Thomas Ericsson
Computational Mathematics, Chalmers/GU
2008 1

1 A short introduction to C

C is a widely used programming language, especially in Unix applications. The language was developed in 1972
by Dennis Ritchie at Bell Labs for use with the Unix operating system. I learnt C reading the classic book “The
C Programming Language” by Brian Kernighan and Dennis Ritchie. The book was published 1978. C is a fairly
small language, the book is only 228 pages. I have several C++ books, all containing more than 1000 pages
each. Since C was used to develop the Unix system, it has support for low level operations, such as finding out
the address of a variable. It is also a very concise language, having abbreviations for common operations.

k =k + 1and s = s + term can be written k++ and s += term, for example.

This is convenient if you are an experienced C-programmer, but it may cause problems for the novice.

Here is another C-feature. In C an assignment such ask = 2 * j - m; has a value, which is the value of k, the
leftmost variable. Matlab follows C when it comes the logical values in if-statements, zero is false and non-zero
is true. This means that the following C-statement is correct

if (k=23 -m) {
do something

}

It computes the value of k and checks if it is non-zero. If we had intended to do something when k equals
2 * j - m we should have written

if (k==2%3-m){
do something

}

Another, more severe, problem is that there is no index control for array indices, like there is in Matlab. One
tends to use pointers (addresses) frequently as well and there is little control of these. So, in short, one should
be very careful when writing C-programs, or there is a large risk that one has to spend long hours debugging.

For more history and background see the Wikipedia article:
http://en.wikipedia.org/wiki/C_(programming_language) .

There is also a page about the book:
http://en.wikipedia.org/wiki/The_C_Programming_Language_(book) .

The following introduction is sufficient for the assignments, but you need more for real programming.
I have not tried to show all the different ways a program can be written. C has several forms of
some constructs. Professional code has many extra details as well.

1.1 Hello World!

We start with the compulsory Hello World!-program. I wrote the program using an editor and saved it in the
file hello.c. If you do not have a favourite editor like vim, gvim, emacs etc. I recommend using nedit, the
Nirvana editor. It is quite capable and easy to use. In the printout below, I listed the program in a terminal
window using the cat-command (you do not have to do this every time, of course :-)

% cat hello.c

#include <stdio.h>

int main()

{
printf ("Hello World!\n");
return 0;

¥

Scientific Visualization I



Thomas Ericsson
Computational Mathematics, Chalmers/GU
2 2008

% gcc hello.c

% a.out
Hello World!

% ./a.out
Hello World!

% is the prompt. I compiled the program using, gcc, the GNU C-compiler. The executable (“machine code”) was
stored in the file named a.out (you can store it in another file if you like). Finally I executed the program by
typing the name of the executable. If you do not have . in your Unix-path you would type ./a.out instead. The
dot means the current working directory, so ./a.out means the a.out in the directory where I am at the moment.

Let us look at the code. The first line, the one starting with a # is read by the C preprocessor, cpp. It will
read the file, /usr/include/stdio.h, and place it in the program. This file, a so-called include file or hea-
der file, typically contains named constants, macros (somewhat like functions) and function prototypes. Named
constants are used so we do not have to write numbers to choose a particular option, instead we can write a name.

The main program, must be called main, is an integer (int) function. It can take parameters, but we igno-
re them in this example (the ( )) and it returns status information to the Unix-system (to the shell, bash ot
tcsh), using the return-statement, Zero usually means OK. If we write echo $status, in the shell, we can
check the return value.

The input parameters are used to pass arguments from the shell to the program. When giving the 1s com-
mand with the long flag, 1s -1, the Is-command (a compiled C-program) can access the flag -1.

printf is a print statement, and \n means newline. Semicolon, ;, ends a statement, so it is not like in Matlab
where an end of line suffices. If we forget the semicolon after the printf statements, we get a syntax error and
the compiler complains:

% gcc hello.c
hello.c: In function ‘main’:
hello.c:5: error: syntax error before "return"

The braces, { }, are used to delimit the body of the function.

