled the subtrees to which
they can be applied. Thus if the main loop is to be iterate more than a
few times it must be that Rule 3 is extending nodes every few iterations.
Is this possible? The Pk tree would have to be elongated and the 01-edges
in a very unfavorable arrangement and order on the actual Edge list. In
such an extreme case we might see k calls to Rules 3, 4, 5, and 6 in an
extension step. It might even be possible to construct a problem sample
set where many permutations yield a time complexity similar to the worst
imaginable case. That would be k calls to Rule 6 are made at each extension
step for O(m3n) (or O(m2n) with constant time path checking) for an IncH
algorithm run. But the odds of such happening are so slight especially for
large problems as to be of only theoretical interest.

25

For practical purposes we expect the average time complexity of the IncH
algorithm to be dominated by the application of Rules 3, 4, and 5 which
will normally complete the extension step in only a few iterations. An upper
bound on the iteration of the main loop ought to be the height of the Pk tree
but that should normally be a loose bound only approached when the Edge
arrangements are very unfavorable. By this average case analysis we would
expect to see the time complexity of the IncH algorithm to be asymptotic to
(αmn + βm3) where α and β are constants. This reduces to (αmn + βm2)
if path checking is considered a constant time operation.

9.2 Permuting

Permutation of the genotype data and un-permutation of the run decodings
are both O(mn) complexity and done once per IncH algorithm run.

9.3 Merging

Merging complexity is O(mn) per IncH run if we assume that each Gen-
oDecoding has only one decoding. If the number of decodings were to grow
like m for all the genotypes then merging complexity could be as bad as
O(m3n). However as seen above the total number of unmerged decodings,
will tend to be low compared to m.

10 Performance of the Program

10.1 Correctness of the Algorithm

The Java program implementing the CIncH algorithm is too long and com-
plex to verify its accuracy by any kind of hand execution or step through.
We shall instead present test results demonstrating correct results for a very
large variety of problem parameters.

The program includes a test data generator, the Genotyper class, and
when the program is executed upon generated test data the inferred hap-
lotypes are checked for correctness. An inferred haplotype is considered
correct if it is in the perfect phylogeny generated by the Genotyper. In a
formal test of the algorithm’s correctness under varied parameters a total of
18,029 correct haplotypes and no incorrect haplotypes were inferred. (See
Table 1.) In addition to this formal test, no incorrect haplotypes have yet
been inferred in a great many informal or indirect tests. The logic of the

26

Table 1: Test of inferred haplotype correctness. A total of 18,029 haplotypes
were inferred in 560 trials with varying problem parameters. All were correct.

genotype sample missing no inferred average
length X size data trials haplotypes found

10 X 10 0% 20 137 6.85
10 X 20 0% 20 200 10.00
10 X 30 0% 20 213 10.65
10 X 20 10% 20 183 9.15
10 X 30 10% 20 196 9.80
10 X 30 25% 20 177 8.85
10 X 40 25% 20 196 9.8
20 X 20 0% 20 268 13.40
20 X 40 0% 20 362 18.10
20 X 60 0% 20 399 19.95
20 X 40 10% 20 342 17.10
20 X 60 10% 20 409 20.45
20 X 60 25% 20 355 17.75
20 X 80 25% 20 370 18.50
40 X 40 0% 20 545 27.25
40 X 80 0% 20 727 36.35
40 X 120 0% 20 785 39.25
40 X 80 10% 20 663 33.15
40 X 120 10% 20 755 37.75
40 X 120 25% 20 625 31.25
40 X 160 25% 20 725 36.25
80 X 80 0% 20 1049 52.45
80 X 160 0% 20 1430 71.50
80 X 240 0% 20 1534 76.70
80 X 160 10% 20 1295 64.75
80 X 240 10% 20 1485 74.25
80 X 240 25% 20 1171 58.55
80 X 320 25% 20 1433 71.65

27

data generator and the correctness check are very simple and have been
independently tested.

Also an internal check that the algorithm is working correctly is done
after each extension step. This checks that the extended haplotypes actually
form a PP. If a PP violation is detected the IncH algorithm is terminated,
with the current extension step excluded from the decoding for the run. In
practice such a PP violation would give the first indication of a problem
with the algorithm or sample data. In the formal trial no PP violations
occurred.

We conclude that if any fault exists in the algorithm or its implementa-
tion it must be fleetingly rare and/or masked by some bias of the test data
generator.

10.2 Learning Rate and Sample Size

The efficiency of the program is also of importance. The trial results in
Table 1 show that for complete data one might expect to find all the m + 1
haplotypes with a sample size of about m log m where m is the genotype
length. The near total discovery of the PP haplotypes in tests with a sam-
ple size of ≥ m log m seems in good accord with Damaschke’s estimate of
required sample size. These trials used the MAX WEIGHT of 5 or 2 so
there were no extremely common or rare haplotypes. The tests also indicate
that an increase in sample size can fully compensate for missing data.

