
CTH/GU Mathematical Sciences MVE515, Computer Lab 5 (2020/21, lp1)

FINITE ELEMENT METHOD IN 2D WITH MATLAB PDE

TOOLBOX

1

In this lab we will use the PDE Toolbox in Matlab to solve partial differential
equations in two dimensions. The finite element method for solving PDEs in two
(or three) dimensions works essentially in the same as in one dimension, the main
difference being that a domain in two or three dimensions can be much more complex
than a one-dimensional interval.

For a domain Ω ⊂ R2, we consider the (elliptic) equation

−∇ ·
(
c∇u

)
= f in Ω, (1a)

with boundary conditions {∇u · n+ qu = g on ΓN

u = r on ΓD
(1b)

Here ΓN and ΓD denotes disjoint parts of the boundary where the (generalised)
Neumann and Dirichlet boundary conditions apply, respectively.

1. A recap of the finite element method in two dimensions

The variational form of the elliptic problem (1) reads as follows: Find u such that
u = r on ΓD and for all test functions v (v = 0 on ΓD),∫∫

Ω
∇u · ∇v dx+

∫
ΓN

quv ds =

∫∫
Ω
fv dx+

∫
ΓN

gv ds. (2)

For the finite element method we also need a mesh, or triangulation of Ω. We denote
the mesh Th, with

Th =
(
{p}ni=1, {e}mi=1, {t}ll=1

)
, (3)

where

• p1, . . . , pn are the vertices (nodes)
• e1, . . . , el are the edges
• t1, . . . , tm are the triangles, in the mesh
• h is the diameter of the largest triangle, i.e. h = max1≤i≤M diam(ti).

The finite element space is defined to be the continuous functions that are piece-
wise linear with respect to the mesh Th, i.e.

Vh =
{
u ∈ C(Ω) : u|Ki ∈ P1(Ki), i = 1, . . . ,m

}
where P1(Ki) is the space of first order polynomials (plane) on the triangle Ki. A
basis {φj}nj=1 for Vh is uniquely determined from the nodal property

φj(xi) =

{
1 if i = j

0 if i 6= j.

12017, Magne Nordaas, Matematiska vetenskaper, Chalmers

1

FINITE ELEMENT METHOD IN 2D WITH MATLAB PDE TOOLBOX 2

Setting uh =
∑n

j=1 ξjφj and v = φi in (2), we have

n∑
j=1

ξj

∫∫
Ω
∇φj · ∇φi dx+

∫
ΓN

qφjφi ds︸ ︷︷ ︸
=Aij

=

∫∫
Ω
fφi dx+

∫
ΓN

gφi ds︸ ︷︷ ︸
=bi

, i = 1, . . . , n.

This is a linear system,

Aξ = b,

which can be solved for the nodal values ξ1, . . . , ξn.

1.1. Finite element error in two dimensions. The error estimates for the finite
element method in two dimensions is similar to those for one dimensional problem.
With h as the mesh parameter defined above, we have the estimate

‖u− uh‖2 =

√∫∫
Ω

(u− uh)2 dx ≤ Ch2, (4)

where C is a constant that depends on u, on the quality2 of the mesh Th, but not
on the mesh parameter h.

2. Introduction to PDE Toolbox

PDE Toolbox is an extension to Matlab for solving certain PDEs on two- and
three-dimensional domains. It can solve symmetric elliptic, parabolic and hyperbolic
PDEs, and systems of such PDEs.

PDE Toolbox has functions that handles the low-level parts of the finite element
method for us. For example, it has functions for mesh generation and matrix assem-
bly, and solvers for stationary and time-dependent problems. All we need to do is
to provide the problem specification. This is done in a number of steps as described
below.

2.1. Overview. PDE Toolbox has a graphical user interface (GUI), that can be
started with the command pdetool or from the Apps panel in Matlab. It is also
possible to use the toolbox without using the GUI and instead write a script using
PDEToolbox functions, but in this lab, we will only work with the GUI. The next
sections describes in detail how to set up and solve a PDE with the PDE Toolbox.

(1) Defining the geometry in draw mode. The domain Ω in (1) is an
important part of the problem formulation, and a precise description of it
have to be provided to PDE Toolbox before we can do anything else. We can
describe the geometry by using Constructive Solid Geometry (CSG). This
means that the domain is constructed from a collection of basic solid objects
(polygons and ellipsoids in two dimensions) through a sequence of boolean
operations.

