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In school mathematics and in university mathematics a straight line is
identified with the set of points whose coordinates are real numbers. But
there is an argument opposed to such concrete identification. This argument
is based on the fact that there are infinitely many properties of a straight line
that can neither be proved nor disproved using the Zermelo-Fraenkel axioms
of set theory.

Gottfried Leibniz (1646-1716) looked differently at a straight line. He
viewed it as a carrier of sets of points larger than the set of reals, sets in-
cluding ideal infinitely small elements greater than zero and smaller than
any real number. The so-called Leibniz principle authorized the application
to infinitesimals of operations applied to real numbers. Thus multiplication
by —1 yielded negative elements, addition of infinitesimals to reals resulted
in the insertion of new numbers between reals, and division of 1 by posi-
tive infinitesimals yielded infinite numbers, numbers greater than any real
number.

[Leibniz introduced the symbol df /dt for the derivative and the symbol
[ f(z)dx for the integral (f was an extended version of the letter S). These
symbols were a reminder that the derivative differed from the differential
quotient—a quotient of infinitesimals—by an infinitesimal, and that, simi-
larly, the integral differed from an appropriate sum by an infinitesimal.|

The Leibniz approach contributed in large measure to the flourishing of
analysis in the 18th century and was reflected in the works of Leonhard
Euler (1707-1783), the greatest mathematician of that time. But a modern
reader of Euler’s works is certain to realize that Leibniz’s principle cannot
be used without appropriate restrictions. In fact, its implicit contradictions
were criticized from the very beginning. Its most coherent and famous critic



was bishop George Berkeley (1685-1783), who referred to infinitesimals as
“ghosts of departed quantities.”

In the 19th century the method of infinitesimals was gradually replaced
by the since dominant epsilon—delta method. By the end of the 19th cen-
tury the theory had reached a high level of development and—somewhat
paradoxically—strengthened the resistance to the use of infinitesimals of
many generations of mathematicians who believed Cantor’s claim (1845
1918) that one could use set theory to prove the nonexistence of infinitesimals.
The slow renaissance of infinitesimal analysis began with Thoralf Skolem’s
(1887-1963) nonarchimedean model of arithmetic involving infinite numbers
(1933 and 1934).

[An archimedean model of arithmetic is a model in which for every number
N and for every positive number € there is a finite number n such that

€e+e+...+€>N,

where € is taken n times. To use picture language: an archimedean model
has the property that no matter how small the steps we take we eventually
reach any specific number.]

The Polish mathematician Jerzy Lo$ (1920-1998) made an important
advance by constructing the hyperreal numbers as the closed extension (con-
taining infinitesimals) of the ordered field of reals. Lo$ also gave a modern
and rigorous version of Leibniz’s principle, called the transfer principle, that
states precisely which assertions about real numbers carry over to infinites-
imals. But the final step on this road was taken by Abraham Robinson
(1918-1974), creator of nonstandard analysis. Robinson showed that the
new version of the Leibniz principle makes possible a development of analy-
sis based on the hyperreal numbers.

The usefulness of nonstandard analysis is based on two of its properties:
the transfer principle—mentioned earlier—and a property called saturation,
which reflects the richness of the system of hyperreal numbers. The first ap-
plication of nonstandard analysis was the filling in of the reasoning gaps in
the 18th-century calculus of infinitesimals. In addition, nonstandard analysis
yielded a new model of a number system in which the real numbers are a
subset of the hyperreal numbers. Actually, nonstandard analysis goes much
further, in that it supplies models for classical mathematics based on either
the real or the hyperreal number systems and provides the possibility of
carrying out all classical arguments in each of these two structures. Further-
more, objects of the real structure can be interpreted within the framework



of a hyperreal structure in a new and fruitful way. In that structure, the
transfer principle provides a sharp criterion that singles out sets to which
one can apply Leibniz’s principle. For example, one can apply this principle
to the set of natural numbers smaller than a given natural number but not
to the set of all finite natural numbers. The reason for the latter restriction
is that by taking the least upper bound of this set (a step applicable to all
bounded sets of real numbers) we would obtain a nonexistent entity, namely,
the smallest infinite integer.

The most important aspect of nonstandard analysis is its role as a power-
ful tool for contemporary and future mathematics. When it comes to applica-
tions of mathematics to natural phenomena and to economics, the hyperreal
straight line and nonstandard analysis furnish far more models than the clas-
sical real structure. Physicists often substitute infinite sets for finite sets of
atoms or particles. Nonstandard analysis goes much further, in that it en-
ables one to substitute for a finite set a set whose cardinality is that of a
definite infinite integer. The principles of finite combinatorics retain their
validity in nonstandard analysis. For example, it is easy to compute the
probability of events of interest to physicists.

The author of the present article is interested in the study of rarified gases
(an area of mathematical physics involving complicated equations) in which
forces—say, gravitational forces between gas particles—approach infinity and
the stabilization time of the induced motion becomes infinite. The power of
nonstandard analysis with reference to infinite magnitudes has often enabled
me to find solutions of the gas equations and to study the limiting behavior of
a gas when time tends to infinity. When I made use of ideas connected with
the transfer principle, my ideas acquired significance and were interpretable
within the framework of the traditional approach, but when using classical
methods it was often extremely difficult to obtain any initial results.

The great mathematician Kurt Godel predicted that nonstandard analysis
would be the mathematics of the 21st century. But now, in 2004, nonstan-
dard analysis is not commonly used by mathematicians. This is so because
contemporary mathematicians are usually specialists, and few of them are
equally comfortable in the realm of mathematical logic and in the realm of ap-
plications. Given its tremendous power, nonstandard analysis undoubtedly
deserves a place among the fundamental methods to be used by mathemati-
cians of future generations.
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