OpenDX och ParaView

‘We end the course with two visualization systems that have more
advanced graphics than Matlab. These systems have no support
for computations (apart from very simple ones), and the user
has to supply the plot-data using files.

In previous versions of the course the focus was on OpenDX,
but this year we will use ParaView. See the old PDF-file from
the Diary for more about OpenDX.

Let us have a look at OpenDX before we start with ParaView.
OpenDX, www.opendx.org, is an open version of IBM’s
“Visualization Data Explorer”.

Some, but not all, important points:
o Advanced tools for visualization of 3D-data.

e Takes longer to learn than Matlab, but you can do more.
Often faster.

o Modules are connected using a GUI, graphical programming.
Visual Program Editor, VPE.

e Input from files (not variables as in Matlab).

o The modules transform the input and sends it to the next
module.

e Supports several input formats. Using the “Data Prompter”-
program simple inputs can be handled (e.g. uniform, gridded
input).

e Lots of documentation. Many demo programs. Few simple
examples. Should read a book (or take this course :-)
David Thompson, Jeff Braun, Ray Ford,
OpenDX: Paths to Visualization. Consists of a sequence of
solved visualization problems.
http://www.vizsolutions.com.

Here is a short example (an extract from the old course) to give
you an idea of how one uses OpenDX.

253

We would like to visualize data of the form w = f(x,y, 2).

It is possible to remove part of the data (everything on one side
of a plane). We use the module ClipPlane. It takes the data, a
point in the plane and a normal defining the clip plane.
Everything on the side of the plane (in the direction of the
normal) is removed.

Here is a related construct. The MapToPlane-module creates
an arbitrary cutting plane through 3D-space and interpolates
data values onto it. The plane is defined by a point a normal,
just as the ClipPlane. Using the Vector interactors we can move
to plane.

I have combined MapToPlane with Isosurface. I have also
added Colorbar which draws a scale (as in Matlab). Finally there
is Caption which corresponds to Matlab’s title.

Here is the program

and here is a (bad) version of the resulting image.

~ | Image: juser /VISM/Lectures/OpenDX/Lecture_example/Wdata e (=D *
Fle  fuecule  Windows  Connection  Options Help

MapToP lane and Isosurface

il

3.5 1

3.0 8

2.5
2.0
1.5
|
1.0 B
0.0

Jr
z

For more details see the old handouts. The rest of the chapter
deals with ParaView.

255

ParaView

Here are a few sentences from www.paraview.org:

Overview:
ParaView is an open-source, multi-platform application designed
to visualize data sets of size varying from small to very large.

The goals of the ParaView project include the following:

e Develop an open-source, multi-platform visualization
application.

e Support distributed computation models to process large
data sets.

e Create an open, flexible, and intuitive user interface.
e Develop an extensible architecture based on open standards.

ParaView runs on distributed and shared memory parallel as
well as single processor systems and has been successfully tested
on Windows, Mac OS X, Linux and various Unix workstations,
clusters and supercomputers. Under the hood, ParaView uses
the Visualization Toolkit as the data processing and rendering
engine and has a user interface written using Qt®.

The ParaView project started started in 2000 as a collaborative
effort between Kitware Inc. and Los Alamos National Labora-
tory. The initial funding was provided by a three year contract
with the US Department of Energy ASCI Views program. To-
day, ParaView development continues as a collaboration between
Kitware, Sandia National Labs, CSimSoft, Los Alamos National
Lab, Army Research Lab and others.

There is a set of books available from Kitware Inc. providing
details about VTK and ParaView. In this course it is sufficient
to study the “ParaView 3 tutorial for Supercomputing 07” (used
in the labs), and the “VTK file formats documentation“ (see the

home page for links).
256




The hardest part with using OpenDX and ParaView is the
creation of the input files and this chapter will show you some
examples.

VTK supports many styles of file formats. In this course we
will use two, the legacy VTK formats and the XML formats.

From the dictionary:

Legacy: Designating software or hardware which, although
outdated or limiting, is an integral part of a computer
system and difficult to replace.

