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Abstract

There is a well known correlation between the chemical shift measured on certain
atoms of a protein and the local backbone torsion angle. This correlation makes
it possible to predict likely torsion angle intervals from given chemical shifts.
From a scatterplot of the chemical shifts against the torsion angles, the necessary
parameters to apply Bayesian inference can be estimated. In this way likely
torsion angle intervals for given chemical shifts can be determined. A linear
optimization problem is formulated that chooses a minimal number of torsion
angle intervals that are likely to contain the true torsion angle. The intervals
are chosen in such a way that a specified error-probability to exclude the true
torsion angle is guaranteed. To make the inference independent of the prior
distribution in the database, the linear program is formulated so that it yields an
optimal strategy for a worst-case prior distribution. The problem and its optimal
solutions have several interesting properties that are discussed in this report.
Several data-sets obtained by measurements on different nuclei are available for
each torsion angle. Combining them leads to better predictions than using a
single data-set. Two possible strategies of combining several data-sets to predict
torsion angle intervals are discussed and contrasted.
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1 Introduction

Predicting the ternary structure of a protein from its amino-acid sequence is an
important problem in molecular biology. This three-dimensional structure can
be determined experimentally using different techniques, as for example X-ray
crystallography and Nuclear Magnetic Resonance (NMR). The cost for applying
these methods is much higher than the cost for sequencing a protein, thus the
number of structure resolved proteins is small compared to the sequence data
available. But the biological function of a protein is dependent on its three
dimensional structure, which makes this problem of predicting or determining a
protein structure one of the most important in computational structural biology.
In this project we study a linear optimization problem that arises in the context
of such a protein structure prediction task. Although the focus of this work lies
on the mathematical problem, which might be of independent interest, there
will be frequent references to the biological application.

A measure from NMR spectroscopy called chemical shift is sensitive on local
torsion angles in the protein backbone. Adopting a probabilistic model, we use
samples of the chemical shift values for known torsion angles and apply Bayesian
inference to reverse this relation. This enables us to predict likely torsion angles
from chemical shift values. These predictions can serve as angle-restraints in
3D-structure calculation. The parameters for Bayesian inference are estimated
from scatterplots of the chemical shift versus torsion angle. The exact problem
setting is discussed in section 4. Then we study the problem of finding an op-
timal guessing strategy of torsion angle intervals for given chemical shifts. The
problem is formulated for an unknown prior distribution, so as to yield the opti-
mal solution in the worst-case. This results in a linear programming model. The
mathematical model and its properties are discussed in section 5, which com-
prises the core of this project work. Several enhancements of the mathematical
model and the applied methods are discussed in section 6. Two extensions of
the mathematical model are formulated which allow for a compromise of total
prior-independence and fixed prior-distributions. Different methods of combin-
ing several data-sets to infer torsion angle intervals are presented. To conclude
the section, a possible heuristic for partitioning the scatterplot to suit our prob-
lem formulation is discussed. In section 7 the developed methods are applied to
real data to illustrate the theoretical aspects of the previous sections.

This work is part of an ongoing research project. Many interesting questions
arose during the course of this project, which could not be investigated due to
the limited scope of this work. Probably the most important of these questions
is whether there exists an algorithm to solve this problem apart from those for
the general linear programming problem.

1.1 Some remarks about the notation

Most of the symbols introduced later represent vectors and matrices. When it is
clear from the context no special notation is used to distinguish between vectors
and scalars. Only if the distinction should be stressed are vectors marked with a
small arrow (e.g. ~v). All the vectors are column vectors. To refer to th i-th row-
or column-vector of a matrix x the notation xi(·) or x(·)i is used respectively.
The symbol := is used to indicate a definition.
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2 Background

Proteins are polypeptide chains consisting of a large number of amino acid
residues. The order in which the 20 different amino acids are arranged is called
the primary structure of a protein. The biological function of a protein is of-
ten dependent on its three-dimensional structure [Zha01]. A polypeptide chain
consists of a regularly repeating part, called the the backbone. The peptide
bonds between two successive residues is a relatively rigid planar structure, and
thus rotation of this bond is restricted. There is however rotational freedom
about the single bond that link each Cα atom to the N and C atoms of peptide
bonds. It is common to denote the torsion angle between Cα and N as φ and
the torsion angle between C and N with ψ [Coz00]. These angles control the
three-dimensional structure of the protein backbone.

Nuclear Magnetic Resonance (NMR) can be used to obtain a measure called
Chemical Shift (δ) on certain isotopes of an atom. The dependence of the
chemical shift on the protein structure is a well recognized fact. We use the
inverse of this relation to try to infer intervals of torsion angles for a given
chemical shift. The chemical shift is a function of the types of atoms present
in the molecular environment around the observed nucleus and their relative
positions in this environment. The analytical form of this function is strongly
non-linear and unknown. A probabilistic approach is adopted to approximate
this function. We assume all the contributions to the chemical shifts different
from the torsion angles to be random, which expresses our ignorance of these
factors [BDG04].

The chemical shifts lists of different proteins were downloaded from the pub-
lic database BMRB1 together with the corresponding protein structure from
PDB2. For each of the nuclei Cα, Cβ , C ′,HN ,Hα and torsion angle φ and ψ, a
scatterplot showing the chemical shift against the backbone angle was obtained.
Each scatterplot contains between 350 and 2400 points. Examples of such scat-
terplots for the amino acid Alanine and torsion angle φ are given in appendix A.
In this project these scatterplots are used to estimate probabilities and apply
Bayesian inference to determine likely torsion angle intervals for given chemical
shifts.

The predicted torsion angle intervals can serve as angle-restraints in 3D-
structure calculation programs as for example X-Plor3. There are several dif-
ferent approaches to structure calculations. Most of them take advantage of
structural restraints, that is defined allowed distance or angle intervals. If a
calculated structure contains a distance or an angle outside the allowed inter-
val, a restraint violation occurs. There is often an energy-term associated with
restraint violations. The structure calculation heuristic acts to minimize the
energy-terms associated with restraint violations. Within the allowed distance
or angle interval the energy-term is zero.

That angle-restraints can lead to substantial improvements in the quality of
the predicted structure has been shown in [CDB99].

1http://www.bmrb.wisc.edu
2http://www.rcsb.org/pdb
3http://xplor.csb.yale.edu/xplor/
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3 Some results from optimization theory

In this section we state some basic results from optimization theory, in particular
linear programming. These results provide the theoretical basis the following
sections build on. The proofs to the theorems can be found in most textbooks
about optimization, as for example [NS96]. The below stated definitions and
theorems are given in [AEP04]4

We consider throughout this section the linear optimization problem

z∗ := max
x1,...,xn

c1x1 + c2x2 + . . . , cnxn

subject to

a11x1 + a12x2 + . . . + a1nxn ≥ b1

a21x1 + a22x2 + . . . + a2nxn ≥ b2

...

am1x1 + am2x2 + . . . + amnxn ≥ bm

x1, x2, . . . , xn ≥ 0

which is conveniently written in matrix form as

z∗ :=max
x

cT x

s.t. Ax ≥ b

x ≥ 0n

(3.1)

The function maxx cT x is commonly referred to as the objective function and
z∗ the objective value. The linear constraints Ax ≥ b, x > 0n define a convex
polyhedron, which is called the feasible region. Consequently an x which fulfills
the constraints is called a feasible solution.
Some constraints may complicate a problem considerable. An important tech-
nique known as Lagrangian relaxation is to move the complicating constraints
into the objective function.

Definition 3.1 (Lagrangian function). Let λ ∈ R
m be an arbitrary vector.

We define the Lagrangian function

L(x, λ) := cT x + λT (Ax − b)

Definition 3.2 (Lagrange multiplier). The vector λ∗ ∈ R
m is called a La-

grange multiplier if it is non-negative and if z∗ = maxx≥0n L(x, λ∗) holds.

