Handle graphics

Plots, windows, polygons etc. are stored in a tree structure. The
windows (figure) are child-nodes to the Root (which can think
of as the screen: it is created by Matlab and contains data).
The axes is a child of a figure-window and the plot data is a child
of the axes etc. Each node has a set of attributes, properties that
can take different values.

A “figure” has a Color-property which is the colour around the
drawing area in the window. The standard value of this colour
is the RGB-vector [0.8 0.8 0.8]. Here is the tree, there are
hundreds of properties in total.

Root
|
UI objects ———— Figure ---- Hidden Annotation Objects
| |
| Annotation Objects
|
Core objects —--—-- Axes —-—-—- Group objects

|
Plot Objects

This layout is new for Matlab v7, in previous versions there were
less talk about objects. A figure is a window in which the grap-
hics is displayed. Figures contain menus, toolbars, user-interface
objects (e.g. buttons and sliders), context menus (a menu bound
to a curve for example), axes.

Annotation objects are things like arrows, rectangles and are
usually created using the builtin plot editor.

Core objects are axes, image, light, line, patch, rectangle,
surface, text.

Groups objects can be used to collectively refer to several axes,
for example.

Plot Objects group together core objects. We will not look at all
the objects in detail, so what follows is a simplified presentation.
The manual contains more than 120 pages on the subject.

89

Let us look at an example. We have just started Matlab (say)
and have typed the following commands:

>> format compact
x 1:10;
plot (x,
grid on
xlabel(’'x’)
ylabel('y’)
title('y = x72')

>>

>> x.%2, 'xr")
>>
>>
>>

>>

The tree is linked together by handles (pointers). They are of ty-
pe double and usually have many decimals. The handles of the
figure windows are positive integers and the Root has handle
zero. Using the function get we can access the value of a pro-
perty for an object pointed to by the handle:

get (handle,
set (handle,

'PropertyName’).
'PropertyName’, value) sets the value.

Some properties are read only. get (handle) prints the values of
all the properties and set (handle) displays all property names
and their possible values for the object.

Let us start to inspect the Root. I have (usually) edited the
output to make it shorter. My comments after %.
This is about a third of what is printed.

>> get (0)
CurrentFigure = [1] % figure 1
Diary = off
DiaryFile = diary
FixedWidthFontName = Courier New
Format = short % set with format
FormatSpacing = compact % set with format
ScreenDepth = [24]
ScreenSize = [1 1 1280 1024]

Units = pixels
Children [1]

The figure window

90

To see the possible alternatives for Format, we can do

>> set (0, 'Format’)
[short | long | shortE | longE | shortG | longG | hex
bank | + | rational | debug | shortEng | longEng]

and to change format to longE we can

>> set (0,
>> pi

'Format’, ’'longE’)

3.141592653589793e+00

ans

Usually we would instead type the shorter:
>> format long e

Property names are not case sensitive and we can shorten the
name as long as it becomes unique.

>> set (0, 'uNiTs’, 'centimeters’)
>> set (0, ‘units’, ’centimeters’)
>> set (0, 'uni’, ’'centimeters’)
>> set (0, 'u’, ’'centimeters’)

??? Error using ==> set
Ambiguous root property: ‘u’.

Let us now look at the Children of the Root. We have only one
child, the figure window. Since the handle is an integer we need
not fetch it, but I have done so just to show how get works.

>> hf
hf

get (0, ’'Children’) % hf for handle to figure

1

Here are a few of the properties:

>> get (hf)
Color = [0.8 0.8 0.8] % border colour
Colormap = [(64 by 3) double array]
CurrentAxes = [153.009] % handle to the axes
DoubleBuffer = on % for animation
IntegerHandle = on % figure 1 has handle 1

91

NumberTitle = on % Figure 1, 2

Renderer = painters % Hidden lines removal

Resize = on % Can freeze the size

! WindowButtonDownFcn = % A Callback

WindowButtonMotionFcn = % Another

WindowButtonUpFcn = % Another

ButtonDownFcn = % Click over an object

Children = [153.009] % Same as axes

CreateFcn = % More callbacks

DeleteFcn =

Parent = [0] % Root

Tag = % For us

UserData = [] % For us

Visible = on % Can hide the window
>> set (1, 'Color’, [1 0 0]) % change to red

Let us now look at the axes. Sometime it is inconvenient to go
down in the tree this way so there are functions that gives the
handles directly.

gca Get handle to current axis.

gef Get handle to current figure.

gcbo Get handle to current callback object.
gco Get handle to current object.

gcbf Get handle to current callback figure.
So

>> gef

ans = 1

>> get (get (0, ’'Child’), ’Child’)

ans 1.530087890625000e+02

>> gca

ans 1.530087890625000e+02

>> ha
ha

get (1, ’Children’)
1.530087890625000e+02
92

% Don’'t write the decimals

>> get (ha)
AmbientLightColor = [1 1 1]
Box = on
CameraPosition

[5.5 50 17.3205]

CameraUpVector = [0 1 0]

CLim = [0 1]

FontAngle = normal

FontName = Helvetica

FontSize = [10]

FontUnits = points

FontWeight = normal

GridLineStyle =

LineWidth = [0.5]

NextPlot = replace

Projection = orthographic

Position = [0.13 0.11 0.775 0.815] % 1l1lx, 1lly, w, h
Title = [160.016] % made with title command
XLabel = [155.018] % made with xlabel

XTick = [(1 by 10) double array]

XTickLabel = 1 2 3 45 6 7 8 9 10

Children = [154.088] % the plot data

Let us make the grid- and axle lines wider (not the curve), use
a larger font for the ticks

>> set (ha, ’'LineWidth’, 2, ’'FontSize’, 16,
’FontWeight’, 'Bold’)

The title is hardly readable so lets make that larger as well:

>> set (get(ha, ’'Title’))
FontAngle: [{normal} | italic | oblique]
FontName
FontSize
FontWeight: [light | {normal} | demi | bold]
HorizontalAlignment: [{left} | center | right]

93

>> get (get (ha, ’'Title’), ’'String’)

ans =

y = x°2

>> set(get(ha, ’'Title’), 'Fontsize’, 16)

This is not so convenient, so many commands can set the
properties directly.

>> title('y = x"2’, 'Fontsize’,16, ’'Fontweight’,h 'Bold’)

We have one level left in the tree. Let us look at a leaf (terminal
node), the child to the axes.

>> hp = get (ha, ’Children’)

hp =
1.540881347656250e+02
>> get (hp)
Color: [1 0 0]
LineStyle: '-'

LineWidth: 5.000000000000000e-01
Marker: ’'none’

MarkerSize: 6 % useful
XData: [1 2 3 456 7 8 9 10]
YData: [1 4 9 16 25 36 49 64 81 100]

ZData: [1x0 double] % empty
ButtonDownFcn: []
Children: [0xl1l double] % no child

Type: ’'line’
UIContextMenu: []
UserData: []
Visible: ’on’
Parent: 1.530087890625000e+02

>> set (hp)
ans =
LineStyle: {5x1 cell}
Marker: {14x1 cell}

94

>> set (hp, ’'LineStyle’)

[{-} 1 ——1 :| -. | none]l % {-} the current
>> set (hp, ’'Marker’)
[+l o *| . | x| square | diamond | v | "~ | > |

pentagram | hexagram | {none}]
I can change one point on the curve by typing:

>> y = get (hp, ’Ydata’)
y =
1 4 9 16 25 36 49 64 81 100
>> y(3) = 100;
>> set (hp, 'Ydata’, y)

I can change the line width, but I would usually do it using the
plot-command. The curve replaces the old one. The plot-function
returns the handle.

