Scientific visualization, Vetenskaplig visualisering
MVE080, MAI510

Thomas Ericsson
Computational mathematics

Chalmers/GU

office: L2075

phone: 772 10 91

e-mail: thomas@chalmers.se

www: http://www.math.chalmers.se/Math/Grundutb/CTH/
mve080/0809/

Assignments, copies of handouts (lecture notes etc.) can be found
at the www-address (look under Diary).

Some of the images from this introduction is not available in
the handout, though (they take too much space).
[Image] denotes a missing image (images).

Here comes the syllabus (kursplan):

Aim

The solution of computational problems with the help of compu-
ters often generate large data sets. This course deals with how
computer graphics can be used to visualize data in order to give
a better understanding of the problem and its solution. In simp-
le cases the solution can perhaps be represented as a curve.
More complicated problems have solutions in the form of surfa-
ces or volumes, maybe even time dependent. Many mathematical
problems may not generate so large data sets but require an
understanding of more three dimensions.

Goal

At the conclusion of the course, the participant should find it
natural to think in visualization terms, be able to produce
insightful graphics in a number of common cases, be quite
familiar with Matlab graphics, and be acquainted with OpenGL
and ParaView.

Prerequisites

Basic courses in mathematics, numerical analysis, programming
and data structures. Basic Matlab programming. This is an
introductory course so no prior knowledge of computer graphics
is required.

Content

Introduction to visualization. Different techniques for visualizing
surfaces, volumes and other common mathematical objects.
Animation. Interaction. An orientation about the construction
of user interfaces. OpenGL, ParaView and advanced Matlab
graphics.

Matlab, easy and to get started. OpenGL to see how some basic
computer graphics is done. ParaView, more capable than Matlab
(but harder to use).

Computer graphics concepts, such as transformations and
shading models, necessary to use and understand the
graphics software. A sufficient amount of C to finish the the
computer assignments.

Organization

Lectures and computer assignments. The assignments, which
make up a substantial part of the course, consist of several
problems where the student will use Matlab, OpenGL and
ParaView to solve different visualization problems.

The problems are fetched from numerical analysis

and applied mathematics.

The assignments vary in difficulty. Some are routine tasks (would
take me minutes) while others require a bit of programming.

Literature
Lecture notes, articles and manuals.

Reference literature: F. S. Hill, Computer Graphics using OpenGL,
2nd ed., Prentice Hall, 2001 or Edward Angel, Interactive Com-
puter Graphics, A Top-Down Approach with OpenGL, Pearson
Education 2003, 3rd ed.

The topic of these titles are not strictly visualization, they are
standard computer graphics books. On the next page I will list
more literature.

Examination
Compulsory computer assignments and take-home exam.

‘We have two lectures and two labs per week. See the schedule on
www. Show me your solutions to the assignments at lab-times.
You do not have to hand in any reports.

More books from my shelf
Here comes a list of books which I collected with this course
in mind. For other books, see the references on the home page.
Some E-books are available via the Chalmers library home page.
Finally there are man-pages and PDF-manuals.
e S. K. Card, J. D. Mackinlay, B. Shneiderman, Readings in
Information Visualization: Using Vision to Think Morgan
Kaufmann, 1999.

e C. D. Hansen, C. R. Johnson (eds.), Visualization Handbook
av Johnson, Academic Press, 2004.

e R. Spence, Information Visualization, Addison-Wesle, 2001.

e D. Thompson, J. Braun, R. Ford, OpenDX: Paths to Visua-
lization, 2nd ed. 2004, http://www.vizsolutions.com

e D. A. Norman, The Design of Everyday Things, Basic Books,
2002.

e C. Ware, Information Visualization Perception for Design,
Elsevier, 2004.

e M. K. Agoston, Computer Graphics & Geometric Modeling,
Implementation and Algorithms, Springer, 2004. There is one
Computer Graphics and Geometric Modeling: Mathematics,
which I do not have.

e S. R Buss, 3D Computer Graphics: A Mathematical Intro-
duction with OpenGL, Cambridge UP, 2003.

e H. C. Hege, K. Polthier (eds.), Mathematical Visualization,
Algorithms, Applications and Numerics, Springer, 1998.

e J. O’Rourke, Computational Geometry In C, Cambridge UP,
1998.

e D. F. Rogers, An Introduction to Nurbs: With Historical
Perspective Morgan Kaufmann, 2000.

e A. Unwin, M. Theus, H. Hofmann, Graphics of Large Data-
sets, Springer, 2006. To the math-library.

4

Some typical visualization problems

The primary goal of Scientific Visualization, is to provide in-
sight into scientific data. We often need a deeper understanding
of a phenomenon, need to draw conclusions, make predictions.
(Computer) graphics can (often) give us the help we need, after
all:

“An image says more than a thousand words (or numbers)”

Scientific visualization usually has a natural physical or mathe-
matical representation or background. We may want to visualize
the flow of air around aircraft or the roots of an equation. When
visualizing the data, we would probably make an outline of the
aircraft and draw a coordinate system for our roots. [Image]

A related area is information visualization. It is less common
with a physical background and it may not even be important.
A classical example is Harry Beck’s map of the London under-
ground (1931). [Image]

Seehttp://en.wikipedia.org/wiki/Harry Beck for example.

Previous maps based on the actual layout, the geography, of
the underground had not worked well. Beck’s map, on the other
hand, leaves the physical reality behind and shows the order of
stations, where lines cross etc. It captures what is essential for
the traveler.

Another example is given by business graphics (pie charts etc.),
e.g. visualizing the number of admitted and graduated students
for different programmes at Chalmers/GU.

This course will deal with scientific visualization.

You have already dealt with this in previous classes. Plotting
the graph of a scalar function of a scalar variable, plot (x, y)
provides almost a complete understanding of the function.

There are however harder visualization problems, where we only
get a partial understanding, e.g. looking at w = f(x,y, z), given
a function f. [Image] Understanding w = f(z,y, z,t) completely
may be hopeless.

Another cause of problems may be the amount of data.
Computers are fast, and when a program has executed a few
hours the output can be enormous, several Gbytes.

To visualize this amount of data may be difficult, but a thousand
numbers may be hard enough.

It is not always easy to say what is a meaningful image.

Tastes differ as does the ability to interpret 3D-plots, for
example. So this course will show different ways of visualizing
data, but there is rarely a unique solution to a visualization
problem (or to the assignments).

Use your imagination. If one plot is not that helpful there may
be another, better, way to visualize the data. Trial and error
may be a successful method.

An example, the cosine function

In Matlab it is possible to compute cos z where z is a complex
number. Suppose we would like to understand how this function
behaves. Since we know a lot of mathematics we can easily list
several properties.

Let a,b be real numbers, then

i(atib) 4 p—i(a+ib)
cos(a + ib) =%: R

(e +et)cosa . (e’ —eP)sina
—1
2 2

If z € C then the following is true, for example:

cos(z + 2w) = cosz, cosz = cos(—z), COSZ =COSZ

So, it is sufficient to study 0 < Re(z) < 2w and Im(z) > 0.

