More about OpenDX, in case you are interested

OpenDX, www.opendx.org, is an open version of IBM’s
“Visualization Data Explorer”. A similar, but not open, system
is AVS (Advanced Visual Systems, www.avs.com). ParaView,
see the assignments, share many of the ideas, as well.

Not quite: “If you have seen one, you have seen them all”.

OpenDX is exclusively for visualization (no computational part
as in Matlab. Very simple calculations are OK.).

Some, but not all, important points:
e Advanced tools for visualization of 3D-data.

e Takes longer to learn than Matlab, but you can do more.
Often faster.

® Modules are connected using a GUI, graphical programming.
Visual Program Editor, VPE.

e Input from files (not variables as in Matlab).

@ The modules transform the input and sends it to the next
module.

e Supports several input formats. Using the “Data Prompter”-
program simple inputs can be handled (e.g. uniform, gridded
input).

e Lots of documentation. Many demo programs. Few simple
examples. Should read a book (or take this course :-)
David Thompson, Jeff Braun, Ray Ford,
OpenDX: Paths to Visualization. Consists of a sequence of
solved visualization problems.
http://www.vizsolutions.com.

Here comes a brief presentation of OpenDX. For more
details see the “QuickStart Guide” (see the course page).

277

Starting OpenDX (I assume you have the correct path; see the
assignment).

% dx

o Data Explorer B

Import Data...

Run Visual Programs...

Edit Visual Programs...

New Visual Program...

Run Tutorial...

Samples...

“Import Data” starts “Data Prompter”.

“Run Visual Programs” runs an existing program.

“Edit Visual Programs” starts the VPE with an

existing program.

“New Visual Program” starts VPE with an empty work area.
“Run Tutorial” does exactly that.

“Samples” runs demo programs.

278

A simple first example. Level curves in 2D
Suppose we would like to copy the following Matlab code:
>> [X, Y] = meshgrid(-10:10, -10:10);
>> contour(X, Y, X."2 + 2 * Y."2)
Choose “New Visual Program”.
The first version consists of three modules:

e Import, reads the datafile. The module passes the input on to
the next module. The import-module has a input parameter
that defines the filename.

e Isosurface takes the input and creates the level curves. There
are input parameters to set the number of curves or the
levels.

e Image creates a window and draws the image.

¥ | Visual Program Editor: fusers/math/homepages/thomas/VISM/ |= |3 *

%z';,:, File Edit Execute Windows Connection Options Help

Untitied

gging
Fow Control
[l Import and Export
— Export
- ExportVRML
- Import
— ImportSpreadsheet
 Include
- Partition
I Reardimage
—Reduce
—Refine
— Slah
— Slice
— SocketConnection il
I Stack

Interface Control

[T hdrrwne ki

279

‘We click on Import in the list in the left part of the window and
then we click on the canvas (drawing area) to place the icon of
the Import module. We can connect tabs on one icon with tabs
on another module using the left button mouse (press and drag).

When the Import-icon is placed on the drawing area all the
three input tabs are standing up and the leftmost has a different
colour; showing that it is a required input (the file name). The
other parameters do not have to be specified, they are optional
or have default values.

In my program I have defined the file name and the tab is
down, indicating that the corresponding input has been defined.
If we connected to the wrong tab we can remove the connection
by pressing the tab on the receiving end and moving (button
still down) the mouse to the canvas releasing the button. If one
double-clicks the icon one can inspect and set the values.

v Import
Hotation: - [fmport
Inputs:
Name Hide Type Source Value
W nae i string Fuatafi.general” El
I variable 1 string, string fist {(format dependent) =
1 format 1 string i(fite extension or content) =
outputs:
Name Type Destination cachie
data object Isosurface All Results
OK | Apply | Expand Collapse | Description... Help on Syntax | Restore | cancel |

To execute the program we choose one of the alternatives from
VPE’s execute-menu. There are “Execute Once”, “Execute on
Change” (if we change the levels in Isosurface, for example).
There is also “End Execution”.

280

Execute Once Cir+E
Execute on Change Cirl+;
End Exzecution Ctri+End

‘We save the program giving a suffix .net. A .cfg-file is crea-
ted as well. Executing once will produce an image window with
one level curve. In a real application we would have to fix the
input-data before executing, so let us look at how to produce
the input file.

In this first example the x- and y-values make up a regular grid
and it is not necessary to supply OpenDX with all the coordina-
tes (positions, using OpenDX terminology). It is enough to give
starting values, step sizes and the number of values (grid size).
So only the z-values (data, using OpenDX terminology) have to
be stored. Suppose we do it like this in Matlab:

>> [X, Y] = meshgrid(-10:10, -10:10);

> Z =X."2 + 2 *Y."2;

>> z = 2(:);

>> save -—ascii contour_example.data z

So the file consists of one long array consisting of the columns
in Z in a sequence.

To see how the values in the file correspond to the coordinates,
we look at a much smaller example:

281

>> [X, Y] = meshgrid(-1:1, -1:1)

X = -1 0 1
-1 0 1

-1 0 1

Y= -1 -1 -1
0 0 0

1 1 1

>> [X(:), ¥(:)]

ans =
-1 -1 % (x_min, y_min)
-1 0 % (x min, y _min + dy)
-1 1 % (x min, y_min + 2 dy)
0 -1 % (x_min + dx, y_min)
0 0 % (x min + dx, y_min + dy)
0 1 % (x_min + dx, y_min + 2 dy)
1 -1 % (x_min + 2 dx, y_min)
1 0 % (x_min + 2 dx, y_min + dy)
1 1 % (x_min + 2 dx, y_min + 2 dy)

We now press the “Import data”-button to start the “Data
Prompter”. Using this program we can describe the layout of
the data and store this information on a header-file having the
suffix .general.