>> hp = plot(x, x."2, 'r’, ’LineWidth’, 2)
hp =
1.540887451171875e+02

>> get(gca, ’'Child’)
ans =
1.540887451171875e+02

% A new child

>> delete (hp)
>> get(gca, ’'Child’)
ans =

Empty matrix: O-by-1 % no child

% deletes the curve

95

It can be convenient to use structures:

>> prop.LineWidth = 3;
>> prop.Color = [1 0 0]
prop =
LineWidth: 3
Color: [1 0 0]

>> set (hl, prop)
>> set (h2, prop)

str = get (handle); returns a structure in str.
The field names are the property names and the field values are
the corresponding values of the properties.

Properties have default, factory, values. We can see the 589 of
them by typing get (0, ’factory’) (only for the root). Matlab
searches for a value beginning with the current object, going up
in the tree until a user-defined or factory-defined value is found.
We can define our own default values, which will affect objects
after the change. Say that we would like to increase the font size
for axes and text, say xlabel, in general.

>> diary factory
>> get (0, ’'factory’)
>> diary off
>> !grep -i font factory % unix; edited
factoryAxesFontAngle: 'normal’
factoryAxesFontName: ’'Helvetica’
factoryAxesFontSize: 10
factoryAxesFontUnits: ’'points’
factoryAxesFontWeight: 'normal’
factoryTextFontAngle: 'normal’
factoryTextFontName: ’'Helvetica’
factoryTextFontSize: 10
factoryTextFontUnits: 'points’
factoryTextFontWeight: 'normal’

% diary filename

96

>> figure (1)

% Change Factory (in the name) to Default, to set the

% default value. This works for plots in figure 1 only.

>> set (1, ’'DefaultAxesFontSize’, 16,
'DefaultTextFontSize’, 16)

% This works for all windows,
>> set (0, ’'DefaultAxesFontSize’, 16,
'DefaultTextFontSize’, 16)

To keep the defaults one can save them in “/matlab/startup.m,
which is executed when Matlab starts.

reset (handle) resets the values, of the object, to the factory
defaults. (so DefaultAxesFontSize is set to 10).

To reset (remove) a specific default property, type

set (0, ’'DefaultAxesFontSize’, ’'remove’) for example.

Sometimes we get arrays with handles:

>> hp = plot(x, x."2, 'k-', x, x.72, 'ro’)
hp =
1.5400e+02

1.5500e+02

>> get (hp, ’'Type’)
ans =

"line’

line’

>> get (hp, ’'Marker’)
ans =
"none’
lol
>> set (hp, ‘Color’, [0 1 0]) % for all the objects

The fill-command will produce patches (polygons) etc.

97

The above stuff is good to know when you make presentations,
reports etc. Graphics does not help much if the audience cannot
see it.

Here is an example. I do not claim that I have chosen the best
fonts etc. An alternative is to use the builtin plot editor (see the
menus and buttons in the top of the window).

% Say we are going to make a transparency for a lecture

figure (1)

set (1, ’'DefaultAxesFontSize’, 16,
'DefaultTextFontSize’, 16,
'DefaultAxesFontWeight’, ’Bold’,
'DefaultTextFontWeight’', ’Bold’)

X = linspace(0, 2 * pi);
plot (x, sin(x))

hold on

grid on

% Suppose we would like to mark min and max

h = plot (0.5 * pi * [1 3], [1 -1], ’'o") % 2 handles
set (h, 'LineWidth’, 2, ’'MarkerSize’, 10)

axis([-0.2 2*pi+0.2 -1.2 1.2])

xlabel ('x')
ylabel (’'sin x')
title(’'A sine-curve'’)

text (2, 1.1, 'A maximum’)

‘We can give the properties in the commands as well, e.g.
text (5, -1, 'A minimum’, ’'Fontsize’, 10) which overrides
the default.

98

A sine-curve
T T T T

‘A maximum

0.8r 1
0.6r 1
0.4r : 4
0.2r 1

sin x
o
T
i

-0.2f 4
-0.4r B
~0.6f 4
-0.8F 4

An alternative to the above is to use the builtin plot editor (see
the upper part of the window). This is convenient when you are
doing an image once. I usually generate roughly the same image
many times (new data, new course etc.) in which case it is more
convenient to have an automatic generation in a program.

Something different: I have a command that deletes all the plot-
windows (store in ~/matlab/del.m for example)

delete (get (0, ’'Children’))
One can use close all instead.

99

If we have several curves we should add a legend.

>> plot(x, cos(x), '-’, %, sin(x), '—.’, ’'Linewidth’, 2)

% Default Location is NorthEast.
% Can move the legend using the mouse as well.
>> hl = legend(’'cos(x)’, ’'sin(x)’, 'Location’, ’'Best’);

>> set (hl, 'Fontsize’, 16, 'Fontweight’, ’‘Bold’)
>> set(gca, 'Fontsize’, 16, 'Fontweight’, ’Bold’)
Looks like this:

1 —=

0.8 a

06 4 A l
o4r 5 ,
0.2 7 A g

of .\ ,

100

Callbacks

It is common in Matlab-, OpenGL-, X11-programming to use
callback routines. Such a routine is bound to a special event
(e.g. the click of a mouse button) and the routine is called if the
event occurs.

In this example a ButtonDownFcn-property of a curve, is used
to change the colour of a curve. When we click close (5 pixels)
to the curve it will change colour from blue (standard) to red.
The value of the property (the callback) is, in this example, a
Matlab-command. It will be executed if we click on the curve.

>> x = 0:0.1:2*%pi;

>> hl = plot(x, cos(x));
>> hold on

>> h2 = plot(x, sin(x));

>> get (hl)

ButtonDownFcn =
CreateFcn =
DeleteFcn =

>> set (hl, ’‘ButtonDownFcn’,
'set(hl, '’'Color’’, [1 0 0])")

>> get (hl)
ButtonDownFcn = set (hl, ’"Color’, [1 0 0])
This could be used to do the picking for the complex cosine

function (in the introduction).

Note, a common misconception: the callback is not executed
when we define it. It is executed if/when the action is
performed.

101

Note also that the example shows unsafe programming, the
variable hl may not exist when we click on the curve. Here is a
better way, using the gco-function (get current object):

>> set (hl, ’‘ButtonDownFcn’,
'set (gco, '’'Color’’, [1 0 0])’)

All graphics objects have three properties for which you can
define callback routines:

e ButtonDownFcn as above.

e CreateFcn executes during object creation after all
properties are set

e DeleteFcn executes just before deleting the object

User interface objects have a Callback property; more later on.
Figures have the three callbacks above and (from the manual):

e CloseRequestFcn executes when a request is made to close
the figure (by a close command, by the window manager
menu, or by quitting MATLAB). Default is closereq.