At a Lagrange multiplier λ∗ it is possible to obtain optimal solutions to (3.1)
from this relaxed problem.

Theorem 3.1 (Lagrange multiplier and global optima). Let λ∗ be a La-
grange multiplier. Then x∗ is an optimal solution to (3.1) if and only if x∗ is
feasible in (3.1) and

x∗ ∈ arg max
x≥0n

L(x, λ∗), and λ∗(Ax − b)T = 0n

4In [AEP04] the theorems are often stated as minimization problems and where applicable
without assuming linearity.
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This leads us directly to the problem of finding a Lagrange multiplier, which is
called the Lagrangian dual problem.

Definition 3.3 (Lagrangian dual problem). The Lagrangian dual function
is given by

θ(λ) = max
x≥0n

L(x, λ)

and the Lagrangian dual problem by

θ∗ := min
λ>0m

θ(λ) (3.2)

To every linear program there is a corresponding linear programming dual (LP-
Dual) formulation that is closely related to the primal problem. We can obtain
the LP-dual from the Lagrangian dual by rewriting it as

θ(λ) := max
x≥0n

{cT x + λT (Ax − b)} = −bT λ + max
x≥0n

(c + AT λ)T x

and observing that

θ(λ) =

{

−bT λ, if −AT λ ≥ c
∞ otherwise

The LP-Dual formulation becomes then

y∗ := min
λ

bT λ

s.t. AT λ ≥ c

λ ≤ 0m

(3.3)

The following two results establish the relation between the primal and the dual
problem.

Theorem 3.2 (Weak duality theorem). Let x and λ be feasible in (3.1) and
(3.3) respectively, then cT x ≤ bT λ.

The weak duality theorem holds also for non-linear programs. But for linear
programs we have an even stronger result:

Theorem 3.3 (Strong duality theorem). If one of the problems (3.1) and
(3.3) has a finite optimal solution, then so does its dual, and their optimal
objective value is equal.

By the way the LP-Dual was constructed, it is clear that weak and strong
duality hold in particular for the Lagrangian dual problem 3.2. As it is possible
to obtain the dual-optimal solution from the primal-optimal solution and vice
versa, it is sufficient to solve either problem.

Lagrangian duality will take a prominent role in the following discussion. There-
fore we state here some further properties and results.
We define the effective domain of λ of problem (3.2) as

Dθ := {λ ∈ R
m|θ(λ) ≤ ∞}

Theorem 3.4 (Convexity of the dual problem). The effective domain Dθ

is convex, and θ is convex on Dθ.
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From this theorem it follows that in the Lagrangian dual function every local
minimum is also a global minimum. The Lagrangian dual function is in our case
a piecewise linear function and is at the kinks non-differentiable. The optimum
is often attained at such a kink. To deal with this situation we introduce the
notion of subgradients and subdifferentials.

Definition 3.4 (Subgradient). Let f : R
n → R be a convex function. We say

that a vector p ∈ R
n is a subgradient of f at x ∈ R

n if

f(y) ≥ f(x) + pT (y − x), y ∈ R
n

The set of such vectors p defines the subdifferential of f at x, and is denoted
∂f(x). In the case of the Lagrangian dual function, a subgradient is always easy
to obtain. Define X(λ) := arg maxx∈X L(x, λ), λ ≥ 0m.

Theorem 3.5. Consider again (3.1). Let λ ≥ 0m. If x ∈ X(λ), then Ax− b is
a subgradient to θ at λ, that is Ax − b ∈ ∂θ(λ).

The following theorem is a generalized version of theorem 3.1

Theorem 3.6 (Optimality conditions for the dual problem). Consider
the dual problem (3.2) and let λ∗ ≥ 0m. It is then optimal in (3.2) if and only
if there exists a subgradient g ∈ ∂θ(λ∗) for which holds that

g(x) ≥ 0m : λ∗
i gi = 0, i = 1, . . . ,m

4 From Scatterplots to Bayesian Models

For our inference procedure we are given data in form of scatterplots of the
chemical shift δ versus the torsion angles α for a given nucleus. This can be
thought of as sampling from an unknown distribution D, where the points in
the scatterplots correspond to the drawn samples. In other words the true
distribution D is approximated with the empirical distribution.

The δ-axis is partitioned into m intervals and similarly the torsion angle axis
into n intervals. This means that the scatterplot is partitioned into m×n boxes.
In the following we often denote a given chemical shift interval as data-element d
and the torsion angle interval as the hypothesis h. The hypothesis that contains
the true torsion angle for a given chemical shift is called the target.

Let N be the number of points in the scatterplot. For a large enough N ,
we expect the number of points observed in each box to be proportional to
the probability p(d, h). Fixing a hypothesis h, the probability p(d|h) can now
be estimated for each data-element d by simply counting the number of points
in the corresponding box of the scatterplot. In a similar fashion we can esti-
mate the probability p(h) for each hypothesis h. These are all the ingredients
for a Bayesian model. We denote the observed data elements d by indices
k = 1, . . . ,m and the hypotheses by j = 1, . . . , n. The probabilities p(d|h) are
conveniently arranged in a matrix, referred to as the likelihood matrix. The
probability to observe data-element k given the hypothesis j is then written as
pkj . Furthermore we denote the prior probability of the j-th hypothesis as qj .

For one torsion angle we have chemical shifts measurements on several, say
K, different nuclei. An ample model would therefore be to work with the K
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dimensional distributions p(d1, . . . , dK |h) Unfortunately in order to reliably es-
timate high-dimensional probabilities a vast amount of data is required. For
this project we concentrate therefore mainly on the one-dimensional marginal-
distribution p(di|h) =

∑

d1 ..
∑

di−1

∑

di+1 ..
∑

dK p(d1, . . . , dK |h). Still most of
the theoretical results developed below easily extend to the higher dimensional
case. In the case of independence of the probabilities p(d|h) for different nuclei,
the joint probabilities equals the product of the marginals. But the chemical
shifts from different nuclei given a torsion angle interval are often correlated.
This can already be seen by visual inspection of the data (see figure 1), but is
also a well known fact from biology [CDB99]. Therefore we would expect to
get tighter angle intervals from the predictions if we were able to use higher
dimensional distributions.

Figure 1: Scatterplots for amino acid Alanine, nuclei c and cα. The first two
plots show the chemical shift of c, respectively cα, against φ, whereas the latter
two plots show the chemical shift of c against cα as well as the joint distribution.
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4.1 Partitioning

It should be emphasized that the given data consists only of the scatterplots.
We have complete freedom in the choice of partitions, as long as all the parts
give rise to sensible estimates of the probabilities p(d|h). Using an adequate
partitioning scheme can greatly help to find good predictions.

Consider a scatterplot given in figure 2a), which has for some basic partition
the point counts









0 0 0 7
8 0 0 1
1 2 8 0
0 5 0 0









A good partition for our purposes could be obtained by joining columns 2
and 3 (figure 2b)). The likelihood matrix becomes









0 0 0.875
0.88 0 0.125
0.11 0.66 0
0 0.33 0









We get another valid partition by splitting the matrix along the second row and
column (figure 2c)) to obtain the likelihood matrix

[

0.5 0.5
0.5 0.5

]

This latter partition is clearly inferior for our purpose as all the structural
information is lost.

Figure 2: Different ways to partition a scatterplot

There are different factors that characterize a good partition. We could
paraphrase it as a good partition should choose the intervals of the two axes in
such a way, that adjacent parts have significantly different distributions. The
problem of partitioning the data for such an inference task is the subject of the
Master’s thesis ”Data Pre-Processing for LETA-NMR: Prediction of Protein
Structure from Raw NMR Data” [Koc05]. The author takes the approach of
choosing the parts so that the distribution in each part is uniform. The partition
is found by applying statistical tests as well as using different heuristics.

Depending on the induced partition we expect a number of boxes to be
void of points. These ”holes” in the data are very interesting for the inference,
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since they represent regions of low probability. But because we are using only
a sample of limited size, we can not conclude that these parts really have zero
probability and no future sample comes to lie in these regions. This issue of
”holes in data” is thoroughly discussed in [BDG04].