(2) Setting boundary conditions in boundary mode. When the geometry
has been described, the boundary ∂Ω is known, and boundary conditions
(1b) can be set. The type of of the boundary condition and the parameter

2One measure of mesh quality is the largest triangle angle over all the triangles in the mesh. An
angle close to π indicates that the mesh quality is poor.

FINITE ELEMENT METHOD IN 2D WITH MATLAB PDE TOOLBOX 3

Figure 1. Visualising set operations: Union (left), difference (mid-
dle) and intersection (right)

values have to be specified for each part of the boundary. PDE Toolbox
supports Dirichlet, Neumann and Robin boundary conditions.

(3) Setting equation parameters in PDE mode. The parameters c and f in
(1a) have to provided. These parameters can be specified as scalar constants
or as functions.

(4) Meshing PDE mode. The mesh (3) have to be constructed. The toolbox
can do this automatically.

(5) Solving and postprocessing. At the end, the problem have to solved.
The toolbox has functions for solving both stationary and time-dependent
problems. It has functions for plotting, and it also possible to export the
data for further postprocessing.

3. Defining the geometry

In draw mode you can draw a number of basic solids – rectangles, ellipsoids and
polygons. This can be done from the drop-down draw menu, or by clicking the
buttons below it. It is also possible to select solids to move or rotate them while in
draw mode.

The domain is constructed from the basic solids using set operations, which can
be typed in the formula box under the icons. These operations are

+ for union (∪)
* for intersections (∪)
- for difference (\)
% only uses the solid to define subdomains.

Set operations are in general not commutative or associative, so it is necessary to
use parenthesis to ensure that they carried out in the right order. Note that by
default, the domain is the union of all the basic solids.

It is hard to get precise results when drawing freehand. Enabling Snap under
the Options menu helps a lot, as it will make all drawings snap to grid lines. The
gridlines need to be set to align with geometric features, by choosing Grid Spacing

and Axes Limits from the same menu.

3.1. Setting boundary conditions. When the geometry has been described, Mat-
lab will automatically determine the boundary. Enter boundary mode by clicking
on the button marked ∂Ω, or selecting Boundary Mode from the Boundary menu.

FINITE ELEMENT METHOD IN 2D WITH MATLAB PDE TOOLBOX 4

The boundary will divided into a number of segments, that can be selected with
a left mouse button click. Press shift when clicking to select additional segments.
The selected boundary segments can be assigned a boundary condition by clicking
Specify Boundary Conditions in the Boundary menu, which opens up a dialog
box. On the left side you can select between Dirichlet and Neumann type conditions,
and on the right parameter values can be typed in.

The Neumann boundary condition is specified as

n · ∇u+ qu = g on ΓN ,

or
n · c∇u+ qu = g on ΓN ,

and the Dirichlet boundary condition is specified as

hu = r on ΓD.

The parameters g and r correspond to g and r in (1b). A nonzero value for q results
in a generalised Neumann condition, also called a Robin boundary condition. The
parameter h (not to be confused with the mesh size parameter also denoted h) can
always be set to 1 for Dirichlet boundary conditions.

The boundary values can be constants or functions. Functions are written same
way as in a normal Matlab script, and with x and y used to represent the x and y
coordinates. For example, if we want the boundary value to be sin(πx) sin(πy), we
type in sin(pi*x).*sin(pi*y). Note that the operations have to be elementwise,
i.e. use .* and .^ instead of * and ^.

3.2. Setting PDE parameters. PDE mode is activated with PDE Mode in the
PDE menu. In this mode, the subdomains are visible, and can be selected. Clicking
the buttons marked PDE or selecting PDE specification from the PDE menu opens
a dialogue box where the parameters in the equation can be set. If one or more
subdomains are highlighted, the values will be applied to the selected subdomains.
Otherwise, the values will be applied to all subdomains. Functions can be entered
the same way as for boundary conditions.

The type of equation can also be set, the options being elliptic (Poisson’s equation)
parabolic (heat equation) or hyperbolic (wave equation).

3.3. Meshing. Meshing geometries in two or three dimensions is much more com-
plicated than in one dimension. Fortunately, Matlab has functions that can do the
meshing automatically. Enter mesh mode by selecting Mesh Mode from the Mesh

menu. There are two buttons for meshing. The button with the simple triangle
creates an initial mesh. The button with the inscribed triangle refines the current
mesh, by subdividing each triangle into four new triangles.