® KeyPressFcn executes when users press a key while the
cursor is within the figure window.

e ResizeFcn executes when users resize the figure window.

e WindowButtonDownFcn executes when users click a mouse
button while the cursor is over the figure background, a
disabled uicontrol, or the axes background.

@ WindowButtonMotionFcn executes when users move the mouse

within the figure window (but not over menus or title bar).

@ WindowButtonUpFen executes when users release the mouse
button, after having pressed the mouse button within the
figure.

102

The callback can be a Matlab command, as in the example, but
also:

e a string with the name of an M-file (script or function).
e a cell array of strings (see the manual, a bit special).

e a function handle or a cell array containing a function handle
and additional arguments (see the manual for the last case).

‘When using a function handle the callback-function must define
at least two input arguments. The handle of the object genera-
ting the callback, and the event data structure (can be empty
for some callbacks). Matlab passes these two arguments impli-
citly whenever the callback executes (it is possible to add input
arguments, see the manual). Here is a simple example:

>> hl = plot(x, cos(x));
>> set (hl, ’‘ButtonDownFcn’, @my_callback)
>> type my_callback % list a file

function my callback (handle, event_str)

% list input arguments (only in this example)
handle

event_str

% Can skip all. Must be true for all elements.

if all (get (handle, 'Color’) == [1 0 0])
set (handle, 'Color’, [0 0 1])

else
set (handle, 'Color’, [1 0 0])

end

>> handle = % clicked on the curve
1.540119628906250e+02
event_str =

[1

103

When we use the first alternative (a string) there are no required
variables (we decide). An advantage with using function handles
is that we, when making GUIs, can collect all the callbacks in
one file, as in the following example. This is convenient since one
tends to get many callbacks.

Here is the complex cosine-example again. We make a rectan-
gular grid, in the complex plane, in a left subplot. Lines with
constant real-parts are black, and lines with constant imaginary
parts are red.

In the right subplot we plot the cosine of the points on the lines
(using the same colours).

‘When we click on a red or black curve in either plot, the curve
and the corresponding one in the other window, should become
blue and twice as wide.

When we click on a blue curve in either plot, the curve and
the corresponding one in the other window, should return to its
original colour and get its original width.

‘When we click on a curve, a callback is called. In this callback
we can find out the handle of the curve. The callback needs to
find out the handle of the corresponding curve in the other plot.
This can be solved in a number of ways.

e We can store the handles in a matrix, one row per pair of
handles.

e subplot creates an axes object, so the figure has two axes-
children. Each child has an array of handles to line-objects.
The two handle arrays are probably ordered in the same way.

e A more general approach: use the UserData-property of a
line to store the handle of the corresponding curve (one could
store more data, e.g. a cell-array). Since the callback needs
to know the original colours (can be done in several ways),
I have used the Tag-property to store the colour as a string,
'r’ for red and 'k’ for black.

Here comes the program. The user should give intervals (real
and imag) the number of lines.

104

function cos_ex(real_int, imag_int, n)
% To save space I have not included any help

figure % New window
subplot (121); hold on % to avoid hold in the loop
subplot (122); hold on

iu sqrt (-1); % 50 is a bit arbitrary

im = iu * linspace(imag_int (1), imag_int (2), 50);

for re = linspace(real_int(l), real_int(2), n)
subplot (121)
hl = plot([re re], imag int, 'k’);

subplot (122)
c = cos(re + im);
h2 = plot(real(c), imag(c), 'k’);

set (hl, 'UserData’ ,h2, 'Tag’,’k’, ’'ButtonDownFcn’, @cb)
set (h2, 'UserData’ ,hl, 'Tag’,’k’, 'ButtonDownFcn’, @cb)
end

re = linspace(real_int(l), real int(2), 50);
for im = linspace(imag int(l), imag _int(2), n)
subplot (121)
hl = plot(real_int, [im im], 'r’);

subplot (122)
¢ = cos(re + iu * im);
h2 = plot(real(c), imag(ec), 'r’);

set (hl,'UserData’,h2, 'Tag’,’r’, 'ButtonDownFcn’, @cb)
set (h2, 'UserData’ ,hl, '"Tag’,’r’, ’'ButtonDownFcn’, @cb)
end

subplot (121); axis tight

subplot (122); axis tight
105

There is a reason for:

¢ = cos(re + im);
h2 = plot(real(c), imag(e), 'k’);

If we write like this, it may not work:
h2 = plot (cos(re + im), ’'k’);
Why? Consider the following:
>> iu = sqrt(-1);
% draws a line from (0, 0) to (0, 1) in R"2

>> plot ([0; iu])
>> hold on

% a line from (1, 0) to (2, 1). Not what we want!

>> plot ([0; 1]) % imag = 0

% equivalent to
>> plot ([1; 0], [2; 1])

% essentially a line from (0, 0) to (1, 0)
>> plot ([0; 1] + eps * iu)

Here comes the callback:

106

function cb(handle, event)
blue = [0 0 1];

% note, in the same file

c¢ = get (handle, ’'Color’);
if all(c == blue) % new colours, reset
% get (handle, 'Tag’) is original colour 'k’ or ’'r’

set (handle, ’'Color’, get (handle, ’'Tag’),
'LineWidth’, 1)

h = get (handle, ’'UserData’); % other subplot

set (h, 'Color’, get(h, 'Tag’), ’'LineWidth’, 1)
else
% original colours, change

set (handle, ’'Color’, blue, ’LineWidth’,6 2)

set (get (handle, ’'UserData’), ’'Color’, blue,

'LineWidth’, 2)

end

This works well in many situations. One problem is that the
inverse of cos does not always exist. So there may be z; # 2
with cos z; = cos z2. This gives a problem with colour, clicking
on z; may not give the same blue colour on cos z;. If cos 2; is on
top of cos z; we get a blue line, otherwise we get a mix of black
and blue (or no change if we have a different line width).

A more severe problem is if we click on cosz; = cos 29, only
one line (not two) will become blue in the first plot. Which line
reacts? Here is a short test;

> v = [0 1];

>> plot (v, v, 'ButtonDownFcn’, ’'l’) % echo 1
>> hold on
>> plot (v, v, 'ButtonDownFcn’, ’'2’) % echo 2

>> ans =
2

% clicking on the line

So the latest drawn line triggers the callback.

107

The following “works”; we can click on the line or on the
markers.

>> v = linspace(0, 1, 30);
>> plot (v, v, 'ButtonDownFcn’, '1')

>> hold
>> plot(v, v, 'ro’, 'ButtonDownFcn’, ’2')
>> ans = % clicking on a marker
2
>> ans = % clicking on the line
1

This may be another solution in some cases:

>> hl = plot(v, v, ’ButtonDownFen’, ’'1l');
>> hold on
>> h2 = plot(v, v, ’'ButtonDownFecn’, ’'2');
>> set (h2, 'HitTest’, 'Off’) % cannot trigger
>> ans = % clicked
1
>> set (hl, 'HitTest’, 'Off’) % switch this of as well

‘When both lines are “switched off” we do not get any print out
(unless we have set the ButtonDownFecn of the current axes).