One thing not shown in the Table 1 is the number of iterations of the
IncH algorithm required to achieve the haplotype decodings. As one might
expect the trials with much missing data require many more iterations. To
examine the learning rate of the algorithm we have run a series of tests
with the genotype length fixed at 50. The missing data rates used were
0%, 10%, and 20%; the sample sizes were 50, 100, and 150. Rather than
measure the learning or decoding by the number of haplotypes or genotypes
fully decoded, we have used the percentage of all the data sites decoded.
This gives a much smoother picture of the progress of the algorithm than
the others which tend to shake out in bunches. It should be noted that
the percent of decoded data sites always begins fairly high because of the
number of 1’s and 0’s in the sample. (By our calculation that number is
about 2/3 of the readable sample data.) These homozygous data sites are
always decoded by the program in the first step.

The results of these tests are shown in Figures 9, 10, and 11. Each
curve is an average of 5 separate trials. Note the change of the scale on the
horizontal axis from Figure 9 (no missing data) to Figure 10 (10% missing

28

Figure 9: The percentage of decoded sites versus number of Inch runs for
complete genotype data. Genotype length was 50.

Sample Size = 150

Sample Size = 100

Sample Size = 50

data) to Figure 11 (20% missing data). Compared to the complete data
case, learning with 10% missing data takes about 10 times as many IncH
runs and learning with 20% missing data takes perhaps 35 times as many.
In all cases a larger data sample allowed the program to decode a higher
percentage of sites and do so in fewer IncH runs.

10.3 Time Performance

Three tests were done to evaluate the effect on the program execution time
of varying the size parameters of the genotype data input. These tests have
all been done with samples with 10% missing data. All the execution time
per run values are based on timing in the JenHap class of the execution of
the RPM strategy with 100 permutations. For each parameter set such a
time test of 10 different genotype samples was done and the average of the
times was used. All tests were executed on an older PentiumII machine with
600mhz processor.

In the first such test the genotype length was fixed at 50 while the sample
size was increased from 25 to 500. See Figure 12. Given the test results, it
seems reasonable to conclude a linear relationship between sample size and

29

Figure 10: The percentage of decoded sites versus number of Inch runs for
genotype samples with 10% missing data. Genotype length was 50.

Sample Size = 150

Sample Size = 100

Sample Size = 50

Figure 11: The percentage of decoded sites versus number of Inch runs for
genotype samples with 20% missing data. Genotype length was 50.

Sample Size = 150

Sample Size = 100

Sample Size = 50

30

Figure 12: Increasing sample size versus execution time, with genotype length
fixed at 50 bits.

IncH execution time. This agrees with our informal average-case complexity
estimate of (αmn + βm2) which is (αmn) when the sample size is greater
than the genotype length.

For the second such test the sample size was held at 300 while the geno-
type length was increased from 10 to 200. See Figure 13. Given the test
results, it seems a linear relationship exists here between genotype length
and IncH execution time. This again agrees our average-case complexity
estimate of (αmn + βm2) which is (αmn) when the sample size is greater
than the genotype length.

In a similar test the sample size was fixed at 100 while the genotype
was increased from 80 to 400. The results are shown in Figure 14. The
test results show a time complexity that is actually better than our average
complexity estimate estimate of (αmn + βm2) which is (βm2) for m > n.

10.4 Tests with Imperfect Phylogeny Data

An important and complex issue for haplotyping algorithms based on perfect
phylogeny is how they handle genotype samples that do not support a perfect
phylogeny. Perhaps the population contains sites which have been mutated

31

Figure 13: Increasing genotype length versus execution time, with the sample
size fixed at 300.

Figure 14: Increasing genotype length versus execution time, with the sample
size fixed at 100.

32

more than once or a few “immigrant” haplotypes that fit the PP not at all
or maybe errors in the data mar an otherwise PP supporting sample.

A short series of tests of the current program were run on sample data
generated from haplotypes which do not quite form a perfect phylogeny.
The main objects of the tests were to learn if the program is stable and how
correct its decodings are when given an imperfect phylogeny data sample.
The tests were conducted as follows: a set of 41 haplotypes of 40 bits fit-
ting a PP were generated in the usual way by Genotyper; a number of the
haplotypes were randomly chosen and mutated; the mutants were assigned
a frequency one half that of their original and added to the haplotype pop-
ulation; the genotype sample was generated in the usual way. The mutants
are not guaranteed to be outside the PP but are with high probability. For
these tests only trials with actual PP violators were used.

The test results are presented in Table 2 but require a bit of explanation.
For each sub-test there are two result numbers: the upper is the total inferred
haplotypes; the lower is the number of those that were correct. The values
are the averages of 10 trials. In the columns headed 1, 2, 4, and 8 that
many mutants were added to the population and those mutants had one
random bit mutated. In the columns headed 1d, 2d, and 4d that many
mutants were added to the population and those mutants had two random
bits mutated. The trials with no missing data ran 40 RPMs, the trials with
10% missing data ran 100 RPMs, and the trials with 20% missing data ran
200 RPMs. These numbers of permutations were sufficient for the program
to cease finding haplotypes in all cases except some trials with 20% missing
data, 4 or 8 mutants, and sample size 160 where more (mostly incorrect)
haplotypes were still being inferred.

