
RESIDUE CALCULUS

BO BERNDTSSON

1. THE RESIDUE THEOREM

Let f be a holomorphic function in a punctured disk D0 = {z; 0 < |z − a| < R} where a is a
point in the complex plane and R is a positive number. Then f has an isolated singularity at a.
By the theorem about Laurent series expansions f can be written

f(z) =
∞∑
−∞

cn(z − a)n

in D0.

Definition 1. The coefficient c−1 in f :s Laurent series a is called the residue of f at a. We write
c−1 = Resa(f).

Consider now the integral

I =

∫
|z−a|=r

f(z)dz

where 0 < r < R. Since the Laurent series converges uniformly on the circle |z− a| = r we can
compute the integral term by term. Since∫

|z−a|=r

(z − a)ndz = 0

if n 6= −1,and ∫
|z−a|=r

(z − a)−1dz = 2πi,

we find that I = 2πiResa(f). This theorem has a far reaching generalization.

Theorem 1.1. (The residue theorem, Theorem 9.10 in Beck et al). Let f be a holomorphic
function in a region G, except for isolated singularities. Let γ be a positively oriented simple,
closed curve that is contractible in G and avoids the singularities of f . Then∫

γ

fdz = 2πi
∑

k

Reszk
(f)

where the sum is taken over all singularities inside γ.

This theorem can be used to compute a lot of integral with rather little effort, but before we
give examples we need to list a few ways to compute residues.
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1.1. The computation of residues. The simplest case is when f has a pole of order 1 at a. This
means that all the coefficients cn with negative index, except c−1 are zero, so that

f(z) =
∞∑
−1

cn(z − a)n.

Then clearly

lim
z→a

(z − a)f(z) = c−1 + lim
z→a

∞∑
0

cn(z − a)n+1 = a−1 = Resa(f).

Example 1. Let

f(z) =
g(z)

z − a
,

where g is holomorphic near a. Then Resa(f) = g(a).

This example is however a bit too special. Even though all functions f that have a pole of
order 1 at a can be written as f = g/(z − a) for some holomorphic function g near a, it can be a
bit problematic to find g explicitly, or at least to find the value of g at a.

Example 2. Let

f(z) =
ez

sin z
.

Then f has a simple pole at 0 (and also simple poles at z = kπ, k integer). If we put g(z) =
ez(z/ sin z), then f = g/z, but the formula is bit dirty, and one has to work a little bit to find
g(0).

In practice therefore the next proposition is useful.

Proposition 1.2. Let f be a holomorphic function with an isolated singularity at the point a.
Suppose f can be written

f(z) =
g(z)

h(z)

where g and h are holomorphic and h(a) = 0, h′(a) 6= 0. Then f has a simple pole at a and

Resa(f) =
g(a)

h′(a)
.

This follows since

lim
z→a

(z − a)f(z) = lim
z→a

g(z)

h(z)/(z − a)
.

Using h(a) = 0 we get

lim
z→a

h(z)/(z − a) = lim(h(z)− h(a))/(z − a) = h′(a),

so
lim
z→a

(z − a)f(z) = g(a)/h′(a).



3

Going back to our example above, f(z) = ez/ sin z we find immediately that

Res0(f) = e0/ cos 0 = 1.

Proposition 1.2 is the most useful way to compute residues when you have a simple pole.
When you have a pole of higher order, say k > 1, so that

f(z) =
∞∑
−k

cn(z − a)n

there is unfortunately no similar trick. The only way we have is

Proposition 1.3. Let f be holomorphic near a point a, with an isolated singularity at a, and
suppose that f can be written

f(z) = g(z)/(z − a)k,

with g holomorphic. Then
Resa(f) = g(k−1)(a)/(k − 1)!.

This is also quite easy to see. Since g is holomorphic near a it has a Taylor expansion

g(z) =
∞∑
0

bm(z − a)m.

Hence the Laurent expansion of f is

f(z) = b0/(z − a)−k + b1(z − a)1−k + ...bk−1(z − a)−1 + ...

Therefore Resa(f) = bk−1 = g(k−1)(a)/(k − 1)!, which is what the proposition claims.

Example 3. Let

f(z) =
ez

sin z(z − 1)2
.

What is ∫
|z|=2

f(z)dz?

To compute this we first note that there are two possible singular points, namely the points
where the denominator sin z(z − 1)2 = 0. These are z = 0 and z = 1 . The first is a simple pole
and we find the residue using Prop 1.2

Res0(f) = e0/[cos 0(0− 1)2] = 1.