108

Finally an example where the event structure is not empty. Let
us use the KeyPressFcn of a figure.

>> figure (1)

>> set(l, 'KeyPressFcn’, @key_cb)
>> type key_cb

function key_cb(handle, event)
handle

event

>> handle = 1 % pressed the a-key with the

event = % mouse in the window
Character: 'a’
Modifier: {1x0 cell}
Key: ’a’
handle = 1 % pressed shift (part of writing A)
event =
Character: '’
Modifier: {1x0 cell}
Key: ’shift’
handle = 1 % two events are generated for A
event =
Character: 'A’
Modifier: {’'shift’}
Key: ’a’

handle =1
event =
Character: '’
Modifier: {1x0 cell}
Key: ’leftarrow’

% pressed left arrow
% some garbage

% the key sends “[[A
% [= escape

109

GUIs

It is now time to construct a more general GUI. Many things to
think about when constructing a GUI, here are a few. For more
references see the Diary. Some guidelines:

e No surprises! A good GUI behaves as the user expects. One
should not have to hesitate when pushing a button. Nice with
Undo and Cancel-alternatives.

Consistency. Similar tasks should be done in similar ways.
The user can learn principles.

Use metaphors. A button with a magnifying glass for
zooming, for example.

e Try to make the GUI self-explanatory. A user will not read
manuals, perhaps not even a few lines.

Give feedback. Did I push the button or not? Is the program
running or has it crashed?

e Do not overuse strong colours, sound or movement. Keep
messages readable (font, fontsize, fontweight) and clear.

No builtin order. Modelessness. Should be able to press all
buttons etc. without the program crashing. Turn off (gray
out), or hide, alternatives that cannot be chosen, for example.

Think of portability. Does the program work on another
system? How does the monitor’s resolution and size change
the GUI? Are the sizes of buttons in pixels or cm?

For Matlab GUIs. The users may have done other work
before running your program, so be careful with using
variables and windows. When your GUI quits, just clean up
after your program, do not close all the windows, for example.

110

Matlab provides GUIDE (GUI Design Environment). You must
run the GUI-mode of Matlab to use it (so do not start with
matlab -nojvm). Then type guide. I will not use guide in this
lecture.

Let us make a Quit-button. When we press the button, the win-
dow, which the button resides in, should be deleted. We make
the button gray with the black text, Quit, on it. uicontrol is
the basic tool.

>> figure

>> h = uicontrol;

>> set (h)
BackgroundColor
Callback: string -or- function handle -or- cell array
Enable: [{on} | off |
FontName
FontSize
ForegroundColor
HorizontalAlignment:
KeyPressFcn:
Max
Min

inactive]

[1left | {center} | right]
string -or- function handle -or- cell arr:

Position

String

Style: [{pushbutton} | togglebutton | radiobutton |
checkbox | edit | text | slider | frame |
listbox | popupmenu]

TooltipString

Units: [inches |

{pixels} |

centimeters |
characters]

normalized | points |
Value

Visible: [{on} | off]

111

‘We can choose between the following types:
e pushbutton, button with no memory
e togglebutton, on-off-button

e radiobutton, to choose the station on a radio
(mutually exclusive)

e checkbox, tick choices

e edit, text that can be edited

e text, above a button. for example
o slider

e frame, rectangles that provide a visual enclosure for regions
of a figure window (obsolete)

e listbox, scrollable list with alternatives

e popupmenu (does not work with -nojvm)

Some of the buttons only differ in appearance; we have to fix the
functionality. A suitable button in our example is a pushbutton,
which is the default. In this example we could use a string instead
of a function.

>> type Quit_ex

function Quit_ex

hf = figure;

set (hf, ’'Name’, 'My GUI’,
'NumberTitle’, 'Off’,
'MenuBar’ , 'None’,
'Units’, ’centimeters’,
"Position’, [10, 10, 5, 3])

112

hb = uicontrol (

’Style’, ’"pushbutton’, % default
'Units’, "centimeters’,

'Position’, [0.5 0.5 2 1],

’String’, 'Quit’, .
'TooltipString’, "Close this window’,

’BackgroundColor’, [0.7 0.7 0.7],
' ForegroundColor’, [0 O 0],
' Callback’, @Quit_cb);

function Quit_cb (handle, event)

% gcbf: Get handle to current callback figure.

% fig = gcbf returns the handle of the figure

% that contains the object whose callback
% is currently executing.

delete (gcbf)

Position is lower left x, lower left y, width, height.

” MyGUI | =~[Elx*

Quit |

113

Here comes a toggle button. The string, on the button, should
alternate between On and Off. The button has a Value-property.
Matlab will automatically alternate the value of Value between
0 and 1.

>> type Toggle_ex
function Toggle_ex

hf = figure;

set (hf, ’'Name’, 'My GUI’,
'NumberTitle’, 'Off’,
"MenuBar’, 'None’ ,
'Units’, ’centimeters’,
"Position’, [10, 10, 5, 3])

% Toggle buttons set Value to Max (default 1) when
% they are down (selected) and Min (default 0)

% when up (not selected).

hb = uicontrol (

’Style’, ’'togglebutton’,
'Units’, ’centimeters’,

'Position’, [0.5 0.5 2 1],

’String’, 'Off’,

’BackgroundColor’, [0.7 0.7 0.7],
' ForegroundColor’, [0 0 0],
'Value’, 0,

’Callback’, @Toggle_cb);

% Initially
% Off

function Toggle_cb(handle, event)

% If Value = 1 when we clicked, then Value = 0
% in this callback.
if get (handle, ’'Value’)

set (handle, ’'String’, ’‘On’) % used to be Off
else

set (handle, ’'String’, 'Off’) % used to be On
end

114

A shorter version:

function Toggle_ cb(handle, event)
str = {'Off’, 'On’};
set (handle, ’'String’, str{l + get (handle, ’‘Value’)})

Note that str = ['Of£f’, 'On’]; gives one string, ' Of£fOn’.

Here comes a slider, where we can set values continuously. We
should put a text close to each slider. In the example we use the
same callback. This is not necessary, nor is he use of the Tag.

>> type Slider_ex
function Slider_ex

hf = figure;

set (hf, 'Name’, 'My GUI’', ’'NumberTitle’, 'Off’,
'MenuBar’, ’'None’, ’'Units’, ’'centimeters’,
'Position’, [10, 10, 4, 4],
'DefaultUicontrolUnits’, 'centimeters’,
'DefaultUicontrolBackgroundColor’, [0.7 0.7 0.7],

'DefaultUicontrolForegroundColor’, [0 0 0])
uicontrol (’Style’, ’slider’,
'Position’, [0.5 0.5 3 0.7],
'Min’, -1, ... % min value of slider
'Max’, 2, ... % max value
'Value’, 1, ... % initial value
'Tag’, ’'slider_1’,

’Callback’, @Slider_cb);

uicontrol (’'Style’, ’'slider’,
'Position’, [0.5 1.5 3 0.9],
'Min’, =1, 'Max’, 2, ’Value’, 1,
'Tag’, ’'slider_2’,
’Callback’, @Slider_cb);

115

% Help text. May want a different BG-colour
uicontrol (’'Style’, ’'text’, ’'String’, ’'Two sliders’,
'FontWeight’, 'Bold’, ...
'Position’, [0.5 2.4 3 0.5])

function Slider_cb (handle, event)

% Can have different callbacks for different
% sliders of course. Does not do anything

% useful.

val = get (handle, ’'Value’)

if get (handle, ’'Tag’) == ’slider_1’
disp(’slider_1')

else
disp(’'slider_2')

end

My GL | =

Two sliders

G

This is using Matlab with Java. Turning off Java, —-nojvm, gives
a different appearance.

v | MyGU =

Tuo sliders

Notice also the area for the text (slightly darker).