After having clicked in “Grid or Scattered file (General Array
Format)”, the window looks like:

282

Data Prompter - [m[%
Fle Options Help
Data file name

Select the format of your data; —|
Data Explorer file

CDF format
HetCDF format file
HDF format.

Image file

¥ CICEC G

Grid or Scatlered file {General Array Format)

~ B E W

- 1 e

Humber of vanables
~| Positions in data file
[T Single time step

Data organization: 4 Block.

~ Columnar

Browse Data.., | Tesl import... |

Vislalize Data... | Describe Data... |

~ Spreadsheet format file

Hints __|

Grid type is regular (the leftmost grid-icon).

Press the “Describe Data...”-button.

Another, big, window appears. I have not included a picture of
the window.

283

In the left part of the new window I give the name of the data-
file contour example.data. The file has no header (comments
in the beginning) so I can skip the next line.

I enter the grid size, 21 x 21. The data format is ASCII (not
binary). The data order is “Row”, because when we stored the z-
values the row-index (y-direction) changed faster than the column-
index.

It is often necessary to hit return after having typed a value
(true in the modules as well).

In the bottom part of the window we set the origin for x and
y and the increments (delta in the window). So -10, 1 for both
grid positions.

So, by now we have said that the z-values (f(x,y)) are stored in
the following order:

£(-10, -10)
£(-10, -9)
£(-10, 10)
£(-9, -10)

If we, by mistake, say that we store data by “Column”, OpenDX
will interpret our data as:

f(-10, -10)

£(-9, -10)

f (10, -10)

£(-10, -9)

In the righthand part of the window, we could adjust the data
type (float) and structure of data (scalar, vector etc.). In this
example no adjustment is necessary.

284

Finally we save the file as contour example .general. It looks
like this:

file = contour_example.data

grid = 21 x 21

format = ascii

interleaving = record

majority = row

field = fieldO

structure = scalar

type = float

dependency = positions

positions = regular, regular, -10, 1, -10, 1

end

‘We recognize some, but not all, keywords.

Once we have stored the file we can do a test visualization of
our data (without having written any program) just by pressing
“Visualize Data” in the first data prompter window. This will
give as an image with coloured level curves. Pressing “Browse
Data” a window, with the contents of the data file, is opened.
After having set the filename in the Import-module (name is set
to contour_example.general). It is time to run our program.

It produces a yellow level curve on a black window. Using the
Options-menu (for the Image window) one can switch on zoom,
rotation (for 3D) etc. The default level is the arithmetic mean
of the data values. By double-clicking on the Isosurface module
and changing the number-parameter, we get more curves.

285

How can one find out what the tabs stand for? How do I know
that I can change the number or levels?

One way is to take the program and choose “Context-Sensitive
Help” from the Help-menu. If one places the questionmark-
cursor on the Isosurface icon a help window appears. Another
way is to read User’s Reference (in PDF). See “Chapter 2. Fun-
ctional Modules”. Here is an edited version of the text.

Category: Realization
Function: Computes isosurfaces and contours.
Syntax (one can use a script language as well)

surface = Isosurface(data, value, number,
gradient, flag, direction)

Inputs

Name Type Default Description

field from which one

data scalar field | none or more surfaces are
to be derived.

isosurface value or
values

scalar or
value . data mean
scalar list

number of isosurfaces
no default |or contours to be
computed

number integer

gradient |vector field | no default | gradient field
0: normals not

flag flag 1 computed,
1: normals computed
direction |integer -1 orientation of normals

286

The first three correspond to the tabs. The last three can be seen
if one clicks “Expand” after having double-clicked on Isosurface.
One can add tabs to all the inputs (see the Edit-menu in VPE).

Outputs

Name |Type
surface | field or group | isosurface ‘

Description |

Functional Details
This module computes any of the following:

e points (for an input field consisting of lines)
e lines (for a surface input field)
o surfaces (for a volumetric input field).
All positions in the output field are isovalues (i.e., they match a

specified value or values).

The module also adds a default color to the output (gray-blue
for isosurfaces and yellow for contour lines and points) if the
input object is uncolored. If the object is colored, its colors are
interpolated in the output object.

A “data” component with the same value as the input value
is added to the output field.

data is the data object for which an isosurface or contour is
to be created.

value is the isovalue or isovalues to be used for computing the
isosurface(s) or contour(s).

If this parameter is not specified, the module bases it calcula-
tions on the value specified by number (see below). If neither
parameter is specified, the module uses the arithmetic mean of
the data input as a default.

287

number is ignored if value has been specified. If that parameter
is not specified, the module uses the value of number to compute
a set of isosurfaces or contours with the following isovalues:
min + delta, min + (2*delta),..., min - delta

where delta = (max - min) /(number + 1), and “max” and “min”
are the maximum and minimum data values of the input field.

gradient is the gradient field used to compute normals for sha-
ding (see Gradient).

If this parameter is not specified, the module adds normals by
computing the gradient internally (£flag can nullify this behavi-
or; see below).