For large b
e’|cosa —isina| b
|cosz|® —m——— = —
2 2

In a real application it may not be possible to use mathematics
this way. Perhaps the function is too complicated, or perhaps
worse, we may not have an expression for the function. We may
have to rely on a computer program that returns f(z) for a given
z.

The visualization of cos z is still a bit hard since we are
dealing with four real dimensions. Here are a few
alternatives (not all good).

The obvious first try, plot | cos z| as a function of (Re(z), Im(z)).

|cosz|

Im(z) 0o Re(z)

In Matlab this would be in colour, where the colour corresponds
to | cos z|.

It captures some of the behaviour: periodicity, what happens
for large I'm(z). We have lost the sign information, and
introduced corners (like z — |z|).

On the other hand, this image may be exactly what we need.
It is possible to use more fancy graphics, no grid but a smooth
surface using light etc. [Image]

The next image was done with Matlab’s cplxmap-command. It
plots Re(cos(z)) as a function of (Re(z),Im(z)). The colour is
used for I'm(cos(z)). I have added a color bar. I have a pro-
blem with this plot. The shape of the surface dominates over
the colour information.

Matlab’s cplxmap

Im@) 0o Re()

A similar idea is to plot |cosz| as before but to let the colour
show the argument, so if cosz = r e we use colour for ¢ and
height for » = | cos z|.

colour = arg(cos z)

In the next plot we do not loose any space-dimension. A grid in
the (Re(z), Im(z))-plane is mapped onto (Re(cos z), Im(cos 2)).
‘We see the periodicity in a new way. Lines with constant imaginary-
part seem to be mapped onto closed curves.

2

18

16

14

12

Im(z)

1

0.8

0.6

0.4

0.2

Im(cos z)

0
0

2 4
Re(z)

0
Re(cos z)

The plot is not quite truthful. Matlab tries to fill out the window,
which may cause different scaling between the axes (a circle may
look like an ellipse). After correction, axis equal, we see some

new features.

Im(z)

Im(cos z)

o

0
N

|
&

|
=)

Re(z)

-2 0 2
Re(cos z)

It seems like we have right angles between the curves in the right
diagram. So are the angles in the z-grid preserved? Yes. Those
who have read complex analysis may recognize this as a special
case of a more general theorem. cos is a conformal mapping and
hence preserves angles (whenever the derivative is non-zero).

One drawback with this plot is that is hard to know what li-
ne corresponds to which cos z-curve. Perhaps we could use some
interaction with the mouse, clicking on a line in the left window
would make the corresponding curve in the right window blink,
change colour or something.

picking

We end with two images where we plot Re(cos z) and Im(cos 2)
in two windows or together in one. [Image].
Several other alternatives remain.

11

Now to another problem, mesh generation in 3D. The difficulty
is not the number of dimensions this time, but the huge amount

of data.

Discretize (divide into small volume elements) the air in the
box and outside the aircraft. Mesh generation (using m3d, an
ITM-project, Swedish Institute of Applied Mathematics) on one

RS6000 processor:

wed may 29 12:54:44 metdst 1996
thu may 30 07:05:53 metdst 1996

183463307 may 2 13:46 s2000r.mu

tetrahedrons in structured mesh:

So this is old stuff

4 520 413

tetrahedrons in unstructured mesh: 4 811 373

Does the program work? Does it refine the mesh it the right
places? Make nice images for the annual report (and for those
supplying the money). [Image] (several).

There are of course many other visulization problems. Here are
a few [Image] showing a simulation of an open cavity problem.
Others will turn up on the lectures or in the labs.

Starting Matlab

> matlab -help

Here is an edited list:

-h|-help — Display arguments.
-nodisplay — Do not display any X commands. The

MATLAB desktop will not be started.

However, unless
-nojvm is also provided the Java
virtual machine will be started.

-nosplash — Do not display the splash screen
during startup.
—nodesktop — Do not start the MATLAB desktop.

Use the current terminal for
commands. The Java virtual
machine will be started.

-nojvm — Shut off all Java support by not
starting the Java virtual machine.
In particular the MATLAB
desktop will not be started.

I use matlab —nodesktop.

To get short help, type help command. For more help use the
GUI (Graphical User Interface) or doc command. There are thick
PDF-manuals available (through the GUI) as well. Start Help
and click on MATLAB, choose Printable (PDF) Documentation.
The basic graphics manual is 667 pages and the 3D-manual an
additional 212 pages.

For this to work you have to tell MATLAB what browser you

are using. Netscape is default (and we do not have it). This is
one way to fix it:

13

cd

mkdir matlab

cd matlab

cp /chalmers/sw/sup/matlab-2007b/toolbox/
local/docopt.m . (I have broken the line)

edit docopt.m and change line 77 in the file

docemd = 'netscape’;

to
docemd = ‘mozilla’; or
docemd = ' firefox’;

Programming in Matlab
e A full programming language, if, for,...

e The basic datatype, a double precision matrix in several
dimensions. In Matlab7 there are more types, such as single
precision and integers.

o No type declarations. variables are created when needed.
e Interactive. Partially interpreted.

e New programming style; vector based.

e Object oriented (to some extent).

e Easy to use graphics.

e Can add toolboxes and compiled code.

A tutorial is available. Look under MATLABSs help. You can also
see the Matlab-book by J6nsson (Swedish).

One should learn to work with vectors and matrices instead of
using loops and elements. Shorter, faster and easier to read.
It is convenient to write the labs as m-files (instead of typing
commands and using the history mechanism).

On the following pages comes a short and fast review of Matlab.
There will probably be new things for you as well. Some of the
commands below can be performed using the GUI instead.

% or comma as delimiter

v
v
<
1]

[1 -5 7 8 -3]

1 -5 7 8 -3

>> a = v(2) + v(5)

>> v(2) = 25
1 25 7 8 -3
>> v (2) + v(3)
ans = % default "answer", % = comment
32
>> who
Your variables are:
a ans v
>> sin(v (1))
ans =
0.8415
>> format short e
>> sin(v (1))

ans =
8.4147e-01

15

>> format long e

>> sin(v (1))

ans =
8.414709848078965e-01

>> format short
>> sin(v (1))
ans =

0.8415

>> format bank
>> sin(v (1))
ans =

0.84

>> format hex

>> sin(v (1))

ans =
3feaed548£090cee

>> format compact % for less space

>> help format

FORMAT Set output format.
etc.

>> doc format % opens Matlab’s browser

% (or use the GUI)

Note that this changes the output format and not the internal
binary representation.

Empty matrix: 1l-by-0

>> 1.5:0.856:6.7 % complex numbers do not work
ans =

> w=1; 2; 3 % ; separates commands

>> a = 1:3; b = 5:8;

> c=a+b

??? Error using ==> plus
Matrix dimensions must agree.

>> size(a)

1.5000 2.3560 3.2120 4.0680 4.9240 5.7800 6.6360 ans =
1 3 % size(a, 2) is 3 etc.