116

Here comes a more sophisticated example. We take the old
cosine-example (where we can click on the curves) and add some
buttons and menus. We start the program by typing cos_ex gui
and get the following window:

My GUI - | 2] %
File Edit ¥iew Insert Tools Desktop Window Help k]

z 03z}

08

04

0z

. 5
g 0 £
£ £
&

02 2
04
06

, . ,

05 il [X

real z veal{cos(z))
Quit ‘ Reset‘ Resuall| Zoomin-| ﬂl_fl 1u /

Quit should delete the window. Reset should reset all the lines
to their original colours and width. Using the left popupmenu
we can choose between four functions; the plot is updated.

The next menu sets the number of grid lines; the plot is up-
dated. Zoom in allows us the click twice in the left window to
mark a smaller rectangle; the plot is updated. Reset all, resets

everything (like starting over).

There should be texts above the menus.

117

Here is the code (> 240 lines). I have had to compress it
(compared to my original). All routines in one file.

function cos_ex_gui
% Should have better names for the global variables
% or not use global. Can use UserData of the figure.
global hal ha2 hm_fun hm _n fun funcs

real int imag _int n

% default values

real int = [-1 1]; % real interval
imag_int = [-1 1]; % imag interval

n = 10; % # of grid lines
fun =1; % choice of function

funes = {@(z)cos(z), Q(z)sin(z), @(z)exp(z), @(z)z."2};

make_ gui % create buttons etc.

make_plots % draws the grid and function(grid)

% make_gui
function make_gui
global hal ha2 hm_fun hm n funcs

hf = figure;

set (hf, 'Name’, 'My GUI’', ’NumberTitle’, 'Off’,
'Units’, ’'centimeters’,

'DefaultAxesUnits’, 'centimeters’,

'DefaultUicontrolUnits’, ’'centimeters’,

'DefaultUicontrolFontWeight’, ’'Bold’,
’DefaultUicontrolBackgroundColor’,

[0.7 0.7 0.7],
'DefaultUicontrolForegroundColor’, 'k’)

hal = subplot(121); hold on
ha2 subplot (122); hold on

118

% shrink subplots

dp=1.2 * [01 0 -1];

set (hal, ’'Position’, get(hal, ’'Position’) + dp)
set (ha2, ’'Position’, get(ha2, ’'Position’) + dp)

% create buttons and menus
pos = [1.5 0.5 2 1]; dx = 0.5;

% Quit-button
uicontrol ('Position’, pos,

’String’, 'Quit’,
'TooltipString’, "close window’, ..
’Callback’, "delete(gebf)’); % string

% Reset-button
pos(l) = pos(l) + pos(3) + dx;
uicontrol (’'Position’, pos,

’String’, 'Reset’,
’'TooltipString’, 'reset lines’,
’‘Callback’, @reset_cb);

% Reset all-button
pos(l) = pos(l) + pos(3) + dx;
uicontrol ('Position’, pos,

’String’, "Reset all’,
'TooltipString’, 'reset everything’,
’Callback’, @reset_all cb);

% Zoom-button
pos(l) = pos(l) + pos(3) + dx;
uicontrol ('Position’, pos,

’String’, "Zoom in’,
'TooltipString’, "zoom in left plot’,
’Callback’, @zoom_cb) ;

119

% Build menu-items
for fun = 1l:length (funcs)

t = char(funcs{fun}); % @(z)expression

t =t(t "="."); % rm elementwise
items{fun} = t(5:end);
end

% Function menu
pos(l) = pos(l) + pos(3) + dx;

hm_fun = uicontrol(’Style’, 'popupmenu’,
'Position’, pos,

'TooltipString’, " function’,

’String’, items, P

'Value’, 1, ... % default
’Callback’, @menu_fun_cb);

% An alternative to cell arrays

% n-menu (number of grid lines)

pos(l) = pos(l) + pos(3) + dx;

hm_n = uicontrol(’Style’, ’popupmenu’,

'Position’, pos,

’String’, -
'516171819110111]12|13|14|15|16]|17|18]19]20"',

'TooltipString’, '# of lines’,

'Value’, 6,

’Callback’, @menu _n cb);

% equal
function eq = equal(sl, s2)
% Compare two strings. used by reset_cb.

% May be of unequal length (strcmp) and different
% case (i in strcmpi). Blanks are significant

% for strcempi, so they are removed.

eq = strempi(sl(sl "= ' '), s2(s2 "= " 7));

120

% reset_cb
function reset_cb (handle, event)
% Could call make_plots instead
% but this shows a different technique

h get (handle, 'Parent’);
he = get(h, ‘Children’);

% i.e. the figure
% axes and uicontrol

for h = he(:)’
if equal(get (h,
hl = get (h,

'Type’), 'axes'’)
‘Children’); % lines
for hline = hl(:)’ % for all lines
set (hline, 'Linewidth’, 1,
'Color’, get(hline, ’'Tag’))
end
end
end

% for all axes and uicontrols

% reset_all_cb
function reset_all_ cb(handle, event)
global hm_fun hm_n fun real_int imag_int n

real int = [-1 1]; % default values
imag_int = [-1 1];

fun =1;

n = 10;

set (hm_fun,
set (hm_n,

'Value’, fun) % reset menus
'Value’, 6)

make_plots % redraw

121

% zoom_cb
function zoom_cb (handle, event)
%

% Can zoom in (but not out)

% There is builtin support for zoom (help zoom).
%

global real_ int imag_int

[re, im] = ginput(2); % no conflict with
real_int = sort(re); % clicking on lines
imag_int = sort(im); % should check the values
make_plots % redraw

% menu_fun_cb

function menu fun cb(handle, event)
global fun

fun = get (handle,
make_plots

'Value'’) ;
% redraw

% menu_n_cb
function menu_n_cb (handle, event)

global n

n = 4 + get (handle, 'Value’);
make_plots % redraw

% make_plots

function make_plots

% almost like the old version

global hal ha2 fun funcs real int imag int n
iu = sqrt(-1);

122

% Remove curves. OK if empty. This is new.
delete (get (hal, ’'Children’))
delete (get (ha2, ’'Children’))

im = iu * linspace(imag_int (1), imag_int (2), 50);

for re = linspace(real_int(l), real_int(2), n)
subplot (hal) % subplot (121) changes position.
hl = plot([re re], imag int, 'k’);

subplot (ha2)

c¢ = funcs{fun} (re + im); % This is ew

h2 = plot(real(c), imag(c), 'k’);
set (hl, ’'UserData’, h2, ’'Tag’, 'k’,
’'ButtonDownFcn’, Q@plot_cb)
set (h2, 'UserData’, hl, ’'Tag’, 'k’,
'ButtonDownFcn’, @plot_cb)
end

re = linspace(real_int(l), real_int(2), 50);
for im = linspace(imag int(l), imag _int(2), n)
subplot (hal)

’

hl = plot(real_int, [im im], 'r’);
subplot (ha2)

c = funcs{fun} (re + iu * im);

h2 = plot(real(c), imag(c), 'r’);

set (hl, ’'UserData’, h2, 'Tag’, 'r’,
'ButtonDownFcn’, @plot_cb)
set (h2, ’'UserData’, hl, ’'Tag’, 'r’,
’'ButtonDownFcn’, Q@plot_cb)

end

123

New.