To find out more about what flags (options) gcc can take, we type man gcc in a terminal window. The following
command

% gcc -o hello -0 hello.c

optimizes the code for speed (overkill for this tiny example) and places the executable in hello instead of in
a.out. To execute the program we type hello or ./hello .

1.2 Functions, a first example

Now to a more complicated example, where we use a very primitive method (the trapezoidal method) to

approximate
b
/ e~ de, a<b
a

The interval, (a, b), is divided into n intervals and on each interval the integral is approximated by the area of
a trapezoid, and the formula is:

—a

2 n

/b f(x)dxmh[@+f(a+h)+f(a+2h)+---+f(b—h)+g], where h:b

Scientific Visualization I



Thomas Ericsson
Computational Mathematics, Chalmers/GU
2008 3

There are much better methods and one could write a code that accepts more general integrands, but this is,
after all, not a course in numerical analysis.

Since the program would become too messy if I added all the comments to the code, I have numbered the
lines and added comments afterwards. Note that the line numbers are not part of the code.

1 #include <stdio.h>
2 #include <math.h>

3

4 double trapeze(double, double, int);

5

6 int main()

7 A

8 printf ("The integral is approximately = %e\n", trapeze(0, 1, 100));
9

10 return 0;

11}

12

13 double trapeze(double a, double b, int n)

14 A

15 /¥ 4 primitive quadrature method for approzimating
16 the integral of exp(-z~2) from a to b.

17 n 15 the number of sub intervals.

18 */

19

20 int k;
21 double x, h, sum = 0.0;

22

23 if (n <= 0) {

24 printf ("*** n must be at least 1.\n");
25 return -1;

26 }

27

28 h = (b - a) / n;

29 X = a;

30 sum = 0.5 * exp(-x * x);

31 for (k = 1; k < n; k =%k + 1) {

32 X = x + h;

33 sum = sum + exp(-x * x);

34 }

35 sum = sum + 0.5 * exp(-b * b);
36 sum = sum * h;

37

38 return sum;

39 }

The example code contains a main-program and a function. On line 2, we include math.h since the program
uses the exponential function, exp, and we need the prototype for the function. A prototype gives the name of
the function and the types of input and output parameters. Since exp takes a double precision argument and
returns a double precision value the prototype is:

double exp(double);

double is the name of the double precision (8 bytes) floating point type. The reason we use prototypes is to

Scientific Visualization I



Thomas Ericsson
Computational Mathematics, Chalmers/GU
4 2008

supply the compiler with more information, so it can warn us if we call a function with the wrong number or
types of the parameters. The compiler would also use the information to make type conversions of parameters
(more below).

Our own function, trapeze, takes three input arguments, the interval endpoints a and b, and a number, n,
of intervals, and returns the approximation of the integral. On line 4 I have supplied a prototype for the func-
tion. One can, but does not have to, supply the variable names as well.

On lines 8, 9 I print some text and call the function. printf is a function that can take a different num-
ber of arguments. In this case the first is a string, and the second the value returned from trapeze. je is a
format code, which tells printf that the integral value should be written using an engineering format (decimals
and exponential part). To see the other format codes, we use the manual command in Unix.

Type man -s3 printf in a terminal window (note that man printf gives you another manual page).

Lines 13-39 show the trapeze function. Note that the first line looks like the prototype, but now with va-
riable names. Comments are written between /* */, but some compilers allow for C+--comments as well (lines
starting with //).

Lines 20, 21 are type declarations of so-called automatic variables. These variables are local to the function.
Space is allocated when the function is entered and the memory is deallocated when we return from the function.
The sum-variable is initialized as well, this could be done in the executable code instead (similar to line 29).
Lines 23-26 show an if-statement. The rules are roughly as in Matlab, although negation is written using ! and
not ~.