> w = [1; 2; 3] >> size(b)
w = ans =

1 1 4

2

3 > b = (5:7)'

b =

> w = [1; 2; 3]; % no printing 5
>> w 6
w = 7

1

2

3

17 18

> c=a+b > a ./ b
??? Error using ==> plus ans =

Matrix dimensions must agree.

>> size(b)

ans =

3 1
>> a = a’
a =

1

2

3
> ¢c=a+b
c =

6

8

10

>> sqrt(c’)
ans =
2.4495 2.8284 3.1623

> a =1:3, b =10 * (3:-1:1)
1 2 3
30 20 10
>> a * b
??? Error using ==> mtimes
Inner matrix dimensions must agree.
> a .* b

ans =
30 40 30

19

0.0333 0.1000 0.3000

> a /b % something different
ans =
0.0714

> a .\ b
ans =
30.0000 10.0000 3.3333

> a \ b
ans =
0 0 0
0 0 0
10.0000 6.6667 3.3333

> a \. b
2?2?22 a \.
|
Error: Unexpected MATLAB operator.

1 1048576 59049

ans =
27000 32000 9000
> 1 + a
ans =
2 3 4

20

> 1 ./ a >> imag(q)
ans = ans =
1.0000e+00 5.0000e-01 3.3333e-01 1 -3 6
>> abs (q)
>> i ans =
ans = 1.4142 3.6056 8.4853
0 + 1.00004i
>> 3 >> exp(i * pi) % pi is predefined
ans = ans =
0 + 1.00004i -1.0000 + 0.0000i
>> sqrt (-1)
ans = >> format short e
0 + 1.0000i >> exp(i * pi)
ans =
>> g = [1+i 2-3*i 6+6*i] % 2-3i works as well -1.0000e+00 + 1.2246e-16i
q =
1.0000 + 1.0000i 2.0000 — 3.0000i 6.0000 + 6.0000i >> sqrt(2)"2 - 2
ans =
>> q’ 4.4409e-16
ans =
1.0000 - 1.00004i >> sin(pi)
2.0000 + 3.00004i ans =
6.0000 — 6.00001 1.2246e-16
> q.’ > v = 1:10
ans =
1.0000 + 1.00004i v =
2.0000 — 3.0000i 1 2 3 4 5 6 7 8 9 10
6.0000 + 6.00004i
>> s = 0;
>> real (q) % is applied on the whole vector >> for k = 1:10
ans = s = s + v(k);
1 6 end
>> s
s =
55
21 22
>> s = sum(v) % there is prod as well
s = >> A(3, 3) =9 % A is increased dynamically
55 A=
1 2 3
4 5 66
0 0 9
>> 1 + A(3, 4)
??? Index exceeds matrix dimensions.
Matrices
>> A = [1 2; 3 4]
> A =[12 3; 45 6] A =
A = 1 2
1 3 3 4
4 6
>> B = [3 4; 1 2]
>> A’ B =
ans = 3 4
1 1 2
2
3 >> A * B
ans =
>> A(2, 3) 66 5 8
A= 13 20
1 3
4 66 >> A + B
ans =
4 6
4 6
> A .* B
ans =
3 8

23

24

> A ./ B

ans =
3.3333e-01 5.0000e-01
3.0000e+00 2.0000e+00
> A .\ B
ans =
3.0000e+00 2.0000e+00
3.3333e-01 5.0000e-01
> A / B % roughly A * inv(B)
ans =
0 1
1 0
> A \ B % roughly inv(aA) * B
ans =
-5.0000e+00 -6.0000e+00
4.0000e+00 5.0000e+00
>> A2
ans =
7 10
15 22
>> A."2
ans =
1 4
9 16
>> A."A
ans =
1 4
27 256

25

>> sqrt (A)

ans =
1.0000e+00
1.7321e+00

1.4142e+00
2.0000e+00

>> sqrt (-A)

ans =
0 + 1.0000e+004i
0 + 1.7321e+00i

>> R = rand(3)

R =
9.5013e-01 4.8598e-01
2.3114e-01 8.9130e-01
6.0684e-01 7.6210e-01

>> R = rand(3, 2) % rand

R =
4.4470e-01 9.2181e-01
6.1543e-01 7.3821e-01
7.9194e-01 1.7627e-01

>> R = randn(3, 2) % NOTE

R =

-1.9790e-02 2.5730e-01
-1.5672e-01 -1.0565e+00
-1.6041e+00 1.4151e+400

>> D = diag(1:2:5) % diag(m

D = % diagon,
1 0 0
0 3 0
0 0 5

26

0 + 1.4142e+00i
0 + 2.0000e+00i

4.5647e-01
1.8504e-02
8.2141le-01

randN

atrix) returns the
al in a vector

>> D = diag(1l:2:5,
D =

0 1 0 0
1 0 3 0
0 3 0 5
0 0 5 0
>> I = eye(3)
I =
1 0 0
0 1 0
0 0 1
>> B = magic(3)
B =
8 1 6
3 5 7
4 9 2

>> IB = inv(B)
IB =

1.4722e-01 -1.
—-6.1111e-02 2.
—-1.9444e-02 1.

>> B * IB
ans =
1.0000e+00
-2.7756e-17 1.
6.9389e-17

>> IB * B
ans =
1.0000e+00
0 1.
0 1.

-1) + diag(1l:2:5, 1)

4444e-01 6.3889e-02
2222e-02 1.0556e-01
8889e-01 -1.0278e-01

0 -1.1102e-16
0000e+00 0
0 1.0000e+00

0 =-2.7756e-17
0000e+00 0
1102e-16 1.0000e+00

27

>> ones (2, 3)

ans =
1 1 1
1 1 1

>> zeros (2)
ans =
0 0
0 0

>> S = reshape(l:6, 2, 3)

1 3 5
2 4 6
>> sum(S)
ans =
3 7 11

>> sum(S’)
ans =
9 12

>> sum (S, 2)
ans =
9
12

>> sum(sum(S))
ans =
21

>> cumsum(1l:7)

ans =
1 3 6 10

28

15 21 28

>> M = magic(3)

M=
8 1 6
3 5 7
4 9 2

>> sort (M)

There are matrices of higher order:

>> Al = [1 2;3 4]
Al =

ans = o
3 1 2 5 6
4 5 6 ; .
8 9 7
>> M(:)’ >> A(:,:,1) = Al;
’ >> A(:,:,2) = A2;
ans =
8 3 4 ! 5 o 6 >> A
= A(:,:,1) =
>> s = sort (ans) 1)
s =
3 4
! 2 3 4 3 6 7 A(:,:,2) =
5 6
7 8
29 30
Index vectors
> v =0.1+ (1:7)
11— 2 v =
/1 / 1.1 2.1 .1 4.1
/| /
Y 4 >> v(1:3:7) % 1:3:7 = [1 4 7]
| ans =
5 —=——= 6 ——=> 2nd index 1.1 4.1 -1
/1 /]
/| / >> M = magic(5)
7 ————— 8 M=
/ | third index 17 24 1 8 15
first index v 23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
>> M(:, 2)
ans =
(1, 1, 1) 1 --——- 2 (1, 2, 1) 2:
/1 / .
/| / 1
2,1, 1) 3 -—— 4 (2, 2, 1
() | () 1s
(1, 1, 2) 5 =-———- 6 (1, 2, 2)
/ / >> M([2 5], :)
/ / ans =
(2, 1, 2) 7 ===== 8 (2, 2, 2) 23 5 7 14 16
11 18 25 2 9

31

>> M([2 5], [2 4])
ans =

5 14

18 2

32

end is practical in constructions like these:

>> M(:, end)
ans =

15

16

22

3

9

>> M(end, :)

A bit more original is:

>> M(:, [1 1 2])
ans =
17 17 24
23 23 5
4 4 6

10 10 12
11 11 18

Is used by meshgrid.