% This is new

subplot (hal); axis tight
h(l) = xlabel('real z’);
h(2) ylabel ('imag z');
h(3) = title('z');

subplot (ha2); axis tight
t = char (funcs{fun});

t t(5:end);

t=t(t "=".");

% something like @ (z)expression
% rm Q(z)
% rm dots

% xlabel should be real(cos(z)) etc.
h(4) = xlabel(['real(’, t, ')’'1);

h(5) = ylabel([’'imag(’, t, ")'1);

h(6) = title(t);

set (h, 'FontWeight’, ’'Bold’)

% plot_cb

function plot_cb (handle, event)

% ... same as function cb in the previous example
blue = [0 0 1];

c = get (handle, ’'Color’);

if all(ec == blue)
% get (handle, ’'Tag’) is original colour 'k’ or ’'r’

% new colours, reset

set (handle, ’'Color’, get (handle,
h = get (handle, ’'UserData’);
set (h, 'Color’, get(h, 'Tag’),
else
% original colours, change
set (handle, ’'Color’, blue,
set (get (handle, ’'UserData’),
'LineWidth’, 2)

'Tag’), 'LineWidth’,
% other subplot
’LineWidth’, 1)

’LineWidth’, 2)
'Color’, blue,

end

124

It is possible to have textures on buttons. I fetched a gif-image of
a magnifying glass. Matlab requires true colour (24-bit colour)
and I used the xv-command to convert the image and saved it
as a jpeg-image (highest quality). The original image has a black
border.

>> C = imread('mag.jpg’, 'jpg’); % read the file
>> image (C) % look at it
>> axis image % correct scaling
>> size (C)
ans =

32 32 3 % a 3D-matrix

>> figure

>> uicontrol (’Style’, "Pushbutton’,
'Units’, 'pixels’, ... % Note
'Position’, [100 100 32 32],
'CDhata’, Cc, ... % Note

'Callback’, @Zoom_cb);

>> uicontrol(’Style’, "Pushbutton’,
'Units’, 'pixels’,
"Position’, [150 100 64 64],
'CDhata’, Cc,

"Callback’, @Zoom cb);

&

@\

125

‘We can add menus at the top of the window as well.

h = figure;
hm = uimenu(h, 'Label’, 'My menu’);
% set(h, 'MenuBar’, ’'None’) removes the standard menu

% Accelerator: type CTRL-K with the mouse in the window

alt (1) = uimenu(hm, ’'Label’, 'Beef’,
’Callback’, 'disp(’''Beef’’)’,
'Accelerator’, 'K’);

% Can have callback here as well
alt (2) = uimenu(hm, ’'Label’, ’'Chicken’);

alt (3) = uimenu(hm, 'Label’, 'Fish’,

'Callback’, ’'disp(’''Fish’’)’);

% We can do hierarchical menus. Don’t overuse!

uimenu (alt (2), 'Label’, ’'with Cashew nuts’,
’Callback’, ’'disp(’'’Cashew’’)’);

uimenu (alt(2), ’'Label’, ’'in Curry’,

"Callback’, ’'disp(’'’Curry’’)’);

uimenu (alt (2), 'Label’, 'with Peppers’,

"Callback’, ’'disp(’'’Peppers’’)’);

Figure 1

File Edit ¥iew Insert Tools Desktop Window Help "M-‘@mmu ~|

Beef

CUri+ K

D& k|aaOe (€ 0H| =0
with Cashew nuts
in Curny
with Peppers

126

A few more words about clicking on curves.

If you choose “Data Cursor”-tool (to the right of the rotate
button) you can click on an object (also in 3D) to get
the coordinates.

You can change the cursor to one of several predefined:

>> set (gcf, ’'Pointer’, 'arrow’)
% or 'watch’ etc. See the manual.

The watch-cursor is an animation under Gnome.
You can make your own cursor, as well. Create a 16 X 16-matrix

containing 1 (black), 2 (white) and NaN (transparent).
Let us make a large X.

>> C eye(l6); C =C + C(:, end:-1:1);
>» C=C ./ C;
Warning: Divide by zero.

>> C(6:11, 6:11)

ans =
1 NaN NaN NaN NaN 1
NaN 1 NaN NaN 1 NaN
NaN NaN 1 1 NaN NaN
NaN NaN 1 1 NaN NaN
NaN 1 NaN NaN 1 NaN
1 NaN NaN NaN NaN 1

>> figure (1)

>> set(l, ’'Pointer’, ’Custom’,
'PointerShapeCData’, Cc, .
'PointerShapeHotSpot’, [8.5 8.5])

PointerShapeHotSpot is the pointer location.

127

We can bind a menu (context menu) to a graphical object, e.g.

a curve.

figure (1)

% Create a context menu
cmenu = uicontextmenu;

x = 0:0.1:1;

% and bind it to the curve

hp = plot(x, sin(x), ’'UIContextMenu’, cmenu);

% Define callbacks...

cbl = ’set(hp, ’'’LineStyle’’, ''—='')’";
cb2 = ’'set (hp, ’'’'LineStyle’’, '’':'")’;
cb3 = ’set (hp, ’’LineStyle’’, ''-='")';

% Define the menu alternatives

uimenu (cmenu, 'Label’, 'dashed’, ’Callback’, cbl)
uimenu (cmenu, 'Label’, ‘dotted’, ’‘Callback’, cb2)
uimenu (cmenu, 'Label’, ’'solid’, ’Callback’, cb3)

If one RIGHT-clicks on the curve, a menu appears where we can

choose between dashed, dotted and solid.