This imperfect phylogeny test was of course very limited in scope and the
test scenario may or may not be realistic, still it suggests that the program
is fairly well behaved when the data does not quite admit a PP decoding.
For instance with 10% missing data and two (single site) mutants added the
program found 90% of the haplotypes correctly with only a few extraneous
haplotypes, despite the fact that almost every run of the IncH algorithm
was terminated due to a PP violation. There is little doubt that a more
sophisticated strategy for dealing with these PP violations could allow the
CIncH algorithm to deal better with imperfect phylogeny data and become
a more flexible and reliable algorithm. Development of such strategies is
beyond the scoop of the current project but an area of interest for follow up
research.

33

Table 2: Tests with data generated from haplotypes that do not form a perfect
phylogeny. For each test a number of non-PP fitting mutant haplotypes were
added to the 41 PP fitting haplotypes.

sample missing number of added mutants
size data 0 1 2 4 8 1d 2d 4d

40x80 0% 36.8 37.0 37.0 44.5 47.5 39.3 38.0 46.3
36.8 36.4 35.6 38.7 39.1 36.8 34.6 36.8

40x120 0% 38.2 39.8 40.3 45.6 56.0 40.0 44.0 48.1
38.2 38.7 38.5 40.4 43.4 38.1 39.4 41.0

40x160 0% 39.7 40.5 42.6 51.4 53.9 42.0 44.7 51.4
39.7 39.7 40.5 43.0 44.4 39.3 40.1 41.8

40x80 10% 32.0 32.0 33.8 40.1 43.5 33.5 34.7 44.0
32.0 31.4 32.3 34.7 36.2 30.8 31.9 32.2

40x120 10% 36.4 39.0 39.9 44.6 54.3 39.6 44.6 52.2
36.4 37.9 37.0 39.1 38.1 37.5 37.4 38.5

40x160 10% 37.6 43.1 43.0 48.0 60.9 41.7 45.6 56.2
37.6 42.2 39.7 42.1 43.3 38.4 39.1 39.9

40x80 20% 27.3 28.2 29.7 34.9 34.9 25.2 28.6 39.2
27.3 25.8 25.8 27.0 23.5 23.4 21.9 26.6

40x120 20% 34.1 35.1 37.6 46.6 56.2 36.2 46.3 53.6
34.1 33.0 33.1 35.9 37.4 31.1 34.5 34.9

40x160 20% 36.9 40.3 43.5 48.7 63.1 42.4 49.5 59.6
36.9 37.9 39.1 38.3 40.7 38.1 37.8 38.5

34

Part IV

Conclusions

Both the IncH and CIncH algorithms have been shown under testing to be
correct. The learning efficiency suggests that the IncH algorithm is making
full or near full use of the perfect phylogeny information of the previous step
without actually storing or reconstructing it. More direct methods would
likely perform faster for complete genotype data admitting a PP solution,
however it is the case of incomplete genotype data that is our main interest.
Our testing indicates that the IncH algorithm is near optimal logically and
its time performance is acceptable. In our testing on a relatively slow ma-
chine, decoding for 100 site problems could be done in a few minutes and
300 site problems in an hour or so. The average execution time increases
approximately linearly with the total number of data sites in the sample
and so the algorithm is computationally scalable. The goal of creating and
implementing an effective incremental algorithm for haplotyping incomplete
genotype data has been achieved.

As a practical tool the CIncH algorithm is only as good as the per-
fect phylogeny assumption upon which it relies. If perfect phylogenies are
common at least for certain size blocks of SNP’s then likely the CIncH al-
gorithm can be a useful tool. In this regard the experiments with genotype
data generated from haplotypes that did not quite fit a PP were very sug-
gestive. Those tests showed that for missing data no more than ten percent,
the algorithm was stable when confronted with data that did not support a
PP. The algorithm still found many mostly correct haplotypes. These tests
suggest that some simple blocking scheme or other heuristic might be used to
better attack the imperfect phylogeny problem using the CIncH algorithm.
Development of such imperfect phylogeny methods seem the next step in
advancing incremental haplotyping. It is our opinion this next phase ought
be developed and tested using real world data and could lead shortly to
incremental haplotyping based on perfect phylogeny assuming an important
role in the ongoing human haplotyping project.

35

References

[1] NHGRI staff Developing a Haplotype Map of the Human Genome for
Finding Genes Related to Health and Disease National Institue of
Health. http://www.genome.gov/10001665

[2] HapMap staff About the International HapMap Project International
HapMap Project. http://www.hapmap.org/index.html.en

[3] P. Damaschke : Incremental Haplotype Inference, Phylogeny and Al-
most Bipartite Graphs 2nd RECOMB Satellite Workshop on Compu-
tational Methods for SNPs and Haplotypes

[4] E. Eskin, E. Halperin, R.M. Karp: Efficient reconstruction of haplotype
structure via perfect phylogeny, Journal of Bioinformatics and Compu-
tational. Biology 1 (2003), 1-20

[5] Eric W. Weisstein. Birthday Problem. From MathWorld–A Wolfram
Web Resource. http://mathworld.wolfram.com/BirthdayProblem.html

36