5 Mathematical model

As discussed in the previous section we can estimate all the parameters we need
for applying Bayesian inference from the scatterplots. Our goal is, for a set of
given observations D, to find the most likely hypothesis, that is maxh P (h|D).

The famous Bayes’ theorem states that P (h|D) = P (h)P (D|h)
P (D) and hence we can

easily find the most likely hypothesis hmap by simply solving the problem

hmap = arg max
h

∑

d∈D

P (h)P (d|h)

or using the notation introduced in the previous section

hmap = arg max
j

∑

k∈{1,...,m}

qjpkj

We can generalize the problem so as to devise a (probabilistic) strategy to
find the K hypotheses that contain the target with the highest probability and so
to increase the probability that the target is among the chosen hypotheses. Still
we are interested in selecting only a few hypotheses that contain the target with
high probability. We are faced with the problem of optimizing two conflicting
parameters, namely maximizing the number of hypotheses that are discarded
and minimizing the probability to throw away the target.

Let xkj denote the probability to discard hypothesis j if data element k is
observed. Further we denote the maximum probability to discard the target
with ε and refer to it as the error probability. The expected number of hy-
potheses which are discarded, that is

∑m
k=1

∑n
j=1 qjpkj

∑n
i=1 xki is referred to

as the exclusiveness of the strategy. Furthermore, we introduce a weight wi

corresponding to each hypothesis.5 In the context of our application it is use-
ful to identify the weight wi with the length of the torsion angle interval that
comprises the i-th hypothesis. This accounts for the fact that excluding long
torsion angle intervals is advantageous for our goal to get tight angle-restraints.

For a fixed error probability, we can then formulate the problem as the linear
program

max
x

m
∑

k=1

n
∑

j=1

qjpkj

n
∑

i=1

wixki

s.t.

m
∑

k=1

n
∑

j=1

qjpkjxkj ≤ ε

0 ≤ xkj ≤ 1, ∀k,∀j

(5.1)

5In the following the term exclusiveness is slightly abused and refers even to this weighted
formula.
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This is a fractional knapsack problem which is trivial to solve. We order the
xki with decreasing values of wi

∑n
j=1 qjpkj/(qipki) and set the corresponding

xki to 1 until the error probability ε is exceeded. The last xki can be fractional.
It might be too restrictive to assume that the prior-probabilities in the scat-

terplots are also applicable to the instances we want to predict.6 We therefore
consider the prior distribution to be unknown. Equivalently we can think of an
adversary selecting a prior distribution from a set of priors. Our goal is to max-
imize the exclusiveness under the given error-probability for the worst-possible
prior distribution q∗. In the most general case the prior distribution can be any
(q1, . . . , qn) such that

∑n
j=1 qj = 1, qj ≥ 0. This is a simplex in n-dimensional

space with vertices v1 = (1, 0, . . .), v2 = (0, 1, 0, . . .), . . . , vn = (0, 0, . . . , 1).
The key observation is that for a fixed xkj the exclusiveness is a linear

function in qj and so the optimal value is always attained at an extreme point of
the feasible set. Each extreme point of the prior set can therefore be identified
with a hypothesis j. The following mathematical program reflects this more
general situation:

z∗ := max
x

min
j

m
∑

k=1

pkj

n
∑

i=1

wixki

s.t.

m
∑

k=1

pkjxkj ≤ ε, ∀j

0 ≤ xkj ≤ 1, ∀k,∀j

(5.2)

By introducing a dummy variable u we can rewrite it as a linear program:

z∗ := max
x,u

u

s.t.

m
∑

k=1

pkj

n
∑

i=1

wixki ≥ u, ∀j

m
∑

k=1

pkjxkj ≤ ε ,∀j

0 ≤ xkj ≤ 1, ∀k,∀j

(5.3)

We refer to the first set of constraints as the exclusiveness constraints and
the second set of constraints as the knapsack constraints.

The linear program (5.3) can be solved with any standard linear program-
ming solver. Still it is worth-while to study it in depth, to gain a better under-
standing of its behavior and properties.

5.1 Lagrangian dual

While the bounds on x as well as the knapsack constraints are easy to deal
with, the exclusiveness constraints complicate the problem considerably. It is

6In our application a protein that is to be predicted may be predominated by either of
the structural motifs alpha-helix or beta-strand. Such structures would exhibit a significantly
different angle frequency than those in the database.
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therefore natural to Lagrangian relax these constraints, in order to get a simpler
problem.

We define the feasible set X := {x|
∑m

k=1 pkjxkj ≤ ε, 0 ≤ xkj ≤ 1}. By
introducing dual variables q ≥ 0 we get the Lagrangian function

L(x, u, q) = u +

n
∑

j=1

qj(

m
∑

k=1

pkj

n
∑

i=1

wixki − u)

and the dual function
θ(q) = max

x∈X,u
L(x, u, q) (5.4)

The Lagrangian dual problem is then given by minq θ(q). The maximization
problem in (5.4) can be separated for u and x and we get

θ(q) = max
u

u(1 −

n
∑

j=1

qj) + max
x∈X

n
∑

j=1

m
∑

k=1

qjpkj

n
∑

i=1

wixki

We observe that if
∑n

j=1 qj < 1 in the first term then the problem is unbounded

in u and hence
∑n

j=1 qj ≥ 1. Moreover the second term is linearly increasing in

qj . The minimum is therefore attained at
∑n

j=1 qj = 1. The problem can now
be stated as

min
q

θ(q) = min
q

max
x∈X

n
∑

j=1

m
∑

k=1

qjpkj

n
∑

i=1

wixki (5.5)

From Theorem 3.4 we know that θ(q) is convex in q. Furthermore its set
of optimal solutions (Lagrange multiplier) is convex. By strong duality at an
optimal solution q∗, there exists a nonempty set of primal feasible solutions
(x∗, u∗) such that θ∗ = z∗.

Problem 5.2 and problem 5.5 have an interesting interpretation in the con-
text of matrix games. Where the goal in problem 5.2 is to find the exclusion
probabilities x so as to maximize exclusiveness for the worst prior distribution,
problem 5.5 represents the adversaries complementary view whose task it is to
find a prior distribution that minimizes the best exclusiveness. The optimal
dual variables q∗ therefore represent a worst-case prior distribution. That the
two different views on this problem lead to the same optimal value is in this
context a consequence of the famous minimax theorem.

Let q in (5.5) be fixed. Then we have in every column a fractional knapsack
problem that can be optimally solved using a greedy strategy, in a similar way
as for problem 5.1. The benefit bkj for each element xkj is given by bkj =
wj

∑n
i=1 qipki and the costs by the likelihood pkj . We define the utility for each

element as the benefit/cost ratio
bkj

pkj
=

wj

pkj

∑n
i=1 qipki. The optimal solution is

obtained by letting xkj = 1 with decreasing utility until the error probability ε
is exceeded. The last xkj in every column can be fractional. We define the set of
all subproblem solutions as X(q) := arg maxx∈X L(x, q). The solution obtained
using above greedy algorithm are the extreme points of the convex set X(q).

5.2 LP Dual problem

An alternative way of looking at the Lagrangian dual problem (5.5) is that we
want to choose q such that the solution obtained from the knapsack problem
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is minimized, that is to minimize the best profit by weight ratios over all the
hypotheses.

In this context it is instructive to look at the LP-dual formulation for the
problem (5.3). We introduce dual variables q, µ, y, where q is associated to the
exclusiveness constraints, µ to the knapsack constraints and the y correspond
to the upper bound constraints on the x. The LP-dual is then given by

min
q,µ,y

ε

n
∑

j=1

µj +

m
∑

k=1

n
∑

j=1

ykj

s.t.

n
∑

j=1

−qjwipkj + µipki + yki ≥ 0, ∀k,∀i

n
∑

j=1

qj = 1

qj , µj , ykj ≥ 0, ∀k,∀j

(5.6)

At an optimal solution the variables yik represent our gain if we were allowed
to exceed the upper bound constraint by one unit. The variables µj in turn
indicates our gain if could exceed the worst exclusiveness by one unit. As already
mentioned above, the qj represents the prior probabilities of the hypothesis j.