Note: If only one isosurface is to be computed, it is probably
more efficient to have module compute the gradient internally.
If many are to be generated, it is probably more efficient to com-
pute the gradient of the entire field once, so that the system can
use it for every isosurface.

flag specifies whether normals are to be computed for shading.
A setting of 0 (zero) prevents the computation of normals. The

default is 1 (one)

direction specifies whether the normals should point against
(0, the default) or with (1) the gradient.

288

Notes:

1. This module adds an attribute called “Isosurface value,” which
has as its value the isovalue(s) used. To extract this attribute
(e.g., for use in a caption for an image), use the Attribute
module.

2. For contour lines, this module adds a “fuzz” attribute so
that the line will be rendered slightly in front of a coincident
surface (see Display).

3. A surface or contour is considered to be undefined if every
point in the input volume or surface, respectively, is equal to
value. In such cases, the module output is an empty field.

4. Isosurface does not accept connection-dependent data.

5. With disjoint data fields, there may be no data crossings (i.e.,
points along a connection element where the interpolated
data value equals the isovalue), even though the isovalue itself
falls in the range of the actual data.

Components

Creates new “positions” and “connections” components. For
surfaces output, the default is to create a “normals” compo-
nent. Any component dependent on “positions” is interpolated
and placed in the output object.

Example Visual Programs

Many example visual programs use the Isosurface module, in-
cluding:

AlternateVisualizations.net ContoursAndCaption.net InvalidDa-
ta.net MappedIso.net Sealevel.net UsingIsosurface.net SIMPLE /Isosu

See Also
Band, Color, Gradient, Map, SimplifySurface

289

We can try to understand this manual page if we add Print-
modules to our program.

The printout comes in a separate Message Window. By setting
the options-parameter in Print to d (in this case) everything will
be printed for our small example (3 X 3-matrices).

First some definitions: Data is stored in a hierarchy of objects.
The top level is the group object which can contain other groups
and so-called fields. A field object is the basic object in Open-
DX. A field stores component objects. A component is typically
an array object with an associated name. An array object is an
array having elements of a given datatype. We refer to the
elements using an index.

An attribute gives a connection between an object and
a value. Attributes are used to store metadata (data
about the data).

In our simple example data will consist of some arrays stored
in a field. The first Print produces (after some editing).

% are my comments.

290

Begin Execution
Field. 5 components.

Component number 0, name ’‘data’:

Generic Array. 9 items, float, real, scalar
data values: % The z-—values
3 1 3 2 0
2 3 1 3
Attribute. Name ’‘dep’: % data depends
String. "positions" % on the positions (x, y)

Component number 1, name ’'positions’: % (x, y)-values
Product Array. 2 terms.

Product term 0: Regular Array.

3 items, float, real, 2-vector
start value [-1, 0], delta [1, 0], for 3 repetitions
Product term 1: Regular Array.
3 items, float, real, 2-vector
start value [0, -1], delta [0, 1], for 3 repetitions
Attribute. Name ’‘dep’:
String. "positions"

% connections is new to us. It describes how data
% is connected. Used for interpolation.

Component number 2,
Mesh Array. 2 terms.

Mesh offset: 0, 0

Mesh term O: Path Array.

Mesh term 1: Path Array.

name ’connections’:

connects 3 items
connects 3 items

Attribute. Name ’‘element type’: % what kind of
String. "quads" % interpolation that has been used
Attribute. Name ’‘dep’:
String. "connections"
Attribute. Name 'ref’: % refers to
String. '"positions"

291

% Min and max

Component number 3, name ’'box’:

Generic Array. 4 items, float, real, 2-vector
data values:

-1 -1

-1 1

1 -1

1 1
Attribute. Name ’‘der’: % derived from

String. '"positions" % positions

Component number 4, name ’'data statistics’:

Generic Array. 8 items, double, real, scalar

data values:
0 3 2
0 18 46
9 1

Attribute. Name ’‘der’:

String. "data"
Attribute. Name 'name’:
String. "fieldO"

The second Print produces quite different output:

Begin Execution
Field. 5 components.

% Coordinates along the level curves
Component number 0, name ’'positions’:

Generic Array. 6 items, float, real, 2-vector
data values:
-1 -0.5
0 -1
-1 0.5
0 1

1 -0.5

Attribute. Name ’‘dep’:
String. "positions"

Component number 1, name ’'colors’:

Constant Array. 6 items, float, real, 3-vector
constant value [0.7, 0.7, 0] % Yellow
Attribute. Name ’‘dep’:

String. "positions"

Component number 2, name ’'data’:

Constant Array. 6 items, float, real, scalar
constant value 2 % mean of z-values
Attribute. Name ’‘dep’:

String. "positions"

Component number 3, name ’'connections’:
Generic Array. 4 items, integer, real, 2-vector
data values:

0 1
2 3
1 4
3 5
Attribute. Name ’'ref’:
String. "positions"
Attribute. Name ’'element type’:
String. "lines"
Attribute. Name ’'dep’:
String. "connections"

Component number 4, name ’'box’:
Generic Array. 4 items, float, real, 2-vector
data values:

-1 -1

-1 1
293

Attribute. Name ’‘der’:
String. "positions"
Attribute. Name ’'fuzz':
Generic Array. 1 item, float, real, scalar
data values:
6
Attribute. Name ’'shade’:
Generic Array. 1 item, integer, real, scalar
data values:
0
Attribute. Name ’'name’:
String. "fieldO"
Attribute. Name ’'Isosurface value’:
Generic Array. 1 item, float, real, scalar
data values:
2
Attribute. Name ’'series position’:
Generic Array. 1 item, float, real, scalar
data values:
2

So positions has changed from the grid points to the points on
the level curves. Data has changed from z-values to one z-level
value. Colour information has been added.