Suppose we want implement the following Matlab-program in
ParaView:

[X, Y] = meshgrid(linspace( 0, 2, 30),
linspace (-1, 1, 30));
surf(X, ¥, X."2 + sin(3 * Y))

Here is a first step, the file ex1.vtk (the line numbers are not
part of the file). For more details see the formats-manual.

1 # vtk DataFile Version 2.0
2 Data for z = f£(x, y).

3 ASCII

4 DATASET STRUCTURED_POINTS
5 DIMENSIONS 3 3 1

6 ORIGIN 00O

SPACING 111

POINT_DATA 9

10 SCALARS name_1 float
11 LOOKUP_TABLE default
12 1234567829

Line 1 is a header, and line 2 a title (comment). Line 3 gives the
data format for numbers (coordinates etc), see the documenta-
tion for binary formats.

257

Lines 4-7 describe the dataset structure (also called the geometry
or the topology) of the data. In our case we have grid points in
the x-y-plane. The points are (j, k), j, k = 0,1, 2.

Finally, on lines 9-12, we have the dataset attributes, the values
of the function on the grid (the values are 1-9).

‘We have POINT DATA, i.e. we have defined a scalar value in each
grid point. The value is a scalar-float (i.e not a vector for examp-
le) and we have named it, name_1. Choose meaningful names e.g.
pressure, temperature etc.

We can have several quantities, by having several groups like
10-13. Using the name, we can later pick the relevant quantity
in ParaView. On line 11 we define a colour lookup table (here
the default). One should be able to define ones own, but this
seems buggy in the present ParaView-version.

I have not included any images in the handouts, since the PDF-
files become so large. Some of the vtk-files (and corresponding
images) are available on the student computer system, so you can
try them yourself (see “thomas/VIS/Handouts ex ParaView).

The following line denotes a missing image.
[Image]

This is how I made the [Image]. I loaded the file, choose the
“Glyph-filter”, changed the “Glyph Type” to “Sphere”,
increased the “Radius” and “Theta Resolution”. I pressed the
“Toggle Color Legend Visibility”-button. Not to waste printer-
toner, I changed the background colour (so the background text
is not very visible).

258

So what is a glyph?

(Glyph from from Greek Glyphe, carved work, from

glyphein to carve.

1: an ornamental vertical groove especially in a Doric frieze

2: a symbolic figure or a character (as in the Mayan system of
writing) usually incised or carved in relief

3: a symbol (as a curved arrow on a road sign) that conveys
information nonverbally).

Looking at the image we can see that the point data is
ordered the following way:

(@15 91) (225 Y1) (T35 Y1) (@1, Y2) (T2 Y2) (T35 Y2) (21, Y3) (T2, Y3) (T3, Y3)

How can we generate data in that order from Matlab? Here is a
short example:

259

>> [X, Y] = meshgrid(-1:1, -1:1)

X= -1 0 1
-1 0 1
-1 0 1
Y= -1 -1 -1
0 0 0
1 1 1
>> [X(:), Y(:)]
ans =
-1 -1 % (x_min, y_min)
-1 0 % (x_min, y_min + dy)
-1 1 % (x_min, y_min + 2 dy)
0 -1 % (x_min + dx, y_min)
0 0 % (x min + dx, y min + dy)
0 1 % (x min + dx, y min + 2 dy)
1 -1 % (x_min + 2 dx, y_min)
1 0 % (x min + 2 dx, y_min + dy)
1 1 % (x min + 2 dx, y_min + 2 dy)
> X = X’; % Not what we want, so transpose
> Y =Y;
>> [X(:), ¥(:)]
ans =
-1 -1 % (x_min, y_min)
0 -1 % (x min + dx, y_min)
1 -1 % (x min + 2 dx, y_min)
-1 0 % (x_min, y_min + dy)
0 0 % (x_min + dx, y_min + dy)
1 0 % (x_min + 2 dx, y_min + dy)
-1 1 % (x_min, y_min + 2 dy)
0 1 % (x_min + dx, y_min + 2 dy)
1 1 % (x_min + 2 dx, y_min + 2 dy)

260




Here comes a Matlab-program that produces a suitable datafile
for ParaView. In a real application, we may have a Fortran/C/C++-
code that produces the data.