The then-part is made up by two statements and they must be grouped together using braces. The braces are
not necessary for one statement, but some programmers add them anyhow. The trapeze function should always
return a value, even when n has an illegal value, so the program returns the impossible value, -1 in that case.
The statement, return value;, is similar to assigning value to the output parameter in Matlab, but return
also means that we jump back to the main program.

In line 30 we call the exponential function. Note that x~2 does not work in C (or rather, it means bitwise
exclusive OR). Lines 31-34 form a loop, the two statements, 32-33, are grouped together using braces. If we
forget the braces, only line 32 will be repeated in the loop, and line 33 will be executed once after the loop.

The general format of the for-statement is:

for(init; test; update)
loop body

Written with a while loop we understand the meaning;:

init:

while ( test ) {
loop body
update;

X

So k = 1 corresponds to init, the test is k < n and update is k = k + 1. In words, set k to one, then the
loop is entered. Repeat the loop body as long as k < n. At the end of each loop iteration, the loop variable, k
is updated by one.

C has many abbreviations, k = k+1 can be written k++ and a = a + b can be abbreviated as a += b. Using
these shorter forms, the loop can be written:

Scientific Visualization I



Thomas Ericsson
Computational Mathematics, Chalmers/GU
2008 5

for (k = 1; k < n; k++) {
x += h;
sum += exp(-x * x);

}

Sometimes one can see strange looking loops (at least to a C-novice). The following two loops both compute an
approximation to 1+ 1/2+1/3 + --- + 1/1000.

sum = 0;
k=1;
for(; k <= 1000;) {
sum += 1.0 / k;
k++;
}
sum = 0;
k=1,
for(;;) {
sum += 1.0 / k;
if ( k == 1000 )
break; /* Jump out of the loop */
k++;
}
On line 38 the function returns the value to main.

Let us now compile and execute the code:

% gcc trap.c -1m
% a.out
The integral is approximately = 7.468180e-01

The exact value is approximately 0.74682413. -1m informs the compiler that we need to use a library, the
mathematics library, since the code calls the exponential function. We say that we link with the math library. A
special program , 1d the linker, takes care about this part (more about 1d later on). The math library resides
in a file, /usr/1ib/1ibm.so. The m-part of 1ibm is what is used in -1m. Some compilers do not require that we
write -1m, but they will link with library automatically. If we forget it on our system we get a link error:

% gcc trap.c
/tmp/ccggMVKZ.o(.text+0xd2) : In function ‘trapeze’:
: undefined reference to ‘exp’

etc.

1.3 Separate compilation and 1d

In the example I have stored both main and trapeze in the same file trap.c. This would be unrealistic in large
applications, however, so its is possible to split the file into separate files. So, suppose that we have two files,
trap_main.c containing lines 1, 4-11 (i.e. not line 2, since main does not use exp), and trapeze.c containing
lines 2, 13-39. Here are two ways to compile the code.

% gcc trap_main.c trapeze.c -1m
% a.out
The integral is approximately = 7.468180e-01

Scientific Visualization I



Thomas Ericsson
Computational Mathematics, Chalmers/GU
6 2008

If a large part of a program does not change, we can compile that part once and for all. In the first gcc-command
I compile trapeze.c, using the -c flag (option). This tells the compiler to produce an object file, trapeze.o,
but not to try to produce an executable. The object file is later used when compiling trap_main.c. We save
time by not having to recompile trapeze.c (think of a file containing thousands of lines).

% gcc -c trapeze.c an object file is produced
% 1ls -1 trapeze.o
-rW------- 1 thomas _math 1232 Nov 18 15:49 trapeze.o

% gcc trap_main.c trapeze.o -lm use it here
% a.out
The integral is approximately = 7.468180e-01

If we forget trapeze.o we get a link error.