If we require three level curves we get a group containing three
fields, one curve in each.

Let us write some more programs.

294

To change the colour of the curves we add an AutoColor-module.
This can be done in two ways. The following program produces
two windows (two Image-modules) both having coloured level
curves (of varying colour). Note that Import can feed several
modules.

In the left part of the program the Isosurface data is fed to
AutoColor which (like Matlab) maps the different values onto
the colormap. In the right part the original data is coloured and
a subset of data is extracted by the Isosurface module.

So if we have levels that are close to each other the two images
will have rather different colours. The left will contain the full
spectrum (with a suitable colormap) while the right may have
lines of almost the same colour.

295

Sometimes modules commute, but that is not always the case.
It is somewhat inconvenient to change the parameters in the
Isosurface module. A novice to OpenDX may use your program
so you should include an easier way to change the parameters.

We add a so-called interactor. The interactor is manipulated
in a separate window, a control panel. We place an Integer
interactor in the programs. The module is connected to the
number-parameter of the Isosurface.

Here is the program, together with the control panel window:

v | Contral Pane =[] x
Hle Edit ool
Panels Options Help

Isosurface number:

Several types of interactors exist, and they can be put in the
same window. It is also possible to make this window look less
crude by gluing buttons together, adding text, separators etc.

If we set the number of curves to zero (or less) we get an error
message. To avoid this we can use the “Set Attributes...” alter-
native from the menu in the panel window. We set min to be
1 and max to be 20 (do not forget to hit return). One can also
change the increment (how much a click on one of the arrows
should change the value).

By selecting “Execute on Change”, the image will be updated
for each click.

296

Let us now draw a surface z = f(z,y). In Matlab we would use
mesh.

There are several ways to do this. One easy way is to use the
RubberSheet-module. It uses the data part as z-values and the
positions as x- and y-coordinates.

The second input to the module is a magnification factor (to
in- or decrease the z-values). Negative values are allowed. I have
added a Scalar (i.e. floating point) interactor to this tab.

‘We would like some light, so I have added a Light-module and
a Vector-interactor to control the direction to the light source.

‘We are feeding two different inputs to Image. Since Image only
has one input tab we collect the inputs using a Collect-module.
The Collect-module comes with two inputs, but one can add tabs
using Edit and then “Input/Output Tabs”.

To get one panel window, we move the Vector interactor by
marking it with the middle mouse button, moving it to the other
panel window and releasing the button. Remove the interactor
from the first panel window (Edit/Delete).

To get axes we choose “AutoAxes...” from the Options-menu
in the image window. Click in “AutoAxes enabled” and add
whatever attributes you would like to have.

To move the surface use “Options/View Control...” or
“Options/Mode”. Try the different mouse-buttons.
“Options/Reset” (or CTRL+F) resets the image to its original
position.

Here comes the program where also AmbientLight

has been added.

297

RubberSheet

‘We can get an amusing picture by drawing glyphs in each point
on the surface. (Glyph from from Greek Glyphe, carved work,
from

glyphein to carve.

1: an ornamental vertical groove especially in a Doric frieze

2: a symbolic figure or a character (as in the Mayan system of
writing) usually incised or carved in relief

3: a symbol (as a curved arrow on a road sign) that conveys
information nonverbally).

Glyphs in computer graphics are usually small symbols, such
as circles, squares in 2D, and spheres, cubes in 3D. It is easily
to draw such a surface, where the glyphs vary in colour and size
depending on the value of z.

‘We can add glyphs by using the AutoGlyph-module. This
module has several parameters (type, size, quality of the glyph
etc.).

The image should be seen in colour on the monitor.

298

299

Let us now try to visualize data produced by w = f(z,y, 2). We
start with som simple data produced in Matlab. The reason I
am using ndgrid and not meshgrid will be explained below.

>> [X, ¥, 2] = ndgrid(0:0.1:1, 10:2:40, -1:0.1:1);
> W =X."2 + (0.05 * (Y - 10))."2 + 2.72;

> w = W(:);

>> save —ascii wdata w

To understand how the values are stored in the file we look at a
much smaller example.

>> [X, ¥, 2] = ndgrid(0.1:0.1:0.3, -1:1, 20:10:40)

X(:,:,1) =
0.1000 0.1000 0.1000
0.2000 0.2000 0.2000
0.3000 0.3000 0.3000
X(:,:,2) =
0.1000 0.1000 0.1000
0.2000 0.2000 0.2000
0.3000 0.3000 0.3000
X(:,:,3) =
0.1000 0.1000 0.1000
0.2000 0.2000 0.2000
0.3000 0.3000 0.3000