1 % Make surface data for ParaView

2 n = 30;

3 [X, Y] = meshgrid(linspace( 0, 2,
4 linspace(-1, 1,
5 2 = X."2 + sin(3 * Y);

30),
30));

7 % Open output file
8 fid = fopen(’'surf ex.vtk’,

W)

10 % Write a header and a comment

11 fprintf (fid, '# vtk DataFile Version 2.0\n’);
12 fprintf(fid, 'z = x"2 + sin(3 y)\n');

14 % Data type and type of grid
15 fprintf(fid, ’'ASCII\n’);
16 fprintf(fid, ’'DATASET STRUCTURED_POINTS\n’);

the data. First the nodes.
'DIMENSIONS %d %d 1\n’, n,
"ORIGIN 0 -1 0\n');

18 % Here comes
19 fprintf (£id,
20 fprintf (fid,

n); %$z=1

22 % spacing not used for z

23 spacing = X(1, 2) - X(1, 1); % i.e. 2 / (n - 1)
24 fprintf (fid, ’SPACING %e %e %e\n’,

25 spacing, spacing, spacing);

26

27 fprintf (fid, ’POINT DATA %d\n’, n * n);

"SCALARS z float\n’);
' LOOKUP_TABLE default\n’);
"%e\n’, Z’); % Note, transpose

28 fprintf (£id,
29 fprintf (fid,
30 fprintf (£fid,
32 fclose(fid); % close file

261

In ParaView the data will show up as a flat coloured plane (where
the colours correspond to the Z-values). To produce heights from
the Z-values we use two filters, “Clean to Grid” followed by
“Warp(scalar)”. The first filter (quoting the help):

It also converts the data set to an unstructured grid. You
may wish to do this if you want to apply a filter to your
data set that is available for unstructured grids but not
for the initial type of your data set (e.g., applying warp
vector to volumetric data).

and the second

The Warp (scalar) filter translates the points of the in-
put data set along a vector by a distance determined by
the specified scalars. This filter operates on polygonal,
curvilinear, and unstructured grid data sets containing
single-component scalar arrays.

The vector is (0,0,1) in this case. The warp-filter has a “Scale
Factor” so one can exaggerate (scale) the z-direction.

Another filter, which we can apply directly on the data,
is “Contour”.

[Image]

262

If we make a mistake in the VTK-file, we get an error message in
a separate window “Output Message”. As an example, if we give
two, instead of three, numbers in the DIMENSIONS-statement we
get the following error message:

In /home/berk/Work/ReleaseBuilds/ParaView3/
line 131

ERROR:
VTK/IO/vtkStructuredPointsReader.cxx,
vtkStructuredPointsReader (0x8ca9dl8):
Error reading dimensions!

I have fetched a pre-compiled binary, that is the reason for the
absolute path.

It may be instructive to look at the source, to see the origin of
the message. Fetching and unpacking vtk-5.2.0.tar.gz from
http://www.vtk.org/get-software.php we look at the C++-
file VTK/IO/vtkStructuredPointsReader.cxx

% wc —1 vtkStructuredPointsReader.cxx
533 vtkStructuredPointsReader.cxx
if (! "dimensions", 10) )
{
int dim[3];
if (! (this->Read(dim) &&

this->Read (dim+l) &&

this->Read (dim+2)))

strnemp (this->LowerCase (line),

{

vtkErrorMacro (<<"Error reading dimensions!");
this—->CloseVTKFile ();

this—>SetErrorCode ( vtkErrorCode: :FileFormatError );

return 1;

}

vtkErrorMacro is line 131.

263

In the following VTK-file we construct a tiny vector field in 3D.
You should use more points in a real application. You could have
SCALARS-data as well.

# vtk DataFile Version 2.0
Vector field in 3D.

ASCIT

DATASET STRUCTURED_POINTS
DIMENSIONS 3 3 3

ORIGIN 000

SPACING 111

POINT_DATA 27
VECTORS vec float
123

etc.