(Here g(z) = ez/(z− 1)2 and h(z) = sin z. The second singularity is a double pole and we have
to use Prop 1.3.

Let g(z) = ez/ sin z. Then

g′(1) = (ez sin z − ez cos z)/ sin2 z)|z=1 = e(sin 1− cos 1)/ sin2 1 = Res1(f).

Hence ∫
|z|=2

f(z)dz = 2πi
(
1 + e(sin 1− cos 1)/ sin2 1

)
.
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Messy? Yes. Easy to compute directly? No!

2. COMPUTATION OF REAL INTEGRALS USING RESIDUES.

We will consider two types of real integrals, integrals of trigonometric functions over a period
[0, 2π], and integrals over the real axis.

2.1. Integrals involving trigonometric functions. The main idea is best illustrated in an ex-
ample.

Example 4. Compute for a > 1 ∫ 2π

0

dt

a− cos t
.

The idea is two write

cos t =
eit + e−it

2
=

z + z−1

2
,

for z = eit. Then

I =

∫ 2π

0

dt

a− cos t
=

∫
|z|=1

2

2a− (z + z−1)

dz

iz
.

In the last step here we have considered z = eit as a parametrization of the unit circle. Then
dz = ieitdt = izdt, so dt = dz/(iz). Next we clean up the formula and get

I =

∫
|z|=1

2i

z2 − 2az + 1
dz.

Where are the poles? The denominator vanishes for z = z0 = a +
√

a2 − 1 and z = z1 =
a−

√
a2 − 1. Since z0 lies outside the unit circle we only need to worry about z1. This point lies

inside the circle since by the conjugate rule

a−
√

a2 − 1 =
a2 − (a2 − 1)

a +
√

a2 − 1
= 1/(a +

√
a2 − 1) < 1.

Let f = 2i
z2−2az+1

. By Prop 1.2

Resz1(f) =
2i

2z1 − 2a
= i/(−

√
a2 − 1).

Hence
I = 2πiResz1(f) = 2π/

√
a2 − 1.

Here are, as exercises, a few other variations on the same theme:

1. Show that ∫ 2π

0

dt

a + b sin t
= 2π/

√
a2 − b2

if a > b ≥ 0.
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2. Show that ∫ 2π

0

cos tdt

a + b cos t
= (2π/b)

(
1− a√

a2 − b2

)
.

(It can be reduced to example 4, but try to do it directly!)

3. Compute ∫ 2π

0

(cos t)2kdt

for k = 0, 1, 2....

4. Show that ∫ 2π

0

dt

a + (sin t)2
=

2π√
a(a + 1)

.

2.2. Integrals over the real line. First we look at the simplest example, which we could also
compute directly.

Example 5. Compute

I =

∫ ∞

−∞

dx

1 + x2
.

Since (1 + x2)−1 has the primitive function arctan x we can compute the integral directly as

I = lim
x→∞

arctan x− lim
x→−∞

arctan x = π/2− (−π)/2 = π.

Let us now for comparison compute this integral using residues. Let

f(z) =
1

1 + z2

for complex z. We first write the integral I = limR→∞ IR, where

IR =

∫ R

−R

f(x)dx.

Then we ’close the curve’ by adding a semicircle γR of radius R in the upper halfplane. Then
we get a closed curve ΓR = [−R,R] ∪ γR. We shall see in a while that the integral of f over γR

tends to zero, so all we need is to compute limR→∞ J(R) where

J(R) =

∫
ΓR

f(z)dz.

But J(R) is an integral over a closed curve and f is holomorphic in the upper half plane, except
for an isolated singularity at z = i. Hence the residue theorem implies that

J(R) = 2πiResi(f) = 2πi/(2i) = π

if R > 1. (We have also used Prop 1.2 to compute the residue at the simple pole z = i.) Hence

I = lim I(R) = lim J(R) = π
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so we are done, except that we need to verify that the integral over γR tends to 0 as R → ∞.
Here is how you do that: ∣∣∣∣∫

γR

dz

1 + z2

∣∣∣∣ ≤ max
γR

(| 1

1 + z2
|)|γR|

(remember |γ| is the length of γ). Now, to estimate the max we need to estimate the denominater
(1 + z2) from below. This we do using the reverse triangle inequality

|1 + z2| ≥ 1− |z2| = 1−R2,

since |z| = R on γR. Clearly |γR| = πR. Hence∣∣∣∣∫
γR

dz

1 + z2

∣∣∣∣ ≤ πR/(1−R2) → 0

when R →∞.