We reformulate (5.6) and substitute µ′
j = εµj :

min
q,µ′,y

n
∑

j=1

(µ′
j +

m
∑

k=1

yjk)

s.t.
wi

pki

n
∑

j=1

qjpkj ≤
µ′

i

ε
+

yki

pki

, ∀k,∀i

n
∑

j=1

qj = 1

qj , µ
′
j , ykj ≥ 0, ∀k,∀j

(5.7)

We observe that the left hand side of the first constraint corresponds exactly
to the profit by weight ratio for a pkj used in the fractional knapsack problem.
To obtain an optimal solution the maximal profit by weight ratios, depending on
ε, have to be minimized. With increasing ε more of the yki will become nonzero,
meaning that it would become more attractive to violate the upper bound con-
straints on the xkj . At the same time, µi is decreasing with increasing ε. For
ε > 1 it is always better to increase y, which is in concordance with the above
interpretation of the dual variables. We also see from this formulation, that if
q∗ is optimal in 5.7 then all q for which hold that

∑n
j=1 qjpkj =

∑n
j=1 q∗j pkj for

all k, are also optimal.

5.3 Optimal primal solutions

Not all the subproblem solutions X(q∗) at an optimal q∗ to the Lagrangian dual
problem are also primal optimal solutions, since due to the relaxed constraints
primal feasibility might be violated. We have the following optimality criteria
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(compare to theorem 3.1 and 3.6): Let g(x∗, u∗) ∈ ∂θ(q∗) be a subgradient at
q∗. The triple (q∗, x∗, u∗) is optimal if and only if q∗j g∗j = 0 for j = 1, . . . , n

and g(x∗, u∗) ≥ 0. A subgradient g(x, u) is given by
∑m

k=1 pkj

∑n
i=1 wixki − u,

where x ∈ X(q) is a knapsack solution and u the corresponding objective value.
We define X∗(q∗) to be the set of primal optimal solutions that fulfill the

optimality criteria at q∗. We can show that X∗(q∗) is invariant over all La-
grange multiplier q∗ and therefore it is enough to know one q∗ to characterize
all solutions.

The idea is to show that the value of g(x∗, u∗) attains always a value so that
complementarity is fulfilled for any Lagrange multiplier.

Lemma 5.1. Assume that we have two distinct Lagrange multipliers q′ and q′′

and there exists a j, such that q′j = 0 and q′′j > 0. Then for all x∗ ∈ X∗(q′) the
corresponding subgradient component satisfies gj(x

∗, u∗) = 0.

Proof. Assume that for such a j there exists a x∗ such that gj(x
∗, u∗) > 0. The

optimality criterion requires gj(x
∗, u∗) ≥ 0 for all j and hence it holds that

∑m
k=1 pkj

∑n
i=1 wix

∗
ki ≥ u∗.

Since q′′j > 0, this x∗ plugged in the Lagrangian dual function for q′′ yields

n
∑

j=1

q′′j

m
∑

k=1

pkj

n
∑

i=1

wix
∗
ki >

n
∑

j=1

q′′j

m
∑

k=1

u∗ = u∗

But this contradicts the optimality of q′′.

Proposition 5.1. Let (x∗, u∗) be an optimal primal solution. Then (x∗, u∗)
fulfills the optimality conditions with any Lagrange multiplier q∗.

Proof. If q∗ is unique the proposition holds trivially.
Otherwise choose two arbitrary Lagrange multiplier q′ and q′′. There are

now three different cases for the components q′j and q′′j to consider:

Both q′j = 0 and q′′j = 0: Then every gj(x
∗, u∗) fulfills complementarity.

Both q′j > 0 and q′′j > 0: Then to fulfill the optimality conditions we need for
any optimal solution gj(x

∗, u∗) = 0.

Either q′j > 0 and q′′j = 0 or vice versa: By above lemma gj(x
∗, u∗) = 0 for

every optimal solution.

Hence every (x∗, u∗) that fulfills the optimality conditions for q′ also fulfills it
for q′′ and vice versa.

Unfortunately it is not clear how to find the primal optimal solutions from
the subproblem solutions algorithmically, except by solving again a linear pro-
gram. We can however find it easily for a special case.

Proposition 5.2. If for one prior q there is a knapsack solution where all rows
sum to the same value, say

∑n
i=1 wixki = u, then q is a Lagrange multiplier and

x is a primal optimal solution.
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Proof. We show that q and x satisfy the optimality criteria: Obviously x and
q are feasible in the primal and the dual respectively. Since x is a knapsack
solution, x ∈ arg maxx θ(q). It remains to show that complementary slackness
holds. The exclusiveness constraints in the primal problem can be written as
∑m

k=1 pkj

∑n
i=1 wixki =

∑m
k=1 pkju = u. Hence the row-sum corresponds to the

primal objective value. Then each subgradient component gj becomes gj(x, u) =
∑m

k=1 pkj

∑n
i=1 wixki − u = u − u = 0 and we are done.

Recall that the xkj define exclusion probabilities. Using these probabilities
in further applications would be greatly facilitated if most were either 0 or 1
and hence the strategy to a large extent deterministic. It is therefore good news
that we actually can state a bound for the number of fractional elements in an
optimal solution.

Proposition 5.3. For every problem instance there exists an optimal solution,
which has at most 2n fractional elements.

Proof. This follows geometrically using results from linear programming theory.
For a linear program, the optimal solution is always attained at an extreme-point
of the feasible set. The feasible set is determined by the values x can attain.
If only the constraints 0 ≤ xkj ≤ 1,∀k, j are given, then the feasible set is a
hypercube in n×m-dimensional space. In order for an extreme point with 2n+1
fractional elements to exists, it has to be bounded by 2n + 1 hyper-planes. But
for this we need at least 2n + 1 constraints.

In addition we can also say something about how the fractional elements
in such an optimal solution are arranged. For this purpose we construct an
undirected bipartite graph G = (R,C,E), with a vertex vk ∈ R for each row
xk(·) and a vertex vj ∈ C for each column x(·)j . The graph G contains an edge
e = (vk, vj) ∈ E if and only if there is a fractional element at position xkj .

We show that if there is a cycle in the graph G(R,C,E), then we can obtain
an optimal solution with one fractional element less. The idea is that if we have
a cycle, we can ”shift” a quantity between two fractional elements of a column
without changing the objective value and even-out the change in row-sums along
the remaining vertices of the cycle.

Proposition 5.4. Let x be an optimal solution with n fractional elements. Let
G(C,R,E) be a graph obtained from x using above construction. If G contains
a cycle then there exists an optimal solution with n − 1 fractional elements.

Proof. Let Gc be the subgraph of G that forms such a cycle. Each vertex
vi ∈ R ∪ C has at least degree 2. Therefore there exist in each corresponding
row/column at least 2 fractional elements. In the following we consider only
these fractional elements. We fix two such elements xij and xij′ . There exists
another fractional element xi′j in the same column xij , and theses two elements
must have the same utility. We decrease xij by a sufficiently small amount ρ
and increase xi′j by ρ

pij

pi′j
without changing the objective value. We want to

let the row-sum of all the other rows unchanged, which can be achieved by
decreasing the fractional element xi′j′′ in the same row by ρ

pij

pi′j
. Again, there

is another fractional element xi′′j′′ in column j′′. Increasing xi′′j′′ by ρ
pi′j′′

pi′′j′′

pij

pi′j

yields the original objective value. Continuing in this way along the cycle Gc,
we eventually arrive at the fractional element xij′ .
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The value we increase xij′ using this procedure is exactly ρ. If not, then we had
obtained a solution with all row-sums unchanged, except for row i. But this
would lead to a different objective value, which is a contradiction. Hence xij′ is
increased by the quantity ρ.

