MVEO041 Flervariabelanalys 2015 Passing/Mastery
Week 2

1 Passing Part

§12.4 Higher Order Derivatives
e Compute n-th order partial derivatives of a function.
§12.5 The Chain Rule

e Use appropriate versions of the chain rule to compute the partial deriva-
tives of functions of the form

z = f(x,y), where z=u(t), and y = v(t),

and
z= f(z,y), where x =ult,s), and y = v(t,s).

§12.6 Linear Approximations

e Be able to use the tangent plane at a point to approximate the value of
a function at a nearby point.

e Use the differential of a function at a point to estimate the function value
at a nearby point, and to approximate percentage errors.

e Compute the linearization of a vector-valued function of a vector variable
at a point (i.e. using the Jacobian derivative).

§12.7 Gradients and Directional Derivatives

e Understand and be able to give the definition of the gradient of a func-
tion. Given a function be able to compute its gradient.

e Know and understand the geometric properties of the gradient vector.

e Be able to compute the directional derivative of a function in the direc-
tion of a specified vector and evaluate this at a point.

e For a real-valued function of two real variables use the gradient at a
point to compute the equation for the tangent plane at that point, and
the equation for a line tangent to level curve passing through that point.
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e For a real-valued function of three real variables use the gradient at a
point to compute the equation for the tangent plane at that point

812.9 Taylor Series

e Be able to write down the Taylor series for a general real-valued function
of n real variables.

e Explicitly compute the Taylor series for a specified real-valued function
of two real variables using the Taylor formula as well as using known
expressions for functions of one variable.

2 Mastery Part

§12.4
e Show that a function is harmonic.
812.6

e Give the definition of a differentiable function of two variables (Def. 5
of Adams and FEssex).

e State the mean value theorem for a real-valued function of two real
variables (Theorem 3 in 12.6 of Adams and Essez).

e Understand the relationship between continuity, existence of partial deriva-
tives, and differentiability for a function. What property of the first par-
tial derivatives of a function guarantees that the function is differentiable
at a point ( cf. Theorem 4 in 12.6 of Adams and Essex).

§12.7

e Be able to prove that the gradient vector of a function at a point is
orthogonal to the level curve of the function at that point (cf. Theorem
6 of 12.7 of Adams and Essex).

e Be able to state the definition of the directional derivative. Prove that
the directional derivative can be computed using the gradient (cf. The-
orem 7 of 12.7 of Adams and FEssezx).



e Use the gradient to prove the equation of the tangent plane to the graph
of a function of two variables at a point (cf. Example 7 pg 724 of Adams
and FEssex).

§12.8 Implicit Functions

e Understand the relationship between the Jacobian determinant and trans-
formations of R"”. Be able to state the implicit function theorem for one
equation in three variables.

e Be able to compute specified partial derivatives of functions implicitly
defined by equations of two or three variables. Also specify the domain
on which these expressions are valid.
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