One could use the “Stream Tracer” and “Tube” filters to
visualize the flow. [Image]

In the previous examples every node (point) has a quantity
(scalar or vector) associated with it. In some applications it is
more natural to associate a value with an area or volume

(a so-called cell). A biologist may count the number of bugs,
plants etc. per km? or number of fish per km3.

Here comes a 2D-example using cell-data with scalar values.

1 # vtk DataFile Version 2.0
2 A 2D cell example

3 ASCII

4 DATASET STRUCTURED_POINTS
5 DIMENSIONS 4 4 1

] ORIGIN 000

7 SPACING 111

9 CELL_DATA 9
10 SCALARS name float
11 LOOKUP_TABLE default
2 1234567829
264




Line 5 defines a 4 X 4 point grid so with 3 x 3 cells, i.e. nine
values on line 9. A plot gives a checkerboard pattern (in color).
[Image]

Here is a 3D-example with 3 X 3 X 3 cells, i.e cubes. The central
cube is number 14, having the value —1 on line 13. The data can
be inspected using the Clip filter, for example. [Image]

1 # vtk DataFile Version 2.0
2 A 2D cell example

3 ASCII

4 DATASET STRUCTURED_ POINTS
5 DIMENSIONS 4 4 4

6 ORIGIN 00O

7 SPACING 111

9 CELL_DATA 27

10 SCALARS name float

11 LOOKUP_TABLE default

12 1 2 3 4 5 6 7 8 9
13 10 11 12 13 -1 15 16 17 18
14 19 20 21 22 23 24 25 26 27

Here is a 2D cell example where we associate a vector with each
cell. Using the “Cell Centers” and “Glyph”-filters, we get arrows
starting in the center of each cell (square). [Image]

1 # vtk DataFile Version 2.0
2 A 2D cell, vector, example
3 ASCII

4 DATASET STRUCTURED_POINTS

5 DIMENSIONS 4 4 1
¢ ORIGIN 000
7 SPACING 111

9 CELL_DATA 9

10 VECTORS vec float
1 100 100 10
12 010 010 01
13 001 001 00

H O O

265

In the next example we create a more complicated geometry
which is not quite so regular. Let us make a simple model of
the surface of a house. We use triangles to construct the surface
(compare the surface mesh in a finite element computation).
‘We use point data from now on.

This primitive drawing shows the numbering of the points.

8 ————— 9 Top of roof
I\ I\

6 ———————— 7
1/ 1/ Roof level
4 ———————— 5

2 —————— 3

/ / Ground level
0 ———————— 1

1 # vtk DataFile Version 2.0
2 A house

3 ASCII

4 DATASET POLYDATA

¢ POINTS 10 float

7 000 200

s 001 201
9 00.51.5 2 0.51.5

11 TRIANGLE_STRIPS 2 20
12 10 0415372604
13 8 4859786414

15 POINT_DATA 10

16 SCALARS name float

17 LOOKUP_TABLE default

18 11 12 13 14 15 16 17 18 19 20

266

On lines 6-9 we list the 10 coordinates for the points that define
the corners of the triangles. The walls are made using one tri-
angle strip (saves space compared to separate triangles), line 12.
The points are numbered in a zig-zag-order, the first point ha-
ving index zero. The roof is defined on line 13. The numbers on
line 11 denote number of strips and number of integers in lines
12, 13. The first number on line 12 (13) denotes the numbers of
points in the strip.

By using “Surface With Edges”, using “Glyph” with “Glyph
Type = Sphere”, “Scalar Mode=scalar”, clicking in “Edit” and
setting “Set Scale factor=0.01” we get the following [Image].

Here comes an example of an unstructured grid composed by
tetrahedrons. We reuse the points from the house example.
I used Matlab to construct the tetrahedrons, here is a code
segment. x, y and z, contain the coordinates from the house.

% Tesselate the volume using tetrahedrons. T is an
% n_tetra x 4 matrix with indices into x, y and z.