What is the point of this if we already know how to compute the integrals by simpler means?
The main point is that the residue method also applies in many cases when we cannot find a
primitive function. The next example illustrates this, and also shows why it is so important to
estimate the integral over the semicircle. If you don’t, you may get the wrong answer!

Example 6. Compute

I0 =

∫ ∞

−∞

eixdx

1 + x2
.

We use the same method and define ΓR and γR as in example 5. The point z = i is again the
only pole inside ΓR, but this time the residue is

Resi

(
eiz

1 + z2

)
= e−1/(2i),

so the integral becomes 2πie−1/(2i) = π/e. We only need to check that the integral over γR

tends to 0 as R tends to ∞. This is done as before∣∣∣∣∫
γR

eizdz

1 + z2

∣∣∣∣ ≤ max
γR

(

∣∣∣∣ |eiz|
1 + z2

∣∣∣∣)|γR|.

Now we note that
|eiz| = e−y ≤ 1,

so we can continue the estimate exactly as before (do that!). Hence the integral really becomes
π/e; our computation was correct. Next, let us compute instead

I1 =

∫ ∞

−∞

e−ixdx

1 + x2
.

Then the residue at z = i equals e/(2i) since e−i2 = e. Hence we seem to get that I1 = πe. But
this is not possible, since clearly I1 = Ī0 = π/e. What did we do wrong? We did not check that
the integral over γR tends to zero. And it doesn’t.
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So, how do we compute I1? One way is of course just to note that I1 = Ī0 and we already
have computed I0. That is perfectly fine, and often the easiest way, but here is how you should
apply the residue method in this case:

Computation of I1 using the residue method.

We need to change the definition of ΓR by adding to the interval (−R,R) instead a semicircle
of radius R in the lower half plane, that we still call γr. Then we get that∫ R

−R

e−ixdx

1 + x2
+

∫
γR

e−izdx

1 + z2
=

∫
ΓR

e−izdx

1 + z2
,

where as before ΓR = [−R,R] ∪ γR. Note however that in this case we must let ΓR be oriented
clockwise instead of counterclockwise. Since the only singular point inside the curve is now −i
we find that ∫

ΓR

e−izdx

1 + z2
= −2πiRes−i

(
e−izdx

1 + z2

)
.

(We get −2πi instead of 2πi because the curve has the ’wrong’ orientation.) Computing the
residue we get

Res−i

(
e−izdx

1 + z2

)
= e−i(−i)/(−2i),

so the integral over ΓR becomes π/e. Now we let R → ∞ and check that the integral over γR

tends to 0, leading to

I1 =

∫ ∞

−∞

e−ixdx

1 + x2
= π/e.

A variation on the same theme.
We are going to compute ∫ ∞

−∞

dx

1 + x4
.

We could do it exactly as before, by adding a semicircle in the upper half plane, but then we get
two singular points. Here is another way: Compute instead

I =

∫ ∞

0

dx

1 + x4
= lim IR =

∫ R

0

dx

1 + x4

(and multiply by 2). We now construct a closed curve ΓR by adding to (0, R) a quarter circle γR

with radius R and then a line segment lR from iR to 0. The only singular point inside the circle
is z0 = (1 + i)/

√
2. Then by the residue theorem∫

ΓR

dz

1 + z4
= 2πiResz0(1/(1 + z4)) = 2πi/(4z3

0).

What is this? Since z4
0 = −1, z3

0 = −1/z0. Hence

2πi/(4z3
0) = −π(i/2)z0 = (π/2

√
2)(1− i)
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It looks like we are going to get a complex answer to a real integral, but we have still not
looked at the integral over lR. If we use the parametrization lR(t) = it with t going from R to 0,
we find ∫

lR

dz

1 + z4
= −

∫ R

0

idt

1 + t4
= −iIR!

After checking that the integral over γR tends to zero we find

(1− i)I = 2πi/(4z3
0) = (π/2

√
2)(1− i),

so
I == π/(2

√
2).

Here are some exercises on this:

1. Compute ∫ ∞

−∞

dx

1 + x4

using the method of example 5.

2. Compute ∫ ∞

−∞

dx

1 + x6
.

3. Compute ∫ ∞

−∞

cos axdx

1 + x2
.

4. Prove that ∫ ∞

0

dx

(x2 + a2)(x2 + b2)
= (π/2)[ab(a + b)]−1.

3. THE ARGUMENT PRINCIPLE

Recall first the argument principle from Beck et al (Theorem 9.14).