Since the objective value as well as the row-sums are unchanged, we have
therefore obtained another optimal solution. We can increase ρ and repeat this
procedure, until one of the elements along the cycle become either 0 or 1, in
which case we obtained a solution with only n − 1 fractional elements.

From this proposition we know that there is always a solution that is cycle-
free in above sense. It is now easy to obtain a tighter bound for the number of
fractional elements for the case m < n.

Corrolary 5.1. There is always an optimal solution with at most n + m − 1
fractional elements.

Proof. Consider again the bipartite graph G(R,C,E), with |R| = m and |C| =
n. Since there exists a solution for which G is cycle-free, there must be fewer
edges than vertices in G. Hence there can be at most n + m − 1 fractional
elements.

5.3.1 Lexicographic solution

A subset of all the optimal solutions to (5.3) is of particular interest - the set of
lexicographic solutions. In the current problem formulation, the goal is to find
probabilities xkj that maximize the exclusiveness in the case that the hypothesis
leading to the lowest exclusiveness is the target. Among all the optimal solutions
to this problem, there is a subset of solutions, which have the property that x
maximizes exclusiveness for the hypothesis that leads to the lowest exclusiveness,
but also for the second lowest, third lowest etc. We refer to these solutions as the
lexicographic optimal solutions. The lexicographic optimal solutions are easy to
obtain. Given an optimal solution to (5.3), we fix the constraints corresponding
to the least exclusiveness, introduce a new variable and optimize over this new
problem. If all the exclusiveness constraints have the same value for an optimal
solution, then x is the corresponding lexicographic solution.

5.4 More about epsilon

The error probability ε is a vitally important parameter in the prediction pro-
cess. The hypotheses (i.e. torsion angle intervals) that are kept in an optimal
solution serve as angle-restraints for the 3D-structure calculation. To determine
an optimal value of ε it is important to know how the structure-calculation
heuristic uses the angle-restraints and how a wrongly discarded interval affects
the algorithm. A more practical approach is however to try out different values
of ε until the desired trade-off between exclusiveness and error-probability is
reached. Independent on how the value of ε is determined, it is of great interest
to know how ε affects the solution as its value is varied.

It is obvious that the exclusiveness is monotonically increasing in ε, since
for ε′ > ε, all solutions obtained for ε are also feasible for the program with the
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increased parameter ε′. The following proposition shows that it is even concave
in ε:

Proposition 5.5. The exclusiveness is a concave function in ε

Proof. We use again Lagrangian duality. At an optimal solution (x∗, u∗, q∗)
the Lagrangian dual problem and the primal problem have, by strong duality,
the same objective value, and the optimal x∗ is a convex combination of the
knapsack solutions. We can therefore argue using the knapsack solution.

While ε runs through all the value from 0 ≤ ε ≤ 1, the Lagrange multiplier
q can change, so we denote the Lagrange multiplier at ε by qξ. Let θξ(ε) be the
objective value obtained for a fixed qξ at ε.

Fix a qξ. The knapsack solutions are obtained by a greedy algorithm that
considers the elements in each row with decreasing utility (i.e. benefit/cost ra-
tio). If we increase ε by a small amount it increases in each column the element
with the highest utility, which is smaller than one.

The benefit, that is the increase in the function θξ if xkj is increased by δ,
is given by bkj(δ) = δwj

∑n
i=1 qipki. The corresponding costs are given by δpkj .

Hence as long as for growing ε the elements the greedy algorithm increases
remain all smaller than one, θξ grows linearly in ε. θξ is therefore piecewise
linear. Since the elements are considered with non-increasing utility and the
quantity

∑n
i=1 qipki is fixed, the ratio

wj

pkj
is non-increasing for growing ε. For

a fixed qξ, the function θξ(ε) is therefore concave.
The exclusiveness is then given by excl(ε) = infξ θξ(ε). Since all θξ(ε) are

concave, we conclude that excl(ε) is concave.

Intuitively one would think that the xkj also increase monotonically in ε.
Unfortunately this is not always the case. The following numerical example
illustrates what can happen. The example uses the fact that the set of optimal
primal solution is the same for all worst-case prior distributions (see proposi-
tion 5.1).

Let p =

[

0.1 0.5 0.8
0.9 0.5 0.2

]

. In this example, for ε = 0.1, a worst case prior

distribution, as obtained from solving the LP-dual with a linear programming
solver, is given by q =

[

1 0 0
]

. The profit by weight ratios which are used to

calculate the knapsack solutions are given by

[

1 0.2 0.125
1 1.8 4.5

]

. The knapsack

solutions for column 2 and 3 are unique and hence in every optimal primal

solution holds that x(·)2 =

[

0
0.2

]

and x(·)3 =

[

0
0.5

]

.

For ε = 0.2, a worst case prior distribution is q =
[

0.429 0 0.571
]

. The

corresponding profit by weight ratios are

[

5 1 0.625
0.55 1 2.5

]

. In this case col-

umn 1 and 3 are determined by the knapsack solution, with x(·)1 =

[

1
1
9

]

and

x(·)3 =

[

0
1

]

.
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The optimality criterion requires that
∑m

k=1 pkj

∑n
i=1 xki = u∗ for qj > 0

and applying this to the example we get the following system of linear equations:

0.1(1 + x12 + 0) + 0.9(
1

9
+ x22 + 1) = u∗

0.8(1 + x12 + 0) + 0.2(
1

9
+ x22 + 1) = u∗

The optimal objective value u∗ is in this case 1.255. This system of equations
has a unique solution which is x12 = 0.255, x22 = 0.144. Hence the (unique)

optimal solution for ε = 0.2 is x∗ =

[

1 0.255 0
0.11 0.144 1

]

. Compared with the

solution for ε = 0.1 we see that x22 attains a lower value for ε = 0.2. The reason
why this happens is that when we increase ε from 0.1 to 0.2, the upper-bound
constraint x11 ≤ 1 becomes binding. The knapsack constraint for j = 1 is not
binding yet and hence x21 is increased. At the same time in column 3, x23

becomes 1 while x13 remains 0. To fulfill complementarity, the row-sum of x
has to be equal for all rows. Hence x21 attains a higher value than x22 in order
to balance the row-sums again. This leads to the situation that x22 is decreasing
while ε is increasing.

6 Enhancements of the method

The method discussed above provides a good basis for inferring likely torsion
angle intervals from chemical shifts. Yet the quality of the predictions is influ-
enced by many factors. In this section we discuss several improvements which
will lead to more flexibility and better predictions of the angle-restraints.

6.1 Extensions of the models

The mathematical model discussed so far is very general and provides us with a
prediction strategy for the worst-case. Empirical tests using different data-sets
show that this is in some cases overly pessimistic. The total ignorance of the
prior probabilities inherent to the data leads to that all hypotheses are treated
with equal respect.

The following example illustrates the problem that can occur. The data is
simplified but similar patterns occur in the real data. Consider the data with

point-counts

[

100 3 2
400 2 1

]

and the corresponding likelihoods

[

0.2 0.6 2/3
0.8 0.4 1/3

]

.

The optimal solution for an error probability ε = 0.2 is

[

1 0.04 0
0 0.44 0.6

]

. For

the observation 1, we discard the first hypothesis with probability 1. However,
judging by the point-counts we would expect the first hypothesis to be the
most-likely target. The problem arises because the second and third hypothesis
correspond to relatively rare events. Yet because of our ignorance of the priors,
we treat all the hypotheses equally and we get a worst-case prior distribution
q =

[

0.142858 0 0.857142
]

.
These rare points do not possess much statistical significance. An reasonable

extension of above model should therefore incorporate the information from the
prior probabilities, without being too restrictive. In the following we propose
two such extensions.
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6.1.1 Individual epsilon

Intuitively, if the estimated prior probability for a given hypothesis j is very low,
we would like the probabilities x(·)j to discard the hypothesis to be high for all
observations. In the extreme case we could think of suppressing this hypothesis
completely. One way to achieve this is by assigning an error-probability ε′j to

each hypothesis j, such that
∑m

j=1 qest
j ε′j ≤ ε. This leaves the overall error-

probability ε unchanged, but provides more flexibility. It has the additional
advantage that all the theory developed so far still applies to this new problem.