T = delaunay3(x, y, z, [])

n_tetra = size(T, 1);

C jet (n_tetra); % some colours

% Explode the view by moving the tetrahedrons
% from the centre

xm = mean (x);
ym = mean(y);
zm = mean(z);
d=20.1; % scale factor

% P is used to extract corners in the four faces
% of a tetrahedron
P=1[123;124; 134; 2 3 4];

267

for k = 1:n_tetra

xmT = mean(x(T(k, :))); % centre of tetrahedron
ymT = mean(y(T(k, :)));
zmT = mean(z(T(k, :)));

vk = d * (xmT - xm); % translation
vy =d * (ymT - ym);
vz = d * (zmT - zm);

for j = 1:4 % plot all four faces

t = T(k, P(3, :));
£ill3(x(t) + vx, y(t) + vy, z(t) + vz, C(k, :))
end

end

Here is the T-matrix

T =

s IS BEES BEES BEES BRES |

10
10
10

N N0k WDNDW
0 Uloyoy Ll 0 d TN
UV UNNNDNRR

Here is a sequence of images each with a different d-value, showing
an “exploded view” [Image].

Boris Nikolaevich Delaunay or Delone, 1890-1980, was one of

the first Russian mountain climbers and a Soviet/Russian
mathematician (according to Wikipedia).

268




What is the difference, with respect to visualization, between
the two houses (the first and the second)?

Filter ‘ First house ‘ Second house

none surface volume
contour lines surfaces
clip surface volume
slice line surface

Here comes the vtk-file:

1 # vtk DataFile Version 2.0
2 A tesseleted house

3 ASCII

4 DATASET UNSTRUCTURED_GRID

5
¢ POINTS 10 float

7 000 200 010 21
s 001 201 011 21
9 00.51.5 20.51.5

H O

11 CELLS 9 45

s
LI I I R
W YW YVwo oo o OO
AN U WNEREDN
SR Ws
s 0o KHHKHOO

22 CELL_TYPES 9
23 10 10 10 10 10 10 10 10 10

25 POINT_DATA 10
26 SCALARS name float
27 LOOKUP_TABLE default

28 11 12 13 14 15 16 17 18 19 20
269

Line 4 has been changed from the first version. Lines 6-9 are
unchanged. I have replaced the 2D triangle strips with 3D
tetrahedrons, lines 11-23. The rest of the file is unchanged.

Line 11 starts the description of the corners of the tetrahedrons,
there are nine tetrahedrons and 45 (9 - 5) numbers are required
to describe them. Line 12, 4 6 2 1 0, says that the coordina-
tes of the four (the first 4) corners are given by 6:th, 2:d, 1:th
and 0:th point (indices start at zero). To get the correct indices
I had to subtract one from the T-matrix produced by delaunay3.

Lines 22-23 describe the type of cells. We have nine tetrahedrons,
which are identified by number ten (see the formats-manual for
the numbers). [Image]

Suppose you want to visualize data produced by w = f(z,y, 2),
and where you are using Matlab to produce the w-values. It is
better to use ndgrid instead of meshgrid as will be explained
below.

>> [X, ¥, 2] = ndgrid(0:0.1:1, 10:2:40, -1:0.1:1);
> W =X."2 + (0.05 * (Y - 10))."2 + Z2.72;

>> w = W(:);

>> save -ascii wdata w % for example

To understand how the values are stored in the file we look at a
much smaller example.

>> [X, ¥, 2] = ndgrid(0.1:0.1:0.3, -1:1, 20:10:40)

X(:,:,1) =
0.1000 0.1000 0.1000
0.2000 0.2000 0.2000
0.3000 0.3000 0.3000
X(:,:,2) =
0.1000 0.1000 0.1000
0.2000 0.2000 0.2000

0.3000 0.3000 0.3000

270

X(:,:,3) =
0.1000 0.1000 0.1000
0.2000 0.2000 0.2000
0.3000 0.3000 0.3000

Y(:,:,1) =
-1 0 1
-1 0 1
-1 0 1
¥(:,:,2) =
-1 0 1
-1 0 1
-1 0 1
Y(:,:,3) =
-1 0 1
-1 0 1
-1 0 1
Z(:,:,1) =

20 20 20

20 20 20

20 20 20
Z(:,:,2) =

30 30 30

30 30 30

30 30 30
Zz(:,:,3) =

40 40 40

40 40 40

40 40 40

So we get 3D-matrices and from the next page we see that when
W is computed, x varies faster than y which changes faster than
z. Had I used meshgrid the order would have been y, x, z, which
is less regular.