Y(:,:,1) =
-1 0 1
-1 0 1
-1 0 1
Y(:,:,2) =
-1 0 1
-1 0 1
-1 0 1
Y(:,:,3) =
-1 0 1
-1 0 1

300

Z(:,:,1)
20 20 20
20 20 20
20 20 20
Z(:,:,2)
30 30 30
30 30 30
30 30 30
Z(:,:,3)
40 40 40
40 40 40
40 40 40

>> [X(:), ¥Y(:), Z2(:)] % I have added blank lines

0.1000 -1.0000 20.0000 % (x1, yl, zl)
0.2000 -1.0000 20.0000 % (x2, yl, zl)
0.3000 -1.0000 20.0000 % (x3, yl, zl)
0.1000 0 20.0000 % (x1, y2, zl)
0.2000 0 20.0000 % (x2, y2, zl)
0.3000 0 20.0000 % (x3, y2, zl)

0.1000 1.0000 20.0000 % (x1, y3, zl)
0.2000 1.0000 20.0000 % (x2, y3, zl)
0.3000 1.0000 20.0000 % (x3, y3, zl)

0.1000 -1.0000 30.0000 % (x1, yl, z2)
0.2000 -1.0000 30.0000 % etc.
0.3000 -1.0000 30.0000

0.1000 0 30.0000
0.2000 0 30.0000
0.3000 0 30.0000

0.1000 1.0000 30.0000
301

0.2000 1.0000 30.0000
0.3000 1.0000 30.0000

0.1000 -1.0000 40.0000
0.2000 -1.0000 40.0000
0.3000 -1.0000 40.0000

0.1000 0 40.0000
0.2000 0 40.0000
0.3000 0 40.0000

0.1000 1.0000 40.0000
0.2000 1.0000 40.0000
0.3000 1.0000 40.0000

So we get 3D-matrices and we see that when W is computed,
x varies faster than y which changes faster than z. Had I used
meshgrid the order would have been y, x, z, which is less regular.

We use the Data Prompter as before, to create a header file,
wdata.general. The grid is 11 X 16 X 21. The data order is
column, which means that the last grid position, the column i.e.
the x-values, in the 2D-case changes fastest. Row means that
the first grid position, the row i.e. the y-values in the 2D-case,
changes fastest. So row and column have to be generalized to
the 3D-case. This might be confusing, but think of the 2D-case.
Suppose that we have 9 w-values presented in two ways (the
numbers give the order in the input file):

78 9 369
4 56 258
123 147
column row

In the left case the column (x) changes faster and in the right
case, the row (y) changes faster. We see that meshgrid does not
fit any of these in the 3D-case.

302

Origins and deltas are, (0,0.1), (10,2) and (-1,0.1) respectively.
As before we can make a test visualization of data, but it is
not easy to interpret. One reason is that the y-values have a
different scale, so a coordinate system with equal scaling will be

very drawn out. So, let us write a program.
| B | -

Image

W]
Scale scales the positions with a scaling matrix. I give the
diagonal by using a Vector-module. This way I can scale the y-
component to a reasonable size. In each (x,y,z)-point there will
be a coloured sphere whos size and colour reflects the
corresponding w-value.

Isosurfaces work well with this data (we get parts of ellipsoids).
..

e ia
o

Image:

B]
303

It is possible to remove part of the data (everything on one side
of a plane). We use the module ClipPlane. It takes the data, a
point in the plane and a normal defining the clip plane. I have
used Vector interactors to set these parameters. Everything on
the side of the plane (in the direction of the normal) is removed.
As I have made my program, the point is given in the scaled
coordinates.

T
T, .
iRl

Isosurface

ClipPlane,

]

Here is a related construct. The MapToPlane-module creates an
arbitrary cutting plane through 3D-space and interpolates data
values onto it. The plane is defined by a point a normal, just
as the ClipPlane. Using the Vector interactors we can move to
plane.

I have combined MapToPlane with Isosurface. I have also
added Colorbar which draws a scale (as in Matlab). Finally there
is Caption which corresponds to Matlab’s title. In the image-
window (under Options) I set the background colour to white
(suitable when including the image in this handout). This made
it necessary to include a Color-module to change the colour of
the title from white to black.

304

I had the same problem in ColorBar, but I fixed it in a different
way. I double-clicked on ColorBar, and then I had to click on
Expand, to see all parameters. I set colors to black and
annotation to labels (this caused the labels to be black). In a
similar way I changed the positions in Caption and ColorBar.
Here is the program

| W

| Import
| [

o
| Scale
i

o
vector | |vector| ||
| i

|7 o
| AutoColor -
Hir oW

ColorBar
f=

Integer MapToPlane Caption
[s | o

T)
|
|Isosurface
U

[o e e
‘ Collect
it

.I_'_
‘ Image
o §]

and here is a (bad) version of the resulting image.

MapToF lane and |sosurface

Vector fields

Suppose we have a grid in 2D (or a 3D) and we have a vector in
every grid point. OpenDX can be used to visualize such data in
several ways.

Let us start with a 2D-example. We make a datafile containing
2D-vectors. Each grid point has one vector.

n = 14;
[X, Y] = ndgrid(linspace (0, n, n+l));
Vo= [-Y(:), X(:)];

save —ascii Vdata V

‘We can import the data almost as usual. The Vector interleaving
should be zoyo, Z1Y1s -« - s LnYn and NOt T1T2y . . o 3 Tyy Yos Y19+ = « s Yn-

‘We have to change the Structure from scalar to 2-vector after
which we have to press the Modify button.

The following simple program imports the data. Using the FileSelector
module we can browse our files and pick the one we want.
AutoGlyph changes the glyph to arrows, to fit the new datatype.