Taking this idea a step further, the ε′j could be chosen so that exclusiveness
is maximized. The following extension of problem 5.3 has this effect.

z∗ := max
x,u,ε′

u

s.t.
m

∑

k=1

pkj

n
∑

i=1

wixki ≥ u, ∀j

m
∑

k=1

pkjxkj ≤ ε′j ,∀j

m
∑

j=1

qest
j ε′j ≤ ε

0 ≤ xkj ≤ 1, ∀k,∀j

(6.1)

The parameters qest represent the estimated prior probabilities, while the ε′j
are now error probabilities for each hypothesis. The third constraint ensures
the maximal error probability ε. Note that if qest deviates from the real prior
distribution, then this can lead to that the target is excluded with a higher
probability than ε. Even when the estimated prior distribution is uniform, not

all the ε′j will be equal. Consider the likelihood matrix

[

0.1 0.5 0.8
0.9 0.5 0.2

]

and prior

qest
[

1/3 1/3 1/3
]

. The optimal solution with ε = 0.1 to (6.1) is

[

1 0 0
0 0 1

]

.

The exclusion probabilities for the second hypothesis are in this case all zero, it
is optimal to let ε2 = 0 while allowing a greater error-probability on the third
hypothesis. It is clear that this extension improves the exclusiveness, since it
contains the original problem as a special case.

To be able to better control the values of ε′j , one could introduce another
parameter δ, which indicates how much the ε′j can deviate from ε. Then the
bound max{0, ε − δ} ≤ ε′j ≤ min{ε + δ, 1} on ε′j controls the deviations. With
δ = 0 we are back at the initial problem, where ε′j = ε for all j.

6.1.2 Restricted prior region

Although in above method the estimated prior distribution is only used to cal-
culate an optimal error-probability for each hypothesis, it still relies on the
assumption that the qest is a good estimator for the real prior distribution.
It deviates in this respect from the original goal to be independent of a prior
distribution.
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The following approach allows for a smooth transition between the two ex-
treme cases, fixed prior and total ignorance of prior probabilities. The idea is
to specify a region around the estimated prior distribution and optimize over
this region of possible priors, instead of over all possible prior distributions.

In the following we denote the unrestricted prior region with S = ~s1, . . . , ~sn =
(1, 0, . . . 0), . . . , (0, . . . , 1). If we require the new region to be a simplex, with its
faces parallel to S, we get a natural extension of problem (5.3). The midpoint
of S is given by ~m = (~s1 + . . .+~sn)/n. Let π with 0 ≤ π ≤ 1 be a scaling factor.
We obtain the new region V = v1, . . . , vn by scaling S with π and translate it
so that its midpoint coincides with ~m. It remains to translate it such that its
midpoint lies on the estimated prior ~qest. Combining it, we get the following
formula for the i-th vertex of the restricted region

~vi = π~si + (~m − π~m) + ( ~qest − ~m)

Figure 3 illustrates the procedure in the 3-dimensional case.

q2

q3

q^est

m

1

1

V

1

q1

pi

pi

pi

S

Figure 3: Obtaining the restricted region by scaling and translating S

Depending on qest and π it might happen that some of the vertices v lie
outside the feasible region. Since all the vertices sum to one, there exists in this
case at least one component of vi which is negative. The translation started
from the midpoint and all the faces of the restricted simplex are parallel to the
ones of S. Therefore it suffices to translate it back towards the midpoint ~m,
until the most negative element of V becomes zero. If i, j denote the indices of
the smallest negative element of V , then this is when

~vij + t( ~qest − ~m)j = 0

for a scalar t. The translation ~vi = ~vi − t( ~qest − ~m) translate these vertices back
into the feasible region. It is clear from the way the new region was constructed,
that it contains the estimated prior as desired.
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To extend the linear program formulation (5.3) is straight-forward. As dis-
cussed above because of linearity the minimum is always attained at the vertex
of the region and hence the problem can be written as

z∗ := max
x,u

u

s.t.
n

∑

j=1

vl
j

m
∑

k=1

pkj

n
∑

i=1

wixki ≥ u, l ∈ {1, . . . , n}

n
∑

j=1

vl
j

m
∑

k=1

pkjxkj ≤ ε , l ∈ {1, . . . , n}

0 ≤ xkj ≤ 1, ∀k,∀j

, (6.2)

where vl denotes here the l-th vertex of the restricted region. Note that for the
extreme case π = 0 the region is just the point qest and the problem corresponds
to problem (5.1) for fixed priors. The larger the parameter π is chosen, the more
independent is the optimization from the prior in the data, and the more rare
hypotheses will be considered. For π = 1 we get back the familiar problem (5.3),
where we consider all possible prior distributions.

In spite of the apparent flexibility of this method, it has a few shortcomings.
The remarks about the Lagrangian dual in section 5.1 do not extend to the new
problem. The interpretation of the dual variables q is not clear anymore, as it
might happen that the Lagrange multiplier q∗ lies outside the region specified
by V . A further motivation for using Lagrangian duality was that when the ex-
clusiveness constraints were relaxed, the remaining problem became a fractional
knapsack problem in each column. In this extended problem the knapsack con-
straints are also more complicated, and we can not simply solve the problem for
each hypothesis individually. Furthermore, empirical analysis of the resulting
solutions for different data-sets shows that the effect of the parameter π is hard
to interpret.

Because of the drawbacks associated with restricting the prior region, it is
in practice often best to let π = 1 and to avoid the too strong influence of
hypotheses with a small prior probability by optimizing the εj as described
above. There are however situations where the prior region has to be restricted.
For instance consider the case when we have prior probability zero for one of
the hypotheses, say hj . For π = 1 the worst-case prior probability will be qj = 1
and qi = 0, for i 6= j, which yields always a zero objective value (compare to
(5.5)). By letting π < 1 this hypothesis can be excluded from optimization.

6.2 Combining Predictions

As discussed in section 4, for a given torsion angle we have data for different
nuclei. The goal is to combine this data in such a way that exclusiveness is
increased, and we still can guarantee a given error-probability.

For the following discussion we have to extend our notation. We always
assume that K data-sets are given. The observations on the different data-sets
are in the following denoted by ki, i = 1, . . . ,K, and k without the superscript
denotes a given tuple of observations k = (k1, . . . , kK). In a similar way a
superscript on the likelihood matrices pi and exclusion probabilities xi refers
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to the i-th data-set, whereas when the superscript is omitted we refer to the
combined matrix.

There are several ways to combine hypotheses. A natural approach is to
solve above optimization problem for each nucleus separately. The solution is
a matrix of exclusion probabilities that represents an optimal strategy. Let K
such matrices x1, . . . , xK be given. We assume that the angle-axis is equally
partitioned into n parts for each xi. If not this can always be achieved by
refining the partitions. The combined exclusion-probabilities for a give k can
be calculated as

xk(·) = max{x1
k1(·), . . . , x

K
kK(·)}

This corresponds to excluding the union of the discarded intervals {j|xi
kj > 0}

for each i ∈ {1, . . . ,K}.

Proposition 6.1. The error-probability ε to discard the target is at most
∑K

i=1 εi

where εi is the error-probability of the optimal strategy xi.