271

>> [X(:), ¥(:), Z(:)] % I have added blank lines
ans

0.1000 -1.0000 20.0000 % (x1, yl, zl)
0.2000 -1.0000 20.0000 % (x2, yl, zl)
0.3000 -1.0000 20.0000 % (x3, yl, zl)
0.1000 0 20.0000 % (x1, y2, zl)
0.2000 0 20.0000 % (x2, y2, zl)
0.3000 0 20.0000 % (x3, y2, zl)

0.1000 1.0000 20.0000 % (x1, y3, zl)

0.2000 1.0000 20.0000 % (x2, y3, zl)
0.3000 1.0000 20.0000 % (x3, y3, zl)
0.1000 -1.0000 30.0000 % (x1, yl, z2)

0.2000 -1.0000 30.0000 % etc.
0.3000 -1.0000 30.0000

0.1000 0 30.0000
0.2000 0 30.0000
0.3000 0 30.0000

0.1000 1.0000 30.0000
0.2000 1.0000 30.0000
0.3000 1.0000 30.0000

0.1000 -1.0000 40.0000
0.2000 -1.0000 40.0000
0.3000 -1.0000 40.0000

0.1000 0 40.0000
0.2000 0 40.0000
0.3000 0 40.0000

0.1000 1.0000 40.0000
0.2000 .0000 40.0000

0.3000 1.0000 40.0000
272

[y




A more general format, using XML

XML, “Extensible Markup Language”, is a language which can
be used to transport and store data. It can be used to crea-
te markup languages, such as HTML (a language defining how
text and images should be displayed). Note that HTML was
designed to display data defining the size and position of text
for example. XML does not know about layout.

In this XML-example we define our own tags to structure
some data.

<?xml version="1.0" encoding="iso-8859-1" ?>
<!—— This is a comment. ——>
<!—— The first line is an XML declaration,

version and encoding ——>

defining

<course>
<student>
Thomas Ericsson
</student>
<student>

Karin Andersson
</student>
</course>

XML is case sensitive, <student>Thomas Ericsson</Student>
is illegal.
In the following example we use our own attributes as well:

<?xml version="1.0" encoding="iso-8859-1" ?>
<course>

<student sex="male"> <l== "

"or ' ==>
Thomas Ericsson

</student>

<student sex="female">

Karin Andersson

</student>

</course>

273

This is all we need to know about XML (but one can learn more).
Here comes a simple data file, xml ex.vts (note vts), in XML-
format. The line numbers are not part of the file.

1 <?xml version="1.0" encoding="iso-8859-1" ?>
2 <VTKFile type="StructuredGrid" version="0.1">

4 <StructuredGrid WholeExtent="0 1 0 1 0 2">

5 <Piece Extent="0 1 0 1 0 2">

6

7 <PointData>

8 <DataArray type="Float32" Name="temp"

9 format="ascii">

10 1234567891011 12

11 </DataArray>

12 </PointData>

13

14 <CellData>

15 </CellData>

16

17 <Points>

18 <DataArray type="Float32"

19 NumberOfComponents="3" format="ascii"
20 0.4 0.1 0.0 1.1 0.00.0 0.0 0.3 0.0 0.9 1.0 0.
21 0.3 0.21.0 1.00.01.0 0.0 1.1 0.7 0.9 1.0 1.
22 0.2 0.31.9 1.0 0.0 1.7 0.1 1.0 1.6 1.0 1.0 2.
23 </DataArray>

24 </Points>

25

26 </Piece>

27 </StructuredGrid>

28 </VTKFile>

274

>
0
0
0

The file describes a structured grid. Think of producing a grid
using Matlab’s ndgrid, and then perturbing the points, but not
so much that cells overlap or intersect. [Image)].

See the ParaView-tutorial, page 2-3, for other types of grids.
Lines 17-24 define the vertices in the structured grid.

Line 4 defined min/max in each coordinate direction.
Lines 7-12 describe a temperature defined at the vertices.

275

276