> x = 1:3

ans = x =
11 18 25 2 9 1 2 3
>> M(end, end) >y = -2:0
ans = y =
9 -2 -1 0
>> M([1 3], [end-3:end]) >> [X, Y] = meshgrid(x, y)
ans = X =
24 1 8 15 1 2 3
6 13 20 22 1 2 3
1 2 3
.. i Y =
An alternative is of course: 2 2 2
>> [m, n] = size(M) -1 -1 -1
m = 0 0 0
n= 5 Can be computed this way:
5 >> x = x(:)’; X = x(ones(length(y), 1), :)
X =
>> M(m, @) 1 2 3
ans = 1 2 3
11 18 25 2 9 1 2 3
>y =y(:); ¥ =y(:, ones(l, length(x)));
33 34
T used this quite often: min can return a pointer vector as well. Suppose we would like
. to find the row- and column indices for the largest element in a
>> [X, L] = eig(M) . . .
X = matrix (we assume it is unique).
0.4472 -0.6780 -0.6330 0.0976 0.2619 >> M
0.4472 -0.3223 0.5895 0.3525 0.1732 M=
0.4472 0.5501 -0.3915 0.5501 -0.3915 17 24 1 8 15
0.4472 0.3525 0.1732 -0.3223 0.5895 23 5 7 14 16
0.4472 0.0976 0.2619 -0.6780 -0.6330 4 6 13 20 22
10 12 19 21 3
L = 11 18 25 2 9
65.0000 0 0 0 0
0 21.2768 0 0 0 >> [col_max, row_p] = max (M)
0 0 -13.1263 0 0 col _max =
0 0 0 -21.2768 0 23 24 25 21 22
0 0 0 0 13.1263 row_p =
2 1 5 4 3
>> [1, pntr] = sort(diag(L))
1= >> [max_M, col_p] = max(col_max)
-21.2768 max_M =
-13.1263 25
13.1263 col p =
21.2768 3
65.0000
>> M(row_p(col_p), col_p)
pntr = ans =
4 25
3
5
2
1

>> X = X(:, pntr);

35

36

12
13
15

39

>> M(1:2, 3:4) = M([2 5], [2 4]) > v > 4
M = ans =
17 24 5 14 15 0 0 0 1 1 1 1
23 5 18 2 16 >> v(v > 4)
4 6 13 20 22 ans =
10 12 19 21 3 4.1 5.1 6.1 7.1
11 18 25 2 9
> v([0001111])
>> A = ones(3, 1) * (1:3) ??? Subscript indices must either be real positive
A = integers or logicals.
1 2 3
1 2 3 >> v(logical([0 0 0 1 1 1 1]))
1 2 3 ans =
4.1 5.1 6.1 7.1
>> B = A(:, 3:-1:1) Logical operators:
B 3 2 1 >> v(2 < v & v <5)
3 2 1 ans =
3 2 1 2.1 3.1 4.1
>> A = A’ >> v(v <= 2.1 | 6 <= v)
A = ans =
1 1 1 1.1 2.1 6.1 7.1
2 2 2 Count occurrences
3 3 3 >> sum(v "= 3.1) % == equality, “= not equal
ans = % unsafe for floating point
> C = A(3:-1:1, :) 6
C =
3 3 3 >> any(v "= 3.1)
2 2 2 ans =
1 1 1 1
Logical vectors
>> all(v "= 3.1)
> v =0.1+ (1:7) ans =
v = 0
1.1 2.1 3. 4.1
37 38
>> all(v "= 3.5)
ans = >> m = M(:);
1
>> m(i)
>> find(v > 4) ans =
ans = 16
4 5 6 7 14
15
>> M = magic(4) 13
M= 12
16 2 3 13
5 11 10 8 >> [j, k] = find(M > 11)
9 7 6 12 j=
4 14 15 1 1
4
> M > 11 4
ans = 1
1 0 0 1 3
0 0 0 0 k =
0 0 0 1 1
0 1 1 0 2
3
>> M(M > 11) 4
ans = 4
16 . .
14 Compute the number of negative numbers in v. Can use loops
15 >> v = randn (100, 1);
13 >> neg = 0;
12 >> for k = 1:100
if v(k) < O
>> i = find(M > 11) neg = neg + 1;

end
end

40

>> neg
neg =
55

>> sum(v < 0) % but this is nicer.

ans =
55
Creating matrices from parts.
>> A = magic(2)
A =
1 3
4 2

> b = [1; 3]

Three dimensional matrices

>> Al = [1 2; 3 4] + 0.1;
>> A2 = [5 6; 7 8] + 0.1;
>> A(:,:,1) = Al;
>> A(:,:,2) = A2;

>> A
A(:,:,1) =
1.1000 2.1000
3.1000 4.1000
A(:,:,2) =
5.1000 6.1000
7.1000 8.1000

>> A(A > 3)

b = ans =
1 3.1000
3 4.1000
> C = [A, b; b, 7] 5.1000
¢ = 7.1000
1 3 1 6.1000
4 2 3 8.1000
1 3 7
>> i = £find(A > 3)
> b = (1:3)'; i=
2
> F = [b b(3:-1:1) [b([3 1]); 10]] 4
F = 5
1 3 3 6
2 2 1 7
3 1 10 8
>> A(:)’
ans =
1.100 3.100 2.100 4.100 5.100 7.100 6.100 8.100
41 42
[i, j, k] = £ind... does not do anything useful in this case. Linear systems

Here is an alternative using loops:

for r = 1l:size (A, 3)
[row, col] = find(A(:, :, xr) > 3);

i = [1i; row];

j = [3; eoll;

k = [k; r * ones(size(row))];
end

ind = [i, j, k]

ind =

NEFEFNMNREDNMDDN
NDNMNRERDNPR
NDNMNNMNNRBRE

v = [1;
for i = 1:6

v(i) = A(ind(i, 1), ind(i, 2), ind(i, 3));
end

v
>> v
v =

3.1000 4.1000 5.1000 7.1000 6.1000 8.1000

43

>>A=[1-11; 12 3; 45 6]
-1 1
2
5 6
[010]"

P
(%)

v
v
o'
n

(=2 =)

> x=A\b

-0.9167
-0.1667
0.7500
> r =Db -A * x
r =
1.0e-15 *
0.1110
0
0

44

Cell arrays

An array where the elements can be of different types:

>> c¢{l, 1} = sqrt(2);
>> c{l, 2} = [1 2; 3 4];
>> c¢{2, 1} = 'Hejsan’;

>> ¢c{2, 2} = 1:5;

[1.4142e+00] [2x2 double]
"Hejsan’ [1x5 double]

>> c{l, 2}(2, 2)
ans =
4

>> celldisp (c)
c{1,1} =
1.4142e+00
c{2,1} =
Hejsan
c{l,2}
1 2
3 4
c{2,2}
1 2 3 4 5

>> ce={1:3, 'hej’; c, eye(2)}
ce =

>> C = cell(2)
Cc =
[1 [1
[1 [1

Another data structure where we can store elements of different
types is the struct (record, post in Sw). We name the element
with a string and not an index.