128

Loading files

> type load_file.m
function load_file

uicontrol (’Style’,'PushButton’, ’Units’,’centimeters’,
'Position’, [1 3 2 1.5], ’'String’, 'Load’,
’Callback’, @load _cb)

function load cb(handle, event)
pos [100 100]; % [from_ left, from top], in pixels
filter = ’'*._data’;

[file_name, path_to_file] =

uigetfile (filter, 'title’, ’'Location’, pos);
file _name, path_to_file % We usually don’t print
>> load file
file _name = test.data
path to file = /users/math/thomas/

title

Filter

‘ fugersimathithamas® datd

Directories Files

" [testetata [
‘homas/, CarporataTime
homast.Mathematica
homas/.NexT
homas/ Mokia
haomasd.Old_Stuif
homasd.acrobat - 7
[| A s

‘ Files of type . “data o |

aelection

‘ fuserstmathithomasd

Qpen Filter Cancel

129

Error messages

function error_msg(msg)

% Inactivate all other windows using a modal
% dialogue

figure('Units’, 'centimeters’,
"Position’, [15 15 4 2],
"Color’, [1.0 0.5 0.5],
"MenuBar’ , 'None’ ,

'NumberTitle’, 'Off’,

"WindowStyle’, ’'Modal’,

'Name' ,
axis (' off’)

% Note
"Error’);

% the error message
text (0, 0.7, msg, ’'FontWeight’, ’Bold’)
% Remove the window when we have pressed OK

uicontrol('Style’, "PushButton’,

'Units’, ’centimeters’, .
"Position’, [0.3, 0.3, 1, 0.7],
"String’, "OK’,

Callback’, "delete (gcbf) ')

error msg (' Nothing to plot’) gives:

v| Error |=|[T]l%
Nothing to plot

ok

130

There is a function for this in Matlab:
errordlg ('message’, 'title’, ’'modal’).
This is one of several such functions. See help or the manual.

Predefined Dialog Boxes

e dialog Create and display dialog box

errordlg Create and display error dialog box

helpdlg Create and display help dialog box

inputdlg Create and display input dialog box

listdlg Create and display list selection dialog box

msgbox Create and display message dialog box

pagesetupdlg Display page setup dialog box

printdlg Display print dialog box

questdlg Display question dialog box

e uigetdir Display standard dialog box for retrieving
a directory

e uigetfile Display standard dialog box for retrieving files

uigetpref Display dialog box for retrieving preferences

e uiputfile Display standard dialog box for saving files

uisave Display standard dialog box for saving
workspace variables

e uisetcolor Display standard dialog box for setting an object’s
ColorSpec

uisetfont Display standard dialog box for setting an object’s
font characteristics

waitbar Display waitbar

e warndlg Display warning dialog box

131

Animation in Matlab

Example: we would like to animate a square that bounces inside
a rectangle. We assume that the square always hits a wall at a
45 degree angle and that no energy is lost in the contact.

Here is a simple solution:

function test5
global min_x max_x min_y max_y v cont

% initial position for square
x =3 * [0110] + 15;
y=3*[0011]" + 15;

hf = figure;
set (hf, ’'DeleteFcn’, @clean_up)

% plot square

h = fill(x, y, 'r');

axis equal

min x = 0; max x = 90; min y = 0; max y = 31;

% boundingbox
axis([min_x max_x min_y max_y])
set (gca, ’'xtick’, [], 'ytick’, [1])

[11];
cont = 1;

% initial direction

v

while cont

% drawnow
pause (0.01)
update_pos (h)

end

% update screen
% pause and update screen

drawnow or pause is needed to flush the queue for graphics
events, otherwise all the events will accumulate and nothing is
plotted.

132

function update_pos (h)
global min_x max_x min_ y max_y v cont

% necessary since this routine can be called when
% we have deleted the window
if “cont, return, end

% fetch position
get (h, ’‘xdata’);
get (h, ’‘ydata’);

x
y

% check if squrea has hit a wall or a corner
off y = y(3) >>max y || y(1l) <= min y;

if x(2) >= max_x || x(1) <= min_x
if off y
v = -v;
set (h, ’‘Facecolor’, ’'g’) % change colour as well
else
v = [=v(1), v(2)];
set (h, 'Facecolor’, ’'b’)
end

elseif off y
v = [v(l), =v(2)];
set (h, 'Facecolor’, 'y’)
end

% update position
=x + 0.2 * v(1);
=y + 0.2 * v(2);

L
I

% update graphics data
set (h, 'xdata’, x, 'ydata’, y)

133

function clean_up (obj, event)
% called when we delete the window
global cont

cont = 0;

Another way to update the image is to use a so-called timer

object. A timer object is similar to a clock that runs in parallel

with ones program (a separate thread).

The clock can be set up so that it calls a callback routine at

times to, to + O¢, to + 204, to + 30z, to is called start delay and

d; period. Java must be enabled for this to work.

First some simple examples.

> t = timer ('TimerFcn’, ’'disp('’tiec’’)’,
'ExecutionMode’, ’fixedSpacing’,
'Period’, 1, 'TasksToExecute’, 5)

Timer Object: timer-1

Timer Settings
ExecutionMode: fixedSpacing
Period: 1
BusyMode: drop
Running: off

Callbacks
TimerFcn: 'disp(’'tic’)’
ErrorFcn: '’
StartFcn: '’
StopFcn: '’

>> start (t)
tie
tic
tic
tic
tic
134

>> get (t, 'Running’)
ans = off
>> delete(t)

% make a new timer

>> t = timer (' TimerFecn’', ’'disp(’'’tie’’)’,
'ExecutionMode’, ’'fixedSpacing’,
'Period’, 10, 'TasksToExecute’, 5);

>> start (t)

tic
>> get (t, ’'Running’)
ans = on

>> stop(t)
>> delete(t)

% make a new timer

>> t = timer (' TimerFcn’', 'disp(’'’tic’’)’,
'ExecutionMode’, ’'fixedSpacing’,
'Period’, 10, 'TasksToExecute’, 5);

>> start (t)

tic

tic

>> delete(t)

Warning: One or more timer objects were stopped

before deletion.

% make two new timers

>> tl = timer(’'TimerFcn’, ’'disp(’'’tic 1'7)’',
'ExecutionMode’, ’fixedSpacing’,
'Period’, 1, 'TasksToExecute’, 5);

>> t2 = timer(’'TimerFcn’, ’'disp(’'’tiec_2'")’',

'ExecutionMode’, ’fixedSpacing’,
'Period’, 1, 'TasksToExecute’, 5);

135

>> start (tl)
tic 1
tic_1
>> start (t2)
tic_2
tic_1
tic 2
tic 1
tic_2
tic 1
tic 2
tic_2
>> timerfind

Timer Object Array

Index: ExecutionMode: Period: TimerFcn:
1 fixedSpacing 1 'disp(’tic_1")’
2 fixedSpacing 1 'disp(’'tic_2")"

>> delete(timerfind)
>> timerfind
ans =

[1

% make a new timer

>> t = timer (' TimerFcn’', ’'disp(’'’tiec’’)’,
'ExecutionMode’, ’'fixedSpacing’,
'Period’, 1, ’'TasksToExecute’, 5);

>> start(t); wait(t) % block the command line

Possible to have ' TasksToExecute’, Inf

136

Here are some of the most important properties of a
timer object.

@ BusyMode Action taken when a timer has to execute TimerFecn
before the completion of previous execution of TimerFcn.
"drop’, do not execute the function. (default).

’error’, generate an error.
’queue’, execute function at next opportunity.

@ ExecutionMode Determines how the timer object schedu-
les timer events. 'singleShot’ (default), ' fixedDelay’,
’ fixedRate’, ' fixedSpacing’'.