Selector

s
‘ Impoit
=

e | & & & ¢
‘ AutoGlyph
T

=

T
AutoColor

Image
Wk

307

The image contains arrows which are tangents to circles centered
at the origin. The lengths of the arrows increase with the radius
and the colour increases from blue to red. Length and colour
depend on the norm of a vector.

Here is a simple 3D-example. What does the vector field look
like?

n = 9;

[X, ¥, 2] = ndgrid(linspace(0, n, n+l));
x = X(:); y = Y(:); z = Z(:);
V=1[-y .*z, x .*z, 0%*z];

save —ascii Vdata3D V

It is easy to import the data; the Structure is 3-vector. We can
actually use the same program to visualize the 3D-field.
AutoGlyph is a smart module which adapts to the input.

Let us draw some streamlines.

|
;FileSeIector
=

\ViJ_L
Import
| s

i B B B ol o
Streamline
i

g L
AutoGlyph

T =1
Tube
=

jif L
AutoColor
o —]

=
|AutoColor
i

==
|C0IIE:I
L[

——
Image
LB

308

This program draws arrows and streamlines. To see the stream-
lines better I have used the Tube-module which makes a tube
of the streamlines (but Tube is not necessary). It is possible to
use the Ribbon-module instead of Tube. The ribbons can twist,
showing the curl of the field. One specifies the starting point of
the streamline(s) by supplying a vector list.

In the following program we use the mouse and the Pick-module
to specify the starting position for a tube. The program also
illustrated one way to use an “if-statement”.

=E

AutoColor

The program draws a set of isosurfaces; the first Compute-module
computes the norm of the vectors (Isosurface requires scalars,
not vectors). One could use the expression

sqrt (a.x*a.x+a.y*a.y+a.z*a.z), but mag(a) is a shorter
alternative. There is also a function, norm, but it normalizes a
vector.

309

If I click somewhere on one isosurface I get the coordinates, in
3D, for the click. If I miss the surface I do not get any coor-
dinates. This would break the program, which is the reason an
if-construct has to be used.

In the Pick_1-module I have set the first-parameter to 1,
indicating that I only want the first pick (click) (one can get
a vector of coordinates sometimes). I have set the persistent-
parameter to 0; I do not want to save the clicks.

In the Inquire-module I have set the inquiry-parameter to “is
not empty”, which sends 1 to Route if we got coordinates. If we
missed the surface Inquire sends a zero.

If the Route-module gets 0 none of the modules, that use the
output from Route, are executed. If Route gets 1 it will pass on
the input to the first tab (if the leftmost one is number zero).

So it will send the coordinates to the Extract-module which
extracts the positions-part of the input. This is sent to the start-
parameter of Streamline. I have changed the diameter of the Tu-
be (that is the reason the second tab is down).

The Statistics-module is used to get a consistent colouring of
surfaces and tubes. I used the min- and max-outputs from
Statistics. The Compute-modules decrease min and increase max
slightly to avoid some problems with the colour of the tubes. The
new min/max-values are then fed to AutoColor.

In order for Pick to work I have to set the Mode to Pick (Options
in the Image window).

310

Data formats

OpenDX supports several data formats:

1. The format supported by the General Array Importer. It
usually consists of two files, one with suffix general. The
general-files contains keywords and data defining the layout.

2. Data Explorer native file format. Suffix dx.

3. netCDF, Network Common Data Form.
http://my.unidata.ucar.edu/content/software/
netcdf/index.html

4. CDF, Common Data Format.
http://cdf.gsfc.nasa.gov/

5. HDF, Hierarchical Data Format.
http://hdf.ncsa.uiuc.edu/

‘We have used the first format so far. The second is more
general. The last three, which is not part of OpenDX, consist of
standardized, self-describing formats and library routines. These
formats are used for data in general, and not only for computer
graphics.

Let us now visualize data where the positions do not form a
regular grid. The data format in OpenDX supports several
types of grids. Not all forms are supported by the General Array
Importer.

o Regular grid. What we have seen so far. In 2D, the coordi-
nates are given by (zj,yx), £j; = o + jbg,J = 0,...,m — 1
and yr = yo+kdy,k = 0,...,n—1. So the grid is determined
by Zos Yoy 617 6117 m,n.

o Deformed grids. The grid points are connected in a regu-
lar fashion (the relation between neighbours remain). Think
of taking a regular grid and perturbing the x- and y-values
somewhat. Another example is using polar coordinates, so
(7; cos i, T sin pr,)

311

e Irregular grid. Arbitrary (x;,yx)-values but with defined
connections between the points.
Think of a planar graph (in 2D).

OpenDX also makes a distinction between how a data-value is
related to the coordinates. So far we have seen so-called position-
dependent data, to each (z;, yx) ((xi,y;, 2x) in 3D) corresponds
one datavalue.

In some situations it may be more natural to associate a

value with an area (volume in 3D). A biologist may be interested
in the distribution of a special plant in a forest. The number of
occurrences per km? may be a good measure.

Using a regular grid we define a value for each rectangle,

(@55 Yr)s (Tj1s Yr)s (Tj1s Yrt1) s (Tjs Yrot1) -

This is called connection-dependent data. We may think of the
data as defined for a point in the centre of each rectangle and /or
having a constant value for every point in the rectangle.

Here comes sequence of examples. In the first we will produce
polar coordinates using stuff we already know.

Let us produce some data in Matlab, as usual.