>> s = struct('type’, 'circle’,
'geom’, struct(’'ec’, [1 3], 'x’', 1.2),
'ecolor’, [1 0 0])
s =
type: ’‘circle’
geom: [1x1 struct]
color: [1 0 0]
>> s.type
ans =
circle

>> s.geom
ans =
c: [1 3]
r: 1.2000e+00

>> s.geom.c
ans =
1 3

[1x3 double] "hej’ >> s.geom.c(2)
{2x2 cell } [2x2 double] ans =
3

>> ce{2,1}{1,2}(1, :)
ans =

1 2

45 46

>> s.color(2) = 1; There are if-statements etc.

>> s.color
ans =
1 1 0

One can have arrays of structs (of the same kind)

% get this new member

>> v(l).fn = ’'Thomas’;
>> v(l).en = 'Ericsson’;
>> v(2).fn = 'Anders’;
>> v(2).en = 'Andersson’;
>> v(3) .new = 'oops’ % a new member
v =
1x3 struct array with fields:
fn
en
new
>> v(1l) .new % all the structs in the array
ans =

[1

47

>> a = 2.25;
>> if a > 1
disp('a > 1')
else
disp('a <= 1')
end

>> a = 0.2;
>> if a > 1
disp('a > 1')
else
disp('a <= 1")
end

a<=1

>> help if % for elseif etc.
&&, | | for lazy scalar and, or.

>> a = 2.25;

>> if a, disp(’/****’), end
% % %k

>> a = 0;
>> if a, disp(’'****’), end

Handling characters

>> s = ’'AabcDd’
s =
AabcDd

48

> s + 0
ans =
65 97 98 929 68 100

% double (s) works as well

>> whos
Name Size Bytes Class

s 1x6 12 char array

Grand total is 6 elements using 12 bytes

>> 8 = [s; s(6:-1:1)]
S =

AabcDd

dDcbaA

>> s = 'sirapiparis’;
>> palin = all(s == s(end:-1:1))
palin =

1

>> s(l)="a’;

>> palin = all(s == s(end:-1:1))
palin =
0
>> sl = 'ABC’;
>> 82 = ' 12';

>> sl + s2
ans =

>> char (ans)

Tuning Matlab programs

The timings below are for Matlab version 7. Matlab 6.5, and la-
ter versions, has a JIT-accelerator (Just In Time) which speeds
up for-loops etc.

e Use the builtin compiled routines.
The Matlab-language is interpreted.

e Work on the matrix/vector-level, not on element-level.
“New” programming style.

e Take care when using the dynamic memory allocation.
Preallocate.

Some examples:
% Matrix sum. n = 1500 in all examples
for j = 1:n
for k = 1:n
A(j, k) = A(3, k) + B(3, k);

end
end

Takes 0.11 s.

A = A + B; requires 0.017 s.

ans =
asu
49 50
clear A M-files and functions
for k = 1:n e For short tests we may type commands by hand and use the
A(:, k) = x; % could have different arrays history mechanism, arrow keys etc. to modify statements.
end

Takes 25 seconds.

A = zeros(n); % preallocate
for k = 1:n

A(:, k) = x;
end

Takes 0.09 s.

W is a 8000 X 15-matrix and x is a column vector having 8000
elements.

Y= W*W *x; Yy =W (W O*ox);

Takes 4.1 s 0.0009 s

Note that it may be impossible just to form W * W’ even
thoughy = W * (W' * x); gives no problem.

51

Possible to use emacs-commands on the command line. Ctrl-a
beginning of line, Ctrl-e end of line, Ctrl-d remove charac-
ter, Ctrl-k kill (remove) the rest of the line etc. Can match
the beginning of a string: im? press up-arrow, matches line
starting with im.

For those using the GUI there is a Command History win-
dow, as well.

o For longer tests (assignments) we create an m-file script (or a
function) with an editor (e.g. Matlab’s own). If the filename
is name.m we execute the file by typing name in Matlab.

Scripts do not take any parameters. Matlab just reads from the
file instead of reading commands from the command window.
Sometimes functions are more useful or necessary. Here is a
simple example. We disregard the fact that Matlab has a func-
tion for computing the median. We store the function on the file
median.m. If the name of the function and file are different you
have to use the filename to invoke the function.

function med = median (v)

% med = median(v) computes the median of
% the elements in the vector v

n = length(v); % number of elements in v

if n==0
med = 0;
else
s = sort(v); % s is local to the function
if rem(n, 2) == 0
n2 =n/ 2;
med = 0.5 * (s(n2) + s(n2 + 1)); % even
else
med = s((n + 1) / 2); % odd
end

end
52

We can think of the parameters as being passed by “call by
value”, but “call by reference” is used for variables that are not
changed. We could have written

v = sort(v); % replace v

med = 0.5 * (v(n2) + v(n2 + 1)); % even

This does not change the array in the calling program. The va-
riables n, n2, s and med are local to the function. We give the
function a value by giving the return-variable, med, a value.

>> help median

med = median(v) computes the median of
the elements in the vector v

>> v = randn(1l, 4)
v =

-1.8092 -0.6337 -0.4533 0.2840

>> median (v)
ans =
-0.5435

>> median([v, 5])
ans =
-0.4533

There are several types of functions:
e Anonymous functions (short function not stored in a file)
e Subfunctions (several functions in one file)
e Nested functions (functions inside other functions)
e Overloaded functions (polymorphic functions)

e Private functions (functions in dir name/private are only
visible to functions in dir name)

53

Let us look at the first three types. An anonymous function is
created by

fhandle = @ (argumentlist) expr
expr is a simple expression and @ a so-called function handle.