Period Specifies the delay, in seconds, between executions
of TimerFcn.

Running Indicates whether the timer is currently executing.

StartDelay Specifies the delay, in seconds, between the start
of the timer and the first execution of the function specified
in TimerFen.

e StartFen Function the timer calls when it starts.

StopFen Function the timer calls when it stops.

@ TasksToExecute Specifies the number of times the timer
should execute the function specified in the TimerFen
property.

e TimerFcn Timer callback function.

e UserData User-supplied data.

More deails about ExecutionMode. The duration of the lag
depends on what other processing Matlab happens to be doing
at the time.

singleShot
Timer executes
start lag TimerFcn timer stops
| | + |
start
delay

137

Here are the other three cases:

fixedSpacing:
|lag|TimerFcn|<---- period ---->|lag|TimerFcn|

fixedDelay:
<-——- period —--———>
|lag|TimerFen| |lag|TimerFecn|
fixedRate:
<——-- period ---->

|lag|TimerFcn| |lag|TimerFcn|

Here is a code for the bouncing squre using timer objects.

function test55
global min_x max_x min_y max_y

hf = figure;

% Can stop the square by clicking in the window
% outside the plot area (stop_go).

% When we close the window clean_up is executed.

set (hf, ’'ButtonDownFcn’, @stop_go,
'DeleteFcn’, (@clean_up)

hold off

x =3 * [0110]" + 15; % same as before

y 3 * [0011]" + 15;

h fill(x, y, 'x’);

axis equal

min x = 0; max_x = 30; min y = 0; max_y = 51;

axis([min_x max_x min_y max_y])
set (geca, ’'xtick’, [], 'ytick’, [])

138

% Create timer and define properties

t = timer;

set (t, 'TimerFcn’, @my_update, ’'StartDelay’, O,
' TasksToExecute’, Inf, 'Period’, 0.015,
'ExecutionMode’, ’fixedSpacing’,
’BusyMode’, ’'drop’);

v =[11];

set (t, 'UserData’, {h, v}) % store h and v in Userdata

set (hf, ’'UserData’, t) % store handle to timer in figure

start (t)
%

function my_update (obj, event)
global min_x max_x min_y max_y

ud = get (obj, 'UserData’);
h = ud{1};
if “ishandle(h) % just to be sure...
disp('no handle’)
stop (t)
delete (t)
return

% obj = timer

end

v ud{2};
get (h, ’'xdata’);

get (h, ’'ydata’);

x
y

% same as before
off y = y(3) > max y || y(1) <= min_y;

if x(2) >= max_x || x(1) <= min_x
if off y
v = -v;
set (h, 'Facecolor’, ’'g’)
else

v = [-v(1), v(2)];
139

set (h, ’'Facecolor’, ’'b’)
end
elseif off_ y
v = [v(l), -v(2)];

set (h, ’'Facecolor’, 'y’)
end
x=x+ 0.2 * v(1);
y=y + 0.2 * v(2);

set (h, 'xdata’, x, 'ydata’, y)

set (obj, ’'UserData’, {h, v})

%

function clean_up(obj, event)

disp(’'clean_up’)

t = get(obj, ’'UserData’);

run = get(t, ’'Running’);

if run(l:2) == 'on’ % other is off
stop (t)

end

delete (t)

% obj = figure

%

function stop_go(obj, event)
t = get(obj, ’'UserData’);
run = get(t, ’'Running’);
if run(l:2) == "on’ % other is off
stop (t)
else
start (t)
end

% obj = figure

140

It does happen that the timer continues to run even though we
have removed the window (I do not know why). Typing “C
in the Matlab command window seems to solve the problem.

In some versions of Matlab it may be useful to switch on double
buffering (on our system it is switched on). This makes for a
more steady, flicker free, animation.

In this method, two graphics pages in the video memory are
used. While one page is displayed by the monitor, the other is
drawn. When drawing is complete, the roles of the two pages
are switched, so that the previously shown page is modified, and
the previously drawn page is shown.

>> figure(l)
>> set (1, ’'DoubleBuffer’)
[{on} | off]

Another property that is important is Renderer. It can take one
of four values, only the first are of interest to us:

>> set(l, ’'Renderer’)
[{painters} | zbuffer | OpenGL | None]

The meaning of the different values will be explained later in the
course. painters is a fast method for drawing simple graphics
having no light sources. zbuffer and OpenGL are used for more
complicated scenes and OpenGL is also the choice when we would
like to use the system’s graphics hardware. Matlab switches au-
tomatically (provided RenderMode is set to auto), for example:

>> figure(1l)
>> get(l, 'Renderer’)
ans = None

>> plot (rand (10, 1))
>> get (1, 'Renderer’)

ans = painters

141

>> surf (rand(10))
>> get (1, 'Renderer’)
ans = painters

>> shading interp
>> get(l, 'Renderer’)
ans = OpenGL

>> opengl info

Version = 2.0.2 NVIDIA 87.62

Vendor = NVIDIA Corporation

Renderer = GeForce 6600/PCI/SSE2/3DNOW!
MaxTextureSize = 4096

Visual = 0x26 (TrueColor, depth 24, RGB mask Ox!
Software = false

of Extensions = 120

Driver Bug Workarounds:

OpenGLBitmapZbufferBug 0
OpenGLWobbleTesselatorBug = 0
OpenGLLineSmoothingBug =0
OpenGLClippedImageBug =1
OpenGLEraseModeBug =0

>> opengl software

>> opengl info

Version = 1.5 Mesa 6.0.1
Vendor = Brian Paul
Renderer = Mesa X11
MaxTextureSize = 2048

Visual = 0x21 (TrueColor, depth 24, RGB mask Ox!
Software = true

of Extensions = 96

Driver Bug Workarounds: etc.
142

Vectors and points

Important to distinguish between point and vectors in computer
graphics, so here comes a short review. A vector is an equivalence
class (think set) of directed line segments that share the same
length and direction. One of the segments is a representative of
the vector.

The left image shows some representatives of the vector.

VAV A A R A A A
VAV A A A A A A
VAV A A A A A A
VAV A A A A

There are infinitely many representatives. A point, however, is
a unique object. P and Q are two points (right image).

Two points define a vector: v = Q — P is the vector which starts
in P and goes to Q. A point and a vector defines a new point:

Q = P +v. A single point, P (or Q) does not define a vector. A
vector does not define a point, either.

A
/ S/
/ S/

A Ay A

143

A basis is a set of linearly independent vectors such that all
vectors (in the space) can be written as a linear combination of
the basis vectors. A vector has a coordinate representation in
such a system. The left image shows a basis. It is common to
draw the representatives starting at the same point.

Note, however, that we still do not have an origin.

Let us now forget the basis for a while, and instead introduce a
special, fix point, the origin, O.

Given the origin we can get a 1-1 correspondence between vectors
and points by using the representative starting in @ and ending
in the P (Sw. ortsvektor). In the right image v corresponds to
the point P.

A coordinate system is an origin together with a basis. A point

and a vector has a coordinate representation in such a system.
We will use ON-systems (orthogonal and normalized basis).

144