Proof. Let k = (k1, . . . , kK) be a tuple of K observations and assume we are
given N such tuples. We apply above strategy to all N tuples. When the
target, say hypothesis j, is discarded, we increase a counter ni, where i =
arg maxi{x

1
k1j , . . . x

i
kij

. . . , xK
kKj

}

If we only apply the exclusion probabilities from the i-th matrix xi to the
N observations, then we know that for a large enough N we can expect the
number of discarded targets to be εiN . ni is clearly smaller or equal to this
number and so ni ≤ εiN .

Hence for a sufficiently large N we have that

K
∑

i=1

Nεi = N
K

∑

i=1

εi ≥
K

∑

i=1

ni = Nε

and therefore ε ≤
∑K

i=1 εi

Another possibility for combining several data-sets is to assume that the
probabilities p(di|h) are independent for all i ∈ {1, . . . ,K}. Under this as-
sumption the joint-probabilities equal the product of the marginal probabilities.
Then we obtain the joint likelihood matrix p of dimension (m1 · . . . · mK) × n
from the likelihood matrices p1, . . . , pK . We introduce a (bijective) mapping
δ : k1 × . . . × kK → k, which provides us with a unique row-index k in the
matrix p for each tuple (k1, . . . , kK).

The likelihoods pkj are then given by

pδ(k1,...,kK)j = p1
k1j · . . . · p

K
kKj

Solving the optimization problem with this likelihood matrix yields the optimal
exclusion probabilities xkj . As discussed previously the independence assump-
tion does not hold in general. The degree of correlation depends on which
data-sets are combined. In practice a big drawback of this method is also that
the joint-matrix can become very large and therefore solving the linear program
becomes very computational-intensive.
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6.3 Partitioning revisited

In section 4.1 we noted that the choice of partition strongly influences the qual-
ity of the data for the inference task. Instead of regarding this problem as
independent of the optimization problem, we could look at it in light of the
objective to maximize exclusiveness (problem 5.3). We can say that a partition
of K parts is optimal if it maximizes the exclusiveness. Restricting the maximal
number of parts of a partition is necessary since by refining the partitions it
is always possible to increase the exclusiveness. But finer partitions make the
results less reliable.

As discussed previously if a prior-distribution is known, then the exclusive-
ness can be calculated by solving the fractional knapsack problem using a greedy
strategy. The utility of an element is given by ukj = wj/pkj

∑

i qipki. The term
∑

i qipki is bounded by 1, but wj/pkj will be big for the elements considered
first by the greedy algorithm. Hence a high utility is achieved if the ratio of
the area of a box to the number of points in its interior is high. A practical
heuristic would therefore be to maximize the area of the union of the largest
rectangles, which have at most a fixed number of points M in their interior. The
number of points M corresponds to the error bound ε in (5.3). This problem
is related to the problem of finding maximum empty (hyper-)rectangles, which
has been discussed in the data-mining literature (e.g. [EGLM03], [LN03]). An
algorithm for the problem of optimal partitioning of data on an interval has
been developed by Jackson et al. [JSB+03].

If we assume that one of the axes is readily partitioned and we consider
the problem of finding an optimal partition for the other axis, it is possible to
state a dynamic programming algorithm for this problem. To make the space
of all possible partitions finite, we discretize the axes into a finite number of
cells xi, i = 1, . . . , N . Only at the beginning of a cell can a new part be started.
Let P ∗

i (k,m) denote an optimal partition of x1, x2, . . . , xi on k parts using m
interior points and let g(P,m) be the objective value given partition P and m
points . Further we write Pi|xi+1 to extend partition Pi by starting a new part
at xi+1 and Pi ∪ xi+1 to let xi+1 extend the part at xi. The key idea is the
principal of optimality which states that an optimal solution to any nontrivial
instance of the problem is a combination of optimal solutions to some of its
subinstances [BB96]. Applied to this problem it means that an optimal solution
P ∗

i (K,M) must be a combination of optimal solutions to P ∗
i−1(k,m) for some

k and m. It is clear that this principle applies to our choice of the objective
function g(P,m). If P ∗

i−1(k,m) was not optimal, a higher objective value could
be achieved by using the optimal solution. But this contradicts the optimality
of P ∗

i (K,M).
The algorithm starts with the problem of finding an optimal partition P ∗

1 (k,m)
for all k and m, whose solution is always trivial, since we only need to partition
the cell x1. It then proceeds through all the cells xi, where the optimal partition
P ∗

i is calculated using the results obtained for P ∗
i−1 in the previous step. More

precisely

P ∗
i (k,m) = max{ max

m′∈{1..m}
{g(P ∗

i−1(k − 1,m′)|xi,m)}, g(P ∗
i−1(k,m) ∪ xi,m}

When the algorithm terminates at xN then the optimal partitions P ∗
N (k,m)

for all number of parts k and number of points m are known, in particular
P ∗

N (K,M).
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Algorithm 1 sketches the basic structure of the algorithm. It can easily be
seen that the algorithm has complexity O(N2KM2) under the assumption that
the objective function g(P,m) can be evaluated in linear time in N .

The outlined algorithm works in the same way for many different objective
functions g(P ), which gives us the flexibility to ”tune” the heuristic based on
the requirements of specific applications. However for the most obvious choice of
g(P ), namely determining the objective value to (5.3) using the greedy strategy,
the algorithm does not work, since the subproblem solutions are not independent
(i.e. one subproblem solution affects the solution of the others). For the same
reason the algorithm does not easily extend to finding an optimal solution for
two or more axes simultaneously. Detailed analysis of different heuristics and
finding an algorithm for higher dimensional cases goes beyond the scope of this
thesis work and will be taken up at a later stage of the project.

Algorithm 1 Sketch of the partitioning algorithm with one free dimension

P ∗(k,m) ← {}, ∀k,∀m {The optimal partition for k parts and m points}
for i = 1 to N do
{ P ∗ is only updated once for each i. The intermediate results are stored
in a temporary variable. }
P tmp(k,m) ← P ∗(k,m), ∀k,∀m
for k = 1 to K − 1 do

for m = 0 to M do
{ We first determine the best partition for m points if a new partition
is started at xi, i.e. P ′ = maxm′∈{1..m} g(P ∗

i−1(k − 1,m′)|xi,m) }
P ′ ← {}
for m′ = 0 to m do

if g(P ∗(k,m′)|xi,m) > g(P ′,m) then
P ′ ← P ∗(k,m′)|xi

end if
end for
{ If a better partition than the currently optimal on k + 1 parts and
m points is found, it becomes the new optimum }
if g(P ′,m) > g(P ∗(k + 1,m) ∪ xi,m) then

P tmp(k + 1,m) ← P ′

else
{ Otherwise a cell xi is added to extend the part at xi−1}
P tmp(k + 1,m) ← P ∗(k + 1,m) ∪ xi

end if
end for

end for
{ P ∗ is updated with the new best partitions}
P ∗(k,m) ← P tmp(k,m), ∀k,∀m

end for

22



7 Examples from real data

In this section the developed methods are applied to real data, namely we cal-
culate angle-restraints for the φ-angle of amino-acid Alanine. The partition-
ing scheme of the scatterplots is very simple. Each axis is just divided into a
fixed number of intervals of equal length. It would be possible to get tighter
angle-restraints by using a more advanced partitioning scheme. But rather than
account for the performance of the method, it is tried to underline the theo-
retical results by practical examples. The scatterplots for all the nuclei are
given in appendix A. The grid-lines in the plots correspond to the partition
lines. The data-set consisting of 1882 data-elements was partitioned into two
sets. Two-third of the data-elements were used to obtain the scatterplots while
the remaining 629 elements were used for prediction. All the data elements
have similar angle-frequencies, as they are obtained by averaging over different
proteins. Therefore the prior-independence will not lead to a significant lower
error-rate of the predictions.

We run each of the following examples

• for the standard model with the full prior region (π = 1, δ = 0),

• using the estimated prior as a the fixed prior distribution (π = 0, δ = 0),

• optimizing the error-bound εj for each hypothesis (π = 1, δ = 1)

and indicate the values:

Exclusiveness The exclusiveness (i.e. the objective value for (5.3)). This value
multiplied by 360 yields the expected interval length that will be discarded.