>> £ = @(x) x .* exp(-x)
£ =
@(x) x .* exp(-x)

>> £([-1 0 1])
ans =
-2.7183 0 0.3679

>> quadl(f, 0, 1) % integrate
ans =
0.2642

>> sin(£(2))
ans =
0.2674

% A cell array of functions.
% Be careful with blanks. See the manual

>> funcs = {@(x)x.*exp(-x), @(x)x.*sin(-x),
@(x)x.*cos (-x) };

>> for k=1:3, quadl(funcs{k}, 0, 1), end
ans =
0.2642
ans =
-0.3012
ans =
0.3818

54

>> comm = @(A, B) A * B - B * A;
> C = [1 2; 3 4];

>> comm(C, C')

ans =

% Using "external" variables
>> a = 10;
>> mul 10 = Q(z) a * z
mul 10 =
@(z) a * =z

>> mul_10(2)
ans =
20

>> a = 20; % does not change the function
>> mul_10(2)
ans =

20

One disadvantage with ordinary m-file functions is that they
tend to produce many files. It is possible to put several functions
in one file. The first function in the file, the primary function,
is visible from outside, but the functions coming after, the sub-
functions, are only visible to the primary function or to other
subfunctions in the same file. So something like this:

function w = £(x, y, z)
w=x + g(z);

function s = g(t)

55

Another alternative is to use nested functions,

function w = £(x, y, z)
w =x + g(z);

function s = g(t)
s =

end % necessary

end % necessary

Read more in the manual about scope for variables and
functions.

A function can take zero or more input arguments and return
zero or more output arguments.

function [b_plus_c, sum_A] = func(A, b, c)

b plus. ¢ = b + c;
sum_A sum(A(:));

>> F = [1 2;3 4]
1 2
3 4

> h = [1 3]; g = [2 5];

>> [uu, vv] = func(F, h, g)
uu =

3 8
vv =

10

>> z = func(F, h, g)
zZ =

56

It is possible to, inside the function, see the number of
arguments.

function [outl, out2,
n_in arg = nargin;

n_out_arg = nargout;

out3] = func(inl, in2, in3, ind4)
if n_in_arg ==

elseif n_in_arg ==

etc.

Global variables

Variables in functions are local to the function. We use the pa-
rameters to communicate with other routines. Another way is
to use global variables.

>> global a b
>> type func

% In Matlab, or the calling routine

function func
global a b % A matching global declaration

a=a+1;
b b * 10;

> a=1; b = 2;

It is possible to have optional input (output) parameters, so the >> func
number of parameters of a function may change between calls. >> a
See the documentation for varargin and varargout for details.
a =
2
>> b
b =
20
57 58
Persistent variables A few tips

A variable which is local to a function does not keep its
value between calls. To make it keep the value, we use a
persistent declaration. A persistent variable is initialised
to the empty matrix.

>> type pers
function num_calls = pers
persistent k % persistent num calls does not work
if isempty (k)
k = 0;
end

k =k + 1;
num_calls = k;

>> pers
ans =

1
>> pers
ans =

2
>> pers
ans =

3

>> clear pers
>> pers
ans =

1

59

Debugging: there is a Matlab-debugger, but it is usually
sufficient to remove semi-colons (to print variables).

The keyboard-command is convenient when we want to stop in
functions. Resume execution by typing the letters return .

>> y = cos(0)

y =
1
>> cos = 8
cos =
8

>> y = cos(0)
??? Subscript indices must either be real
positive integers or logicals.

>> which cos

cos is a variable. % checks variable first
% then function

>> clear cos % remove definition

>> which cos

built-in (/chalmers/sw/ /cos) % double method

% Even more amusing
>> cos = 1:4

cos =
1 2 3 4
>> cos (1)
ans =
1

60

The clear-command takes several parameters. Here are a few.
For a full description, see the documentation.

clear removes all variables from the workspace.

clear variables does the same thing.

clear global removes all global variables.

clear functions removes all compiled M- and MEX-functions.
clear all removes all variables, globals, functions and MEX
links.

clear varl var2 . clears the variables specified.

clear fun clears the function specified.

Clear does not affect the amount of memory allocated to the
Matlab process under unix.

61

Some commands have been written in C while others are m-files,

>> type cos
cos is a built-in function.

>> which 1s
/chalmers/sw/sup/matlab-7.1/toolbox/matlab/general/ls.m

>> type 1ls % lists the m—file (not included)
>> dir % (DOS—-command) faster

More unix-like stuff. ed, path etc. matlab and VIS are
directories.

/users/math/thomas
/ | \
visual.m matlab VIS
|

visual.m

>> cd ” % ~ home dir
>> cd % print current directory
/users/math/thomas

>> pwd % an alternative
ans =
/users/math/thomas
>> which visual % one visual.m here
/users/math/thomas/visual.m

>> cd matlab
>> pwd
ans =

/users/math/thomas/matlab
62

>> which wvisual % but no one here

visual not found.

>> ed ../VIS

>> pwd
ans =
/users/math/thomas/VIS

>> which visual
/users/math/thomas/VIS/visual.m % and one here

>> ed ../matlab
>> which visual
visual not found.

>> path(path, ’../VIS')

>> which visual
../Vis/visual.

>> path % lists the path

MATLABPATH

/users/math/thomas/matlab
/chalmers/sw/sup/matlab-7.1/toolbox/matlab/general
/chalmers/sw/sup/matlab-7.1/toolbox/matlab/ops
/chalmers/sw/sup/matlab-7.1/toolbox/matlab/lang
/chalmers/sw/sup/matlab-7.1/toolbox/matlab/elmat

etc.

63

Handling files

save filename saves all workspace variables to a binary file
filename .mat. The data may be retrieved with load.

If filename has no extension, .mat is assumed. save, by
itself, creates matlab.mat.

save filename var saves only var.
save filename varl var2 var3 saves only varl, var2 and
var3.

save filename var -—-ascii or save -—ascii filename var
saves in human readable form, 8-digit ASCII.
save —ascii -double filename var saves in 16-digit ASCII.

If one needs more control over the format, fprintf can be used.
This routine accepts the same type of formatting codes as C.
fscanf is a more general routine for reading data. help iofun
gives a long list of I/O-related routines.

64

Graphics in Matlab

I assume you have seen some basic plotting, but here comes a
few simple examples. First 2D-plots:

>> x = 0:0.1:10; % or linspace

>> plot(x, (sin(x) + cos(x)) .* x."2)
>> grid on

>> xlabel(’'x’)

>> ylabel('y’)

>> title('y = (sin(x) + cos(x)) x"2')

y = (sin(x) + cos(x)) X2
100 T T T

50

-50

-100

~150 L L L L L L I I I
0 1 2 3 4 5 6 7 8 9 10
X

I usually make the lines thicker, increase the size of numbers
and letters when showing transparencies, but we have not learnt
that yet, and I do not want to give the wrong impression. So
that is why it is hard to read the text in the plots.

65

>> hold on
>> plot(x, (sin(x) + cos(x))
>> help plot

PLOT Linear plot.

PLOT (X,Y) plots vector X versus vector Y.

An alternative to hold on/off:
>> y = (sin(x) + cos(x)) .* x.72;

>> plot(x, y, '=', %, y, '0")

y = (sin(x) + cos(x)) X
100 T T T

50

-100

~150 L L L L I I

66

A good sequence is:

figure (1)
hold off
plot...
hold on
plot

% create otherwise put on top

figure (2) % makes a new figure window

plot (1, 1:3, ’o’) isequivalenttoplot([1 1 1], 1:3, ‘0o’).
plot(1:3, 1, ’o’) isequivalenttoplot(1:3, [1 1 1], ‘o’).

plot (x, y) works as expected even if x is a row vector and
y is a column vector (or vice-versa).