>> [R, PHI] = ndgrid(linspace(l, 2, 11),
linspace (0, 1, 21));

> X =R .* cos(PHI);

> ¥ =R .* sin(PHI);

> 2 =Y .* (2 * X -3 *Y),;
> z = 2(:);

>> save -ascii polar z

I have specified the positions as (zo, ;) = (1,0.1)
and (yo,dy) = (0,0.05) and using a 10 x 20-grid.
This corresponds to R and PHI in the Matlab program.

312

The following program uses the Compute-module to compute
the corresponding x and y. The Compute-module usually works
on the data-part, so in order to form & = rcosy and y = rsin¢
I have to make the positions appear as data.

I have set the name-parameter in the module to positions. The
Mark-module then moves the data component to the

“saved data” component and copies the positions component to
the data component.

Compute then performs [a.x*cos(a.y), a.x*sin(a.y)]
after which Unmark moves the data back to positions (I have
set the name parameter to positions). It also moves the saved
data to data. dx names the input(s) a (and b).

313

ShowPositions plots the computed positions as dots in an x-y-
diagram as a control).

Suppose now that the positions cannot be generated by (zo, dz)
and (yo, d,) but that they are regular as in the following example:

x =[12515], y = [0 3 10 20]

All (x, y)-pairs

(1, 0), (1, 3), (1, 10), (1, 20)
(2,0, (2, 3), (2, 10), (2, 20)
(5, 0, (5, 3, (5, 10), (5, 20)
(15, 0), (15, 3), (15, 10), (15, 20)

Using the dataprompter we click on the second Grid type-button.
Note that the Data Prompter window, and the window that is
opened, have different designs depending on which Grid type-
button we choose.

Grid positions, choose Partially regular. Choose irregular for the
positions list and type the values. We can write the values in the
space to the right of the buttons. An alternative is to create a
general-file like this:

file = testdata

grid = 4 x 4

format = ascii
interleaving = record
majority = column
field = field0
structure = scalar
type = float
dependency = positions
positions = irregular, irregular, 1, 2, 5, 15, 0, 3,
10, 20

end

314

Now to a warped regular grid: each position must be explicitly
specified, but there is still a grid structure to the connections
between data points. First some Matlab to make a data file.

>> x
x =
1 2 5 15
>> y
y =
0 3 10 20

>> [X, Y] = ndgrid(x, y);

>> V=[X(:)+0.1*rand(16,1), ¥Y(:)+0.l*rand(16,1), (1:16)']

vV =
1.0050e+00 2.6768e-03 1.0000e+00
2.0813e+00 1.1882e-02 2.0000e+00
5.0464e+00 4.8813e-02 3.0000e+00
1.5012e+01 1.8067e-02 4.0000e+00
1.0354e+00 3.0942e+00 5.0000e+00
2.0178e+00 3.0320e+00 6.0000e+00
5.0062e+00 3.0741le+00 7.0000e+00
1.5067e+01 3.0388e+00 8.0000e+00
1.0368e+00 1.0080e+01 9.0000e+00
2.0103e+00 1.0030e+01 1.0000e+01
5.0615e+00 1.0046e+01 1.1000e+01
1.5019e+01 1.0045e+01 1.2000e+01
1.0192e+00 2.0036e+01 1.3000e+01
2.0012e+00 2.0058e+01 1.4000e+01
5.0289%e+00 2.0048e+01 1.5000e+01
1.5032e+01 2.0073e+01 1.6000e+01

>> save -ascii warptest V

I added the random numbers just to make this example different
from the previous. Note that the rows can be sorted in any way,
in this case.

315

Using the dataprompter we click on the third Grid type-button.
Number of variables is one and Dimension (for positions in data
file) is two (x and y).

Switch to the Describe Data-window. The Grid size is 4 X 4,
the data order is not relevant in this case. To get more alter-
natives, choose “Full prompter” from the Options-menu. Field
interleaving should be Columnar (we have a table with x, y, data.
Block would mean, first all the coordinates and then the data,
or vice-versa). In the right-hand part of the window we say that
locations (the coordinates is a 2-vector of floats).

fieldO, the data, is a scalar float.

This is how the general-file looks.

file = warptest

grid = 4 x 4

format = ascii

interleaving = field

majority = column

field = locations, fieldO
structure = 2-vector, scalar

type = float, float

dependency = positions, positions

end

And finally Scattered data: there are no connections between
data points. We continue with 16 points, where x and y are
arbitrary. Click on the right-most Grid type and click in
“Positions in data file”. Two dimensions. Switch to the Describe
Data-window and set # of Points to 16. Field interleaving should
be Columnar.

316

This is how the general-file looks.

file = scattertest

points = 16

format = ascii

interleaving = field

field = locations, field0
structure = 2-vector, scalar
type = float, float

end

If we are trying to use the Isosurface-module we get the following
error message:

ERROR: Isosurface: Invalid data: ’data’ parameter is missing
”connections” component.

To compute the level curves, the module must know how the
points are related. We can fix that by first feeding the input
through the AutoGrid-module which generates point on a
regular grid.

Thinking about the biologist we may create connection-dependent
data as well. Set Dependency to connections. Notice also, that
if we have 16, say, data values it may correspond to a 5 X 5-grid
(framing 16 rectangles).

To understand the details of the general-files, see:

The “Quickstart Guide”, “5.3 Header File Syntax: Keyword
Statements”.