Average discarded interval This is the average of the expected discarded
interval over all predicted data-elements.

Expected errors The expected number of errors a committed over all the 629
data-elements using the given exclusion probabilities.

Error in percent The percentage of committed errors over all data-elements.

First we use only the data from a single nucleus HN and Hα respectively.
Table 7.1 and 7.2 show the result for the different methods. It can be seen
that a big prize is paid for being independent of the prior distribution - the
exclusiveness is much lower for the first method.

ε π δ Exclusiveness Avg. disc. interval Exp. errors Error %
0.2 1 0 0.46 166 129 0.21
0.2 0 0 0.73 263 121 0.19
0.2 1 1 0.73 263 130 0.21

Table 7.1: Results for Alanine, φ, HN

In table 7.3 the results are shown when we optimize for nucleus Hα and HN

separately, with ε = 0.1 each, and then combine the exclusion probabilities. It
can be seen that it leads to better results than using only data from a single nu-
cleus, for the same error-probability. Furthermore this example also illustrates
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ε π δ Exclusiveness Avg. disc. interval Exp. errors Error %
0.2 1 0 0.48 175 128 0.20
0.2 0 0 0.79 282 126 0.20
0.2 1 1 0.76 276 124 0.20

Table 7.2: Results for Alanine, φ, Hα

ε π δ Avg. disc. interval Exp. errors Error %
0.2 1 0 189 116 0.18
0.2 0 0 259 93 0.15
0.2 1 1 254 91 0.14

Table 7.3: Results for Alanine, φ, combining the optimized marginals for Hα

and HN

that the sum of the individual error-bounds provides only an upper bound and
is normally not reached.

In table 7.4 the results for the joint-optimization are listed. We see that
the error-bound is exceeded for all the parameters. This can be explained by
the fact that the independence assumption does not hold for this two data-sets.
Observe that in the last row of table 7.4 the parameter ε has been adjusted such
as to get approximately the same number of errors as above. Comparing it to
the result in table 7.3 we see that the length of the discarded interval is larger.
This might in a practical setting justify the use of this method even if it is from
a theoretical point of view not completely satisfactory.

ε π δ Avg. disc. interval Exp. errors Error %
0.2 1 0 235 164 0.26
0.2 0 0 290 149 0.24
0.2 1 1 285 149 0.24
0.14 1 0 207 114 0.18

Table 7.4: Results for Alanine, φ, optimizing the joint-likelihood matrix ob-
tained from Hα and HN

We observe that the variant where the error-bound is optimized for each
hypothesis (π = 1, δ = 1) yields in all the cases slightly better results than
letting the priors be fixed (π = 0, δ = 0). This despite the fact that both share
the same drawback of being prior-dependent. However it is not possible to draw
a final conclusion from these tests. To be able to compare the influence of the
parameters conclusively, many more tests and especially with data from single
proteins would have to be performed.
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8 Conclusion

A flexible method for obtaining angle-restraints for 3D-structure calculation
was presented. Through the formulation of a linear program, which maximizes
exclusiveness for the worst-case prior distribution, maximal independence of
the prior probabilities is achieved. This makes it possible to guarantee the
specified error-probability even for proteins which have significantly different
angle-frequencies than those in the database. The complete independence of
the priors comes at a rather high prize. Beside leading to a lower exclusiveness,
it can also happen that rare hypotheses which are unlikely to be the target are
given too much importance. Therefore it will in practice be necessary to use one
of the extended models discussed above, which provide more flexibility and allow
to specify the degree of prior-independence. An optimal solution to the linear
program provides us with probabilities that determine whether a hypothesis
should be part of the angle restraints. It has been shown that most of these
probabilities are either 0 or 1, and so the strategy is largely deterministic. By
rounding appropriately we can get a deterministic strategy without significantly
changing the results.

It is important for further application to find a good trade-off between the
number of committed errors and the size of the angle-restraints. An optimal
value for the error-probability ε is hard to find analytically, but it has to be
selected based on empirical tests. The concavity of the exclusiveness in ε helps
to foresee the effect of changing the error-probabiliy. Unfortunately since the
exclusion probabilities are not monotone in ε it will still be necessary to check
many different values to get the desired results.

The problem can be solved using widely-available standard-software. Yet it
would be helpful to find a specialized algorithm to gain more insight into the
problem. Furthermore such an algorithm is expected to have a lower complexity,
which would be a big advantage when in a later stage of the project higher
dimensional-data are considered and thus the optimization-problems become
bigger.
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A Scatterplots

Scatterplots for the amino acid Alanine and torsion angle φ, for the nuclei
Cα, Cβ , C ′,HN ,Hα, using a simple equidistant partioning scheme.
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B Program

A software for solving the optimization problems and inferring angle-restraints
has been developed. As input already partitioned scatterplots must be provided.
Furthermore the user has to specify values for the parameters ε, δ and π and
which nuclei to combine for the predictions. The GNU linear programming
solver GLPK Version 4.4 [GLP] is used to solve the linear programs. In addition
Xerces-c [Xer] is used to parse xml-input. The program is written in c++ . It
has been successfully tested on GNU/Linux and SUN/Solaris, but it should be
possible to compile and run it on any platform for which GLPK and Xerces are
available.

From a conceptual point of view the program consists of two parts, a solver
and an inference engine. As the name implies the solver is used to solve the lin-
ear programs to find optimal exclusion probabilities. It supports all the different
models and extensions discussed above. The inference engine implements dif-
ferent algorithm for combining data from several nuclei, and provides to a given
tuple of chemical shifts the exclusion probabilities. Which data (nuclei) should
be combined is determined by the user. The inference engine also provides the
functionality to evaluate its performance on a list of examples.

A detailed description on how to use the software and its internal functioning
is provided as a separate document.7

C Mathprog Model

GLPK uses a modeling language called GNU/MathProg, intended for describing
linear mathematical programming models. It is a subset of the well known
modeling language AMPL.
The MathProg model for above described linear program, supporting all exten-
sions, is listed below.

/*

* The MathProg model for the linear program discussed in the report.

* It supports all the discussed extensions, but not

* the fixed error probabilities defined by the user.

*/

/* the set of data (chemical shifts) */

set I;

/* the set of hypotheses (torsion angles) */

set J;

/* The likelihoods p_kj to observe k given angle j */

param p{k in I, j in J} >=0 <=1;

/* weight associated to each hypothesis */

param w{j in J} >=0;

/* estimated prior probabilities */

7The software as well as the user-manual can be obtained from the author by sending an
e-mail to marcel.luthi@gmail.com
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param q{j in J} >=0 <=1;

/* The extreme points of the simplex of possible prior distributions */

param X{i in J, j in J};

/* The error probability epsilon and the maximum deviation of epsilon_j from epsilon */

param epsilon;

param epsilondev;

/*

* The primal variables:

* u = min exclusiveness (dummy variable)

* x_kj = probability to discard hypothesis j if k is observed

* epshyp = the error bound for each hypothesis

*/

var u >= 0; /* dummy variable */

var x{k in I, j in J} >= 0 <= 1;

/* fix a maximum deviation epsilondev (in the report denoted delta) from epsilon. */

var epshyp{j in J} >= max(epsilon - epsilondev, 0) <= min(epsilon + epsilondev, 1);

/* Objective function */

maximize obj: u;

/* exclusiveness */

s.t. exclusiveness{l in J}:

sum{j in J} X[l,j] * sum{k in I} p[k,j] * (sum{i in J} w[i] * x[k,i]) >= u;

/*

* Error bounds

*/

s.t. errorbound{l in J}:

sum{j in J} X[l,j] * sum{k in I} (p[k,j] * x[k,j]) <= epshyp[l];

s.t. globalerror:

sum{j in J} (q[j] * epshyp[j]) <= epsilon;

data;

/*

* the data is specified in a separate file

*/

end;
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