Some parameters for the meshing process can changed by selecting Parameters

from the Mesh menu. In particular, targets can be set for the upper and lower limits
of the triangle sizes.

3.4. Solving and postprocessing. Finally, solving is as simple as clicking the
button marked with the equality sign, or selecting Solve PDE from the Solve menu.
Some parameters of the solver can be set selecting Parameters from the Solve menu,
depending on wether the problem is time-dependent or not. For stationary problems
(elliptic PDEs), we can opt to use adaptive or nonlinear solvers. For time-dependent

FINITE ELEMENT METHOD IN 2D WITH MATLAB PDE TOOLBOX 5

problems, we can only set parameters for the time stepping, e.g. the final time and
the length of time intervals.

Once the solution is computed, it will automatically be plotted. Some plot config-
uration is possible when selecting Plot > Parameters. For example, contour lines
and gradient arrows can be plotted. There is also an option to generate a movie to
visualise the solution of time-dependent problems.

Sometimes the PDE toolbox may not provide all the tools we need. We can
export the data, and work with it in a standard Matlab script. Selecting Mesh >

Export Mesh saves the mesh data to the work space, and selecting Solve > Export

Solution saves the solution vector.

4. Exercises

Exercise 1. First, let us verify that Matlab is solving the partial differential
equations correctly. We do this the same way we did in the previous labs, using the
method of manufactured solutions and checking that the error estimate (4) holds.
At the same time, we go through the steps of solving PDEs with the toolbox.

For this exercise we consider the problem

−∇ ·
(
c∇u

)
= f in Ω, (5a)

with the Dirihlet boundary condition

u = r on Γ (5b)

with the choosen the exact solution to (5) to be

u(x, y) = sin(πx) sin(πy). (5c)

(a) Enter draw mode and draw an arbitrary polygon. It can be a single polygon, or
a composite object consisting of multiple polygons.

(b) Enter boundary mode and set the boundary conditions to Dirichlet on all edges,
and set the parameter r to be the function (5c). Make sure the parameter h is
set to 1.

(c) Enter PDE mode and set the equation type to elliptic. Set c to 1 and set f to
to be consistent with the chosen exact solution (5c).

(d) Enter mesh mode and generate a mesh. This is done by clicking the button
marked with a simple triangle, or by selecting Initialize Mesh from the Mesh

menu. Solve the equation (make sure that the adaptive solver is not activated)
and export the mesh and solution.

You should now have variables u, p, e and t in your Matlab workspace, provided
you exported the data with the default variable names. The function Errornorm2D

(see Appendix A at the end of this file) from the script Errornorm2D.m can be used
to compute the error of the finite element solution. For example, if the mesh and
solution was exported with the default variable names, the following code will work:

U = @(x) sin(pi*x(1)) * sin(pi*x(2));

error = Errornorm2D(U, u, p, t)

We now want to compute the error for different mesh resolutions, to verify that the
numerical solutions converge to the exact solution as expected.

FINITE ELEMENT METHOD IN 2D WITH MATLAB PDE TOOLBOX 6

First, compute the error and write down the result with the initial mesh you
have after steps (a)–(d) above. Then, refine the mesh once by clicking the button
with the inscribed triangle, or selecting Mesh > Refine Mesh from the menu. This
will result in a new and finer mesh, with the four times as many triangles as the
first mesh. Solve the equation again, and export both the new solution and the new
mesh to compute the error for the refined mesh. Make sure to write down the result.
Repeat the process for a second refinement.

You should now have three values for the error, for the three different levels of
mesh refinement. Compare the errors to the error estimate (4). Does it appear to
be in agreement? Keep in mind that the mesh size parameter h in (4) is divided by
two with each mesh refinement, since each triangle is subdivided in four triangles.

Exercise 2. For this exercise we look at a more complex problem. Consider the
geometry in figure 2, with Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 and boundary Γ = ∂Ω.

− div
(
c∇u

)
= f in Ω, (6a)

with Robin boundary conditions

c∇u · n+ qu = 0 on Γ, (6b)

Where q = 0.1 and the coefficient c and source f are piecewise constant functions
as follows:

c(x) =

1 if x ∈ Ω1 ∪ Ω2

10−3 if x ∈ Ω3

10 if x ∈ Ω4

(6c)

f(x) =

1 if x ∈ Ω1

−1 if x ∈ Ω2

0 if x ∈ Ω3 ∪ Ω4.