% gcc trap_main.c
/tmp/ccgkJmlR.o(.text+0x3d) : In function ‘main’: undefined reference to ‘trapeze’
collect2: 1d returned 1 exit status

We will get the same effect if we make a spelling error when calling trapeze. Say we type Trapeze instead of
trapeze in the printf statement in main. We get:

% gcc trap_main.c trapeze.o -1lm
/tmp/cc4JCXzK.o(.text+0x29) : In function ‘main’: undefined reference to ‘Trapeze’
collect2: 1d returned 1 exit status

even though trapeze. o is included. The reason is that C is case sensitive, trapeze and Trapeze refer to different
functions. 1d, which is mentioned, is the so-called linker, which combines object files, libraries (e.g. the math
library) to an executable. This is not the whole truth (there is a dynamic linker as well), but it is accurate
enough for this course. So, the gcc-command does not only compile, but it runs cpp and 1d as well.

1.4 More on prototypes and type conversion

It is easier to appreciate the prototypes when we use separate compilation (different files). Suppose we have
written trapeze(0, 100) in main. The compiler complains:

% gcc trap_main.c trapeze.o -1lm
trap_main.c: In function ‘main’:
trap_main.c:8: error: too few arguments to function ‘trapeze’

If we remove the prototype, the following happens:

% gcc trap_main.c trapeze.o -1lm
% a.out
The integral is approximately = 7.234109e-320

So, no complaints and the wrong answer. This is different from Java, which would complain. A C-programmer
must be more careful. Be very careful when you call a function. Check the number and types of parameters.
I have been slightly careless when calling trapeze. 0 and 1 are integer constants, but since I have provided a
prototype, the compiler will automatically convert the numbers to the corresponding double precision constants,
0.0 and 1.0. To avoid the type conversion I could have written trapeze(0.0, 1.0, 100). The reverse can
happen, a double value can be truncated to an integer value (the decimals will deleted).

Study the following example (%d is a format for printing integers):

Scientific Visualization I



Thomas Ericsson
Computational Mathematics, Chalmers/GU
2008 7

% cat trunc_ex.c
#include <stdio.h>

int trunc_ex(int, double);
int main()
{

double result;

result = trunc_ex(1.99, 23);
printf ("trunc_ex = %e\n", result);

return 0;

}
int trunc_ex(int k, double d)
{
printf("k = %d, d = Je\n", k, 4);

return 3.1415926535897932;

}

% gcc trunc_ex.c

% a.out

k=1, d = 2.300000e+01
trunc_ex = 3.000000e+00

If we remove the prototype, the compiler will not make the conversions for us. Instead we end up with garbage:

% gcc trunc_ex.c

% a.out

k = 1030792151, d = 4.933640e-313
trunc_ex = 3.000000e+00

In main, 1.99 is stored as an 8 byte double precision number and 23 as a four byte integer. When trunc_ex is
called it will pick up the first four bytes of the stored double, and interpret those bytes as an integer. To access d
the function will take the four bytes from 23 and the next four bytes, whatever they contain, and make a double
precision number of the eight bytes. Note that no conversion is made for either number, trunc_ex will just read
the bits and make numbers from them. Finally, the reason we get the correct conversion of 3.1415926535897932
is that a function is of type int, by default.

Division with integers behaves in a special way (but the same rule applies to C++, Fortran, Java etc).

Integer division produces integer quotients, decimals are truncated. 5 / 2 will be 2, -2 / 5 becomes 0 etc.
5.0 /2o0or5 / 2.00r5.0 / 2.0 will all give you 2.5 since the integer will be converted to the “dominating
type” double before the division. Note that 10.0 * (1 / 10) is 0.0, since 1 / 10 is computed first, giving 0.
The integer zero is then converted to 0.0 and the product is 0.0.

1.5 void functions, passing parameters

The functions we have seen so far return values. There are functions that do not return values this way, a
so-called void function. A void function corresponds to a Matlab function, looking something like
function function_name(list of parameters) (S0 no return variable).