If x is a vector and Y is a matrix, then plot (x, Y) is equiva-
lent to plotting plot(x, ¥Y(:, 1)), ..., plot(x, Y(:, end))
or plot (x, ¥(1, :)), .., plot(x, Y(end, :)) whichever
lines up. If the matrix is quadratic, the columns are used.

x cannot be a scalar.

It is analogous for plot (¥, x).

plot (X, Y) where also X is a matrix plots ¥(:, k) as a
function of X(:, k).

Do not forget the x-values. plot (y) is equivalent to
plot (1:1length(y), y).

plot (Y) is equivalent to plot (1:m, Y(:, 1)), ...,
plot(1:m, Y(:, end)) wherem = size(Y, 1).

67

>> x 0:0.1:10;

3.52441 * exp(2 * x);
>> semilogy(x, y)

>> grid on

>> print -deps semilogy.eps

>y

% head semilogy.eps In unix
%!PS—-Adobe-2.0 EPSF-1.2

%%Creator: MATLAB, The Mathworks, Inc.

%$%Title: semilogy.eps
%$%CreationDate: 09/01/ 0 22:34:29
%$%DocumentNeededFonts: Helvetica

%$%$DocumentProcessColors: Cyan Magenta Yellow Black

%$%Pages: 1

%$%BoundingBox: 66 210 548 592

%$%EndComments

<-—- NOTE

10 T

68

>> loglog(x, y)
>> grid on

10* T

10°

10°

10’

10°

10°

4

10

One can plot with different styles, e.g. plot(x, y, 'r:’), plot
with a red dotted line. Type help plot for details.

69

Two y-axes.

>> x = linspace (0, 5);

>> y = exp(x);

>> plotyy(x, y, %, y, 'plot’, ’'semilogy’)
>> grid on

150 T T T T T T T T T 10

100 B B P 110

70

Polar coordinates and subplot

theta = linspace(0, 2 * pi);

subplot (2, 2, 1) % 2 x 2-matrix of plots
polar (theta, theta."2)

xlabel ('polar (\theta, \theta"2)’)

subplot (2, 2, 2)
polar (theta, cos(theta))
xlabel (' polar (\theta, cos\theta)’)

subplot (2, 2, 3)
polar(theta, cos(theta)."2)
xlabel ('polar (\theta, cos”2\theta)’)

subplot (2, 2, 4)
polar (theta, sin(theta) .*cos(theta))
xlabel ('polar(\theta, sin\theta cos\theta)’)

90 40
60

polar(e, 6)

polar(8, 00526) polar(, sin6 cosB)

71

Matlab understands simple TEX/ETEX-expressions such as:

Greek letters: \alpha, \beta, ..., \Gamma, \Xi
Index: \alpha 273, \alpha"{m + n}

Integrals: \int_a"b £(x) dx

Here is the BTEX-code:

a,B,...,T,E

3 m+tn
a,, o

/ ' f(e)da

Matlab cannot cope with more complicate expressions, such as:

\sum_{k=0}"{n-1}\ ax"k = a\ \frac{x"n-1}{x-1},\ x\ne

fae & z" — 1

Z ar*=a ——, x#1

o x—1
unless ones changes the string’s Interpreter-property to latex
and surrounds the string with § $.
It does not always seem to work properly though, I had
problems with minus-signs, for example.

text and gtext can be used to place text in a plot (as can

the menu in the plot window). ginput can be used to read the
position of the mouse.

72

One can plot complex numbers

>>
>>
iu

>>
>>
>>
>>
>>

theta = linspace(0, 2 * pi);
iu = sqrt(-1)

0+ 1.0000i
circle = 1 + 2 * iu + 2 * exp(iu * theta);
plot (circle)
axis equal % or axis(’equal’). NOT axis square
grid on
hold

Current plot held

>>
>>
>>

plot(l + 2 * iu, '*’)
xlabel (' real part’)
ylabel (' imaginary part’)

35k

25

imaginary part
~
T

15r

05

real part

73

Some business graphics

Matlab can produce, bar- and area graphs. help bar, help
area. There are pie charts and histograms (help pie, help
hist) and a few others. Read the documentation to see the
available options.

This code produces the plot on the next page:

figure (1)
subplot (221)
pie(1:5)
title('Pie’)

subplot (222)
hist (randn (1000, 1))
title('Histogram’)

subplot (223)

bar(l:5, [(1:5)', 2*(1:5)'], ’'stacked’)
axis tight

title(’'Bar’)

subplot (224)

x = (1:5)";

Y = [(1:5)’, 2*(1:5)'];
area(x, Y)
title('Area’)

74

Pie Histogram

27%

Area

75

Here is a plot made by stem3:

>> phi = linspace(0, 2 * pi);
>> stem3 (cos(phi), sin(phi), sin(2 * phi))
>> title(’'stem3’)

stem3

Matlab has several commands for drawing arrows, compass,
feather, quiver and quiver3. These are used e.g. when drawing
flow fields. Here is a quiver-example.

‘We start by creating a grid in the x-y-plane, using the meshgrid-
command. First a word on how meshgrid works:

76

>> [X, Y] = meshgrid(linspace(-1, 1, 3))
X =

-1 0 1
-1 0 1
-1 0 1
Y =
-1 -1 -1
0 0 0
1 1 1
[X, Y] = meshgrid(x vec, y vec); is another alternative. In

this example we draw an arrow, [u, v], that is orthogonal to the
vector going from the origin to [x, y]. it should have the same
length as well. So one choice is taking [u, v]=[-y, x]. here is the
code:

>> [X, Y] = meshgrid(linspace(-1, 1, 10));

>> quiver (X, Y, -Y, X)

>> axis equal

>> title(’'quiver’)

quiver

| /27T NN

0.4

T
or &Qii\,//ff/ i
=T - 2 |
3 NN
-08f \\\\‘/’////

Ll \i\\xﬁ//// i

The meshgrid-command is used when drawing simple surfaces
as well, such as when we have a function z = f(x,y). Here is an

example.

>> [X,Y] = meshgrid(-2:0.2:2);

>> Z =X .* exp(-X."2 - Y."2); % Note elementwise
>> figure % new plotwindow

>> mesh(X, ¥, 2)
>> figure
>> meshc (X, Y, 2) % Note the c in meshc

SRS
S SNUN O
SN
S\

2 -2

il
il

== N
== ;""::}\\‘

“::" N

e OSNN

B Sl ——=
- >

= >

meshc draws the surface and contour lines, i.e. curves in the x-
y-plane where f(z,y) is constant. It is possible to just draw the
contours using the command contour (X, ¥, 2Z). One can spe-
cify the number of contour lines or give the exact values where
a contour line should be drawn. using contour3 it is possible to
put a contour line at the correct z-level.