(6d)

(a) Draw the domain shown in figure 2 with PDE toolbox. This requires two rect-
angles and two circles. To make drawing easy, make suitable adjustments to the
axes limits and gridlines in the Options menu.

(b) Set the boundary condition in boundary mode, and set values for c and f in
PDE mode. Make sure that the PDE type is set to elliptic, and that values are
given correctly for each subdomain.

(c) Solve the equation and enable contours from Plot > Parameters, and try dif-
ferent mesh levels of mesh refinement. How many times do you have to refine
the initial mesh before you get a solution that you deem to be good? Export the
mesh and the solution, and make a surface plot with the following command:

>> pdesurf(p, t, u) % Here p, t and u are exported data

Save the figure.

FINITE ELEMENT METHOD IN 2D WITH MATLAB PDE TOOLBOX 7

Ω1 Ω2

Ω3

Ω4

1

1

1

1 4 1

7

3

Figure 2.
A rectangular domain, consisting of four subdomains Ω1,Ω2,Ω3 and Ω4. The

different subdomains have different material properties (i.e. different values for c).
The subdomain Ω1 has a heat source with f(x) = 1 , and Ω2 has a heat sink with
f(x) = −1. The measurements and parameters are given in dimensionless units.

(d) Equation (6a) is the stationary limit of the heat equation

∂tu− div
(
c∇u

)
= f in Ω,

with the same parameters and boundary conditions as before. We will now solve
this heat equation.

Enter PDE mode and change the equation type to parabolic, with the parame-
ter d set to 1. Make sure that all the subdomains still have the correct parameter
values, and that you have refined the initial mesh at least three times.

From the menu, select Solve > Parameters and set time to be 0:0.005:1,
then solve. Export the mesh and solution, and plot the solution with

>> pdesurf(p, t, u(:, end)) % u(:, end) is final solution

Finally, make a movie of the time evolution by selecting from the menu Plot

> Parameters and clicking the button marked animation (you can leave the
presented values unchanged). Has the solution become stationary? Compare to
your figure from (c).

FINITE ELEMENT METHOD IN 2D WITH MATLAB PDE TOOLBOX 8

Appendix A. Errornorm2D

function [error] = Errornorm2D(u_e , u_h , p, t)

% Errornorm2DComputes the L^2 error (with the following input)

% u_e -- exact solution

% u_h -- nodal values of numerical solution

% p -- nodal coordinates

% t -- the triangles in the mesh

% Reference element quadrature points

q = [0.816847572980459 , 0.091576213509771; ...

0.091576213509771 , 0.816847572980459; ...

0.091576213509771 , 0.091576213509771; ...

0.108103018168070 , 0.445948490915965; ...

0.445948490915965 , 0.108103018168070; ...

0.445948490915965 , 0.445948490915965] ’;

w = zeros (6 ,1);

w(1:3) = 0.109951743655322;

w(4:6) = 0.223381589678011; w = w/2; m = length(w);

% Tabulate reference basis

basis = {@(x) 1-x(1)-x(2); @(x) x(1); @(x) x(2)};

B = zeros(m, 3);

for i=1:m

for j=1:3

B(i, j) = basis{j}(q(:, i));

end

end

% Loop over triangles:

error2 = 0;

for k = 1: length(t)

% Determine trinagle coordinates

vertices = t(1:3, k);

coordinates = p(:,vertices);

% Obtain the affine map from reference simplex

A = coordinates (:,2:end)-repmat(coordinates (:,1),1,2);

b = coordinates (: ,1);

J = abs(det(A)); % Jacobian

% Map reference quadrature points

Q = repmat(b,1,6) + A * q;

% evaluate the numerical solution

u_h_k = B * u_h(vertices);

% evaluate exact solution

u_e_k = zeros(m,1);

for j=1:m

u_e_k(j) = u_e(Q(:,j));

end

% Sum local L^2 error contribution

error2 = error2 + J * sum(w.*(u_e_k - u_h_k).^2);

end

error = sqrt(error2);

end

	1. A recap of the finite element method in two dimensions
	1.1. Finite element error in two dimensions

	2. Introduction to PDE Toolbox
	2.1. Overview

	3. Defining the geometry
	3.1. Setting boundary conditions
	3.2. Setting PDE parameters
	3.3. Meshing
	3.4. Solving and postprocessing.

	4. Exercises
	Appendix A. [style=matlabstyle,basicstyle=,keywordstyle=black]Errornorm2D