Scientific Visualization I



Thomas Ericsson
Computational Mathematics, Chalmers/GU
8 2008

The difference is that one can write a C-function so that it can change its input parameters (this is not possible
in Matlab). This makes it necessary to discuss how parameters (arguments) are passed when a function is called.
Let us look at trapeze again.

double trapeze(double a, double b, int n)
{... }

The function works with copies of a, b and n, so if the function changes one of the variables, the original
variables (or constants) in main will not change. This way of passing parameters is called call-by-value.

In order to be able to change a variable, we use call-by-reference, i.e. we will pass the memory-address of
the variable rather than the variable’s value. Since the function has access to the address, it can change the
value of the variable. If var is the name of an integer or double variable, &var is its address, and & is called
the address operator. We also say that &var is a pointer to var. If adr is an address to a location in memory,
*adr is the corresponding value of what is stored there. Using * is called dereferencing or indirection, * is the
indirection or redirection operator. An address to a variable is often called a reference (like in Java programming).

Time for an example. This piece of code computes approximations to .,_, 1/k and > ,_, 1/k*

1 #include <stdio.h>

2

3 void sums(double *, double *, int);

4

5 dint main()

6 1

7 double suml, sum2;

8

9 sums (&suml, &sum2, 1000);

10 printf ("The sums are: %e and %e\n", suml, sum2);
11

12 return O;

13 }

14

15 void sums(double *a_suml, double *a_sum2, int n)
16 {

17 int k;

18

19 *a_suml = 0.0;

20 ¥a_sum2 = 0.0;

21

22 for (k = 1; k <= n; k++) {

23 *a_suml += 1.0 / k; /¥ 1.0 to avoid integer divsion */
24 xa_sum2 += 1.0 / (k * k);

25 }

26}

% gcc sums.c
% a.out
The sums are: 7.485471e+00 and 1.643935e+00

Let us start with the sums function, lines 15-26. We have a void function which takes three parameters, the
third is the number of terms. double *a_suml should be read in the following way. *a_suml is a double, and
* is the indirection operator, so a_suml must be an address to a double. I have tried to indicate this fact by

Scientific Visualization I



Thomas Ericsson
Computational Mathematics, Chalmers/GU
2008 9

naming the variable a_sum1, a for address. This is for pedagogical reasons, one would usually name the variable
suml and write double *suml. We can now understand the prototype on line 3. The first (and second) argument
is of type double *, a pointer to double.

On lines 19, 20 I set the values to zero. We should not try to set the addresses to zero. Note that we use
the same syntax on lines 23 and 24. Note that we use 1.0 / k rather than 1 / k (in which case the sum would
be one, since 1 / k = 0 whenk > 1).

Let us now look at the main program. On line 7 we define suml and sum2 as ordinary double variables.
On line 9 we call the function. Note that since we have a void function, it is illegal to try and write something
like variable = sums(...), since sums does not return a value in its name. Note that we pass the addresses
of suml and sum2, it would be wrong to write sums (suml, sum2, 1000);.

If you think these things are hard to follow, you should know that you are not alone, most beginners to C
find this a bit hard.

Let us declare two pointer variables by adding the following line to the code (after line 7):
double *pl, *p2;

So, pl can point at a double variable, it can contain the address of a double precision variable. We can set p1
to point at suml and p2 to point at sum2, like in the piece of code:

pl = &sumi;

P2 = &sum2;

sums (p1, p2, 1000);

printf ("The sums are: %e and %e\n", *pl, *p2);

but even
printf ("The sums are: %e and %e\n", suml, sum2);

How, you may ask, can we print sum1 and sum2, even though these variables have not been passed as arguments
to sums? The explanation, is that we passed the pointers, and sums can access the memory where suml and
sum? are stored, through the pointers.