Chapter 5.4 deals with the Data Prompter.

317

Animation in OpenDX

Here comes a very simple animation in 2D. The example is
somewhat special in that we only have positions but no
corresponding data.

We are going to study the roots, r1,...,7,, of the polynomial
equation:

cpz? + c,,_lz"_l +:-cdcx+cpg=0
The coefficients are complex numbers.
‘We perturb ¢y by a multiple of 4, so c((,k) = c¢p+kd,k=0,...,n—1
and get the roots r§k),. .. ,rj(,k),k = 0,...,n — 1. We would like
to animate this sequence, i.e. we would like to plot 'r‘§k), eee ,1"(,’“)
stepping in k (think of k as a time). This is what a static image
may look like:

Rotvandring

imag(r)

—o6l

—08 L L L L L L L
=25 -2 -15 -1 -05 0 05 1 15

real(r)

318

Here is a program:

The Sequencer-module works like a loop generating a sequence of
integers (think k). The integer is passed on to the Select-module
which extracts the plot-data for the k:th step. This plot-data is
then fed through the rest of the program, generating an image.

The first run of the program takes more time, since the sequence
of images is created and stored in a cache. After the first run, the
speed is much better. When double-clicking on the Sequencer a
window pops up containing VCR-like controls. Read the manual
for details.

We must adjust the min and max of k. Do this by clicking on-
ce on the Sequencer-module and then choosing Configuration...
from the Edit-menu in VPE. We set min to 0 and max to 49 (in
this example I have 50 animation steps).

319

Since I have not supplied any data-part, I cannot use
AutoColor, so the roots are plotted like red dots. If I number
the roots and add that number as a data-part I can easily have
different colours.

Now to the input. The degree of the polynomial is five and we
have 50 time steps. I used Matlab to create a file, data roots,
containing

re(rl”) im(r{”)
re(ry’) im(r{”)
re(ry’) im(r{”)
re(ry’) im(r{")
re(rl”) im(r{”)
re(ri’) im(r{")
re(ry’) im(r{")
re(ry’) im(r{")
re(ry)) im(r{")
re(rl’) im(r{")
re(r’) im(r(?)

I created the general-file using an editor in this case (it was easier
than using the Data Prompter).

file = data_roots
points = 5

series = 50

field = locations
structure = 2-vector
interleaving = field

If T had wanted to number the roots, field and structure can
be changed to:

field = n _root, locations
structure = scalar, 2-vector

320

e data roots contains the plot-data.
e points is the number of positions in each time step.

e The series-keyword is used to specify the number of time
steps.

e field specifies the name and number of individual fields in
a data file. We have only a positions-part, and the keyword
locations informs OpenDx about this fact. In the second case
we have data as well, n_root.

e structure gives the type of data we have. In the first case a
2D-vector (real - and imaginary part) and in the second case
we have a scalar as well.

e interleaving specifies how data is interleaved.
In our case each time step corresponds to a row in the file
(field-interleaving). There are other forms available.

The Sequencer can be used for other types of animation as well.
It is possible to let a Plane (MapToPlane-module) move through
a volume, for example.

Sometimes the animation is too fast (simple model, few frames)
and we would like to lower the frame rate by adding a time de-
lay to each frame. The image window has a Throttle alternative
(under Options) and the Image module has a throttle attribute
where the delay can be specified. It does not work on our system
however (unless one has a delay of more than one second). The
reason was simple enough to find (even though OpenDX con-
sists of some 470000 lines of C-code and some 100000 lines of
header files). After some reading of the code I found the func-
tion DXWaitTime, where there is a line sleep ((int) seconds) ;.
I changed the code and used usleep that can sleep in micro se-
conds, and now everything works.

321

Some programming tips for use in the VPE

One can undo editing commands (sometimes), see Edit/Undo.

If you change a data file or a header file (general) during a run,
you must “Reset Server” under the Connection-menu
to see the changes (since OpenDX caches data).

You can duplicate modules on the canvas by pressing the middle
button, dragging and releasing. By shift-clicking you can mark
several modules (e.g. for copying).

Edit/Layout Graph tries to make a nice layout of the program.
Can undo if it becomes ugly.

One can add comments. “Choose Edit/Add Annotation”.

‘When the size of programs grow it may be hard to read them.
There are two tools for structuring OpenDX-programs. Suppose
we have part of a program like:

Module_a
|

Module_b

By inserting a Transmitter/Receiver-pair we can break the
program into two pieces.

Module_a Receiver
| |

Transmitter Module_b

322

It is possible to have several pairs. The Transmitter and the
Receiver, in a pair, should be given the same name.

In the example above we can use the width of the window to
make the program more readable.

We can also move a part of a program to a separate page on

the canvas (the canvas will have tabs, each representing a sepa-

rate page).

Do for example like this: Click on a module which belongs to the

part of the program that should be moved.

Choose “Edit/Select /Deselect Tools/Select Connected”. This will
mark all the modules which are connected with the first we

marked. Then choose “Edit/Page/Create with Selected Tools”.

This will create a new page with part of the program.

One can name the pages using “Edit/Page/Configure Page..”.

You can make the interactors look nicer by collecting them in one
window. In the Edit-menu there are several options to change
the appearance. You can “glue” the interactors together, crea-
ting a uniform background using Options/Dialog Style. To get
back to the edit mode, click on Close in the Control Panel and
answer Yes to the question.

323