>> [X,Y] = meshgrid(-2:0.1:2);
>> Z =X .* exp(-X."2 - Y."2);
>> contour(X, Y, z, 20, 'k’)
>> grid on

>> title(’'contour’)

contour3

°

>> contour3 (X, ¥, z, 20, 'k’)
>> title (' contour3’)

79

contour3

One can label the contour lines

>> [C, h]

= contour (X, Y, z, 10, 'k’);

>> clabel(C, h)
>> title(’'Contour plot elevation labels’)

Contour plot elevation labels
2 T T T T T

0,
03¢ 1
/ 03, m‘b”’W\

°

9\0
%
)j
N
&
ﬁﬁ?"/

-0.51
~0.1917, 1917, 6
o \00%\\ v S
50t g
Ty, 0115
oS
sk \'» o a3y 1
. , .

9y L L L L
=2 -15 -1 -05 [05

o
5Tt 0”
o
oL o,
o
P \
Xf’
&
~0.26844
“‘Kﬁ 116107
06110~
VEBED 0-
YEBED
5081
29,
89T 7.
%
C)
345, qj
26,
2 <
©

15 2

A rather nice contour-command is contour£, which fills the area
between contour lines with different colours. Try it!

80

Lines in 3D:

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

phi = linspace (0,
subplot (121)
plot3(phi .* cos(phi), phi
axis equal

grid on

40 * pi, 400);

.* sin(phi),

subplot (122)

r = 0.5 + cos(0.1 * phi);

plot3(r .* cos(phi), r .* sin(phi), phi / 20)
axis equal

grid on

-100 -100 0

81

2 * phi)

Polygons

>> phi = linspace(0, 2 * pi, 7);

>> ¢ = exp(sqrt(-1) * phi(l:end-1)); % need not close
>> x = real(c)’;

>> y = imag(e)’;

>> X = [1+x, x]; $% one polygon per column

>> Y = [1+y, yl;

>> £ill(X, ¥, 'w')
>> axis([-1 2 -1 2])
>> axis square

% not to waste tuner

2

-1
c1 -05 0 05 1 15 2

The second polygon is painted on top of the first. To see the
edges we can do (much more about such things later):

>> h = fill(X, Y,
>> set (h,

w')

’'FaceColor’, "None’) ;

% a vector of handles
% change the FaceColor-
% property

82

Polygons in 3D

>> C = Z;

>> £ill3(X, ¥, Z, 'w')

>> grid on

>> axis equal

>> view([320, 20])

>> whos
Name Size Bytes Class
(o] 4x1214 38848 double array
X 4x1214 38848 double array
Y 4x1214 38848 double array
4 4x1214 38848 double array

Grand total is 19424 elements using 155392 bytes

>>

N
R
WS

7

4000

—-4000 2000

£il13(X, ¥, Z, C)

83

12000

The surf-command.

We have used the mesh-command to draw surfaces (arising from

z = f(z,y)). When we have more general surfaces the mesh-
command may not work, the surface may not be the graph of

a function. The sphere is a simple example, z = +/1 — 22 — y?
does not define a function from (z, y) to z, although z = /1 — 22 — y2

and z = —y/1 — 2 — y? do. So one (perhaps not very good) way
to draw a sphere is to use the mesh-command twice.

Another example is given by the following cylinder. The cylinder
is centered on the x-axis and has an hexagonal cross-section.

>> phi = linspace(0, 2*pi, 7); % 6 corners; must close

>> surf([zeros(1,7); 2*ones(1,7)], [1;1]*cos(phi),
[1;1]*sin(phi), ones(1l,7)) % we could transpose

>> axis equal % everything

>> xlabel(’'x’); ylabel('y’); zlabel('z’)

>> title(’'Cylinder’)

Cylinder

84

To understand this better we can read the documentation. This
is a quote from the manual:

Algorithm

Abstractly, a parametric surface is parametrized by two indepen-
dent variables, ¢ and j, which vary continuously over a rectangle;
for example, 1 < i < m and 1 < j < n. The three functions
z(¢,7), y(i,7), and 2(%,j) specify the surface. When i and j are
integer values, they define a rectangular grid with integer grid
points. The functions x(%,7), y(¢,7), and 2(¢,7) become three
m X nmatrices, X, Y, and Z. Surface color is a fourth function,
¢(i,j), denoted by matrix C.

Each point in the rectangular grid can be thought of as connected
to its four nearest neighbors.

i-1, 3
|
i,j-1 -4i,j - 1i,3j+1
|
i+l1,3

This underlying rectangular grid induces four-sided patches on
the surface. To express this another way, [X(:) Y (:) Z(:)]
returns a list of triples specifying points in 3-space. Each inte-
rior point is connected to the four neighbors inherited from the
matrix indexing. Points on the edge of the surface have three
neighbors; the four points at the corners of the grid have only
two neighbors. This defines a mesh of quadrilaterals or a quad-
mesh.

85

Let us take the cylinder and close the ends. First an examp-
le where the ends are partially closed. Just to show that it is
possible, we transpose all the arrays. Here
>> phi = linspace (0, 2*pi, 7)’; % Note transpose
>> z = zeros(7, 1); o = ones(7, 1);
>> ¢ = cos(phi); s = sin(phi);
>> subplot (211)
>> surf ([o 2*0 4*0 5*0], [0.5*c ¢ ¢ 0.5%*¢c],
[0.5*s s s 0.5*s], ones(7,4))
>> axis equal
>> subplot (212)
>> surf([o o 4*oc 4*0], [z c c z], [z s s z], ones(7,4))
>> axis equal

0.5

-0.5

The line in the right part is not visible on the monitor.

It is possible to draw the cylinders using the £i113-command as
well. That would, however, require more points.

The first cylinder we drew was defined by 14 points (two ti-
mes seven edges). Using polygons we would need 24 points (6
polygons with four corners).

When we come to shading (colouring polygons with light
present) we will notice a difference as well (with the normals).
Six polygons are six different objects while the surf-cylinder is
one object. We have 24 normals for the polygons and 14 for the
surf-command.

Polygons do not have to be planar (all point in a plane). Consider
the following polygon with four corners:

> X=[011 0]';

> Y¥Y=1[0011]";

> 2 = [000 1]";

>> C = ones(size(X));

>> h = fill3(X, ¥, Z, C)

Matlab breaks up till polygon in two triangles (i.e. two planar

polygons). This is a special case of tessellation:

Etymology: Late Latin tessellatus, past participle of tessellare
to pave with tesserae, from Latin tessella, diminutive of tessera
: to form into or adorn with mosaic

87

There is an image-toolbox. Here I am covering a surface with
an image (usually called a texture, in this context, and the pro-
cess is called texture-mapping). We will be using textures in the
OpnGL-lab.

>> B = imread(’'te.jpg’, ’'jpg’);

>> image (B) % to look at the image

>> axis image % correct scaling

>> [X, Y] = meshgrid(linspace(-1, 1, 10));

>> warp(X, ¥, (X.”2 - ¥.72) .* cos(0.1 * Y), B)
>> axis off

In the upper part of the windows there are buttons for zooming,
rotation etc. Have a look at the Tools- and View-menus as well.
Some of the remaining buttons and menus are used for editing
an image (adding text, arrows etc).

There are several other plot-commands, but before we get back
to those we need to have a look at Matlab’s handle graphics.

88