Theorem 3.1. Let f be holomorphic in G except for poles at the points wk. Let γ be a closed
simple curve in G which is G-contractible (null-homotopic) in G and does not pass through any
zero or pole of f . Then

1

2πi

∫
γ

f ′

f
dz = N(f, γ)− P (f, γ),

where N and P stand for the number of zeros and poles respectively inside γ.
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We will complement this theorem by the following geometric interpretation which moreover
explains the name ’argument principle’.

Look at the image of γ under the map f , Γ. If γ is parametrized by z = γ(t), a < t < b,
then Γ is parametrized by w = f(γ(t)). By assumption f is never zero on γ, so Γ is a closed
curve which does not pass through zero. We denote by W (f, γ) the winding number of Γ around
zero, i e the net number of times that Γ winds around 0. This can be thought of as the amount by
which the argument of f changes as you go around γ, divided by 2π. It is not so easy to give this
a rigorous definition, but the meaning in concrete situations is hopefully clear.

Example 7. Let γ be the circle |z| = 1 and let f be zm. Then γ can be parametrized by z = eit,
with t running from 1 to 2π. Therefore Γ is parametrized by w = eimt, which is a circle that
winds m times around the origin, so the winding number is m.

Example 8. Let γR be the circle |z| = R, with R >> 0, and let

f = zm + a1z
m−1 + ....am

be an arbitrary polynomial. If R is sufficiently large and z lies on γR, then f(z) = zm(1 + ε(z)),
where

ε(z) = a1/z − a2/z
2 + ...am/zm

is small. Then the argument of f satisfies

arg(f(z)) = arg(zm) + arg(1 + ε(z)).

Since 1 + ε(z) is all the time close to 1 as you go around γ, the net change of its argument is
zero. Hence W (f, γR) = W (zm, γR) = m.

Theorem 3.2. (The honest argument principle)

W (f, γ) = N(f, γ)− P (f, γ).

Proof. By theorem 3.1 we only need to prove that

(3.1)
1

2πi

∫
γ

f ′

f
dz = W (f, γ).

If we parametrize γ by z = γ(t), 0 < t < 1 we have that∫
γ

f ′

f
dz =

∫ 1

0

f ′(γ(t))

f(γ(t))
γ′(t)dt.

But
f ′(γ(t))

f(γ(t))
γ′(t) = (d/dt) log f(γ(t))

where we can take any branch of the logarithm. This equals in turn

(d/dt) log |f(γ(t))|+ i(d/dt)arg(f(γ(t))).

Therefore ∫ 1

0

f ′(γ(t))

f(γ(t))
γ′(t)dt = i[arg(f(γ(1)))− arg(f(γ(0)))],
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which is i times the net amount that the argument of f(γ(t)) increases as we go around γ.
Dividing by 2πi, this is the winding number. �

Example 9. Yet another proof of the fundamental theorem of algebra. Let’s go back to
Example 8. We have seen that the winding number of

f = zm + a1z
m−1 + ....am

along γR = {|z| = R} is m, if R >> 0. Since f has no poles, Theorem 3.2 says that f has m
zeros inside γR, if R is large.

Example 10. Let λ > 1. How many solutions does the equation

(3.2) z + e−z = λ

have in the right half plane?

Let γR be the semicircle in the right halfplane consisting of the set

cR = {Re z > 0 and |z| = R}
and the interval from iR to −iR on the imaginary axis. Let h(z) = z + e−z − λ. First, we
parametrize the interval on the imaginary axis by z = it where t runs from R to −R. Then

h(it) = it + e−it − λ = (cos t− λ) + i(t− sin t).

Since λ > 1, the real part of h is always negative and the imaginary part decreases from a large
positive value to a large negative value. Therefore the argument variation on the interval is

Argvar[iR,−iR](h) ∼ π.

On cR, we parametrize by z = z(s) = Reis. Then

h(z(s)) = Reis + e−z(s) − λ.

Since Re z(s) ≥ 0, |e−z(s)| = e−Re z(s) ≤ 1, so

h(z(s)) = Reis + ez(s) − λ = Reis(1 + [+ez(s) − λ]/(Reis) = Reis(1 + ε(s)),

where ε(s) is very small. Hence, as in example 8,

ArgvarCR
(h) ∼ π.

Therefore, the variation of the argument on all of γR is

ArgvarγR
(h) = Argvar[iR,−iR](h) + ArgvarCR

(h) ∼ 2π.

Since the variation of the argument along a closed curve is always an integer multiple of 2π we
have in fact

ArgvarγR
(h) = 2π,

so the number of solutions is 1.
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