Note that the following programming will end in tears (the remaining code remains unchanged):

int main()

{
double *pl, *p2;

sums (pl, p2, 1000);
printf ("The sums are: %e and %e\n", *pl, *p2);

return 0;

}
When we try to run it we get the feared error message:

% gcc sums3.c
% a.out
Segmentation fault

A Segmentation fault (or abbreviated segfault) can be a nasty error, at least if we have a large complicated
program, since the bug can be very hard to find. It is caused by the program trying to access a memory location

Scientific Visualization I



Thomas Ericsson
Computational Mathematics, Chalmers/GU
10 2008

which it is not allowed to access, ot it may try to write to a read-only part of the memory. Another message of
the same type is Bus error, where the program may try to access a non-existent address, for example. In the
sums-example it is very easy to find the bug. We have allocated memory for the pointer variables, but have not
allocated memory for the summation variables. So p1 and p2 do not point to any variables, the pointers have
not been assigned any values, they point to random addresses in memory. The program crashes in sums when
*a_suml = 0.0; is executed.

Here comes another example where we must use addresses. We must use call-by-reference when reading
data, here are a few lines of code:

1 #include <stdio.h>
2

3 int main ()
4 A

5 int i;
6 double d;
7

8

9

printf ("type a value for i: ");
scanf ("%d", &i);
10
11 printf ("type a value for d: ");
12 scanf ("%le", &d);
13
14 printf("i = %d, d = %e\n", i, d);
15
16 return O;
17 %}

% a.out

type a value for i: -123

type a value for d: -1.23e-45
i =-123, d = -1.230000e-45

On order for scanf to be able to return a value we must supply a pointer to the variable. On lines 8 and 11 we
do not supply a newline, that is why we can type the input on the same line as the prompt text. Note on line
12 that is says le (the letter £) for long. If we omit the letter, scanf will try to read a single precision number
instead of a double. This will lead to a conversion error:

type a value for i: 12
type a value for d: -1.23e3
i =12, d = 3.713054e-307

Suppose we have a non-void function. In that case it is bad programming practice to return values in the input
parameters as well (even though it is possible). We say that the function has side-effects.

Scientific Visualization I



Thomas Ericsson
Computational Mathematics, Chalmers/GU

2008 11
1.6 Arrays
In this program we create a one-dimensional array (vector) containing ten elements. We call the function init to
initialize the elements to 1,2, ...,10. Finally we compute the sum of the element using the function array_sum.

1 #include <stdio.h>

2

3 void init(double [], int);

4 double array_sum(double [], int);

5

6 int main ()

7 A

8 double vec[10];

9

10 init(vec, 10);

11 printf ("The sum is: %e\n", array_sum(vec, 10));

12

13 return O0;

14 3}

15

16 void init(double v[10], int n)

17 {

18 int k;

19

20 for(k = 0; k < 10; k++)

21 vik] = k + 1;

22 }

23

24 double array_sum(double v[10], int n)

25 {

26 int k;

27 double sum;

28

29 sum = 0.0;
30 for(k = 0;

k < 10; k++)

31 sum += v[k];
32
33 return sum;
34 }
% a.out

The sum is: 5.500000e+01

On line 8 we reserve storage for an array having ten double elements. Indices start at zero and end at nine,
unlike Matlab. Note that we use [ ] for the index. So, the loop variables in the loops, e.g. on line 20, go from
zero to nine. It would be inefficient to copy the array when the functions are called. Instead call-by-reference is
used. So, if the function changes an element in the array, it changes the original. We do this in the init-routine.
Note that we should not use the address or indirection operators for the array.

Compare the prototypes, lines 3, 4, with the function declarations, lines 16, 24. It is allowed to leave out the
dimension of the array. So line 16 can be written

double init(double v[], int n)

Scientific Visualization I



Thomas Ericsson
Computational Mathematics, Chalmers/GU
12 2008

and analogously for line 24. The reason is that the compiler does not need to know the number of elements in
the array, the find the address of a specific element. Note also that an array in C is not some kind of object,
like in Java. A function does not know the number of elements in the array unless we pass that information in
an extra argument (the variable n in the example). In fact, when we call the function, only the address of v[0]
is sent to the function. We could actually call init this way:

init (&vec[0], 10);
There is a close relationship between pointers and arrays but I leave that out in this introduction.
One should know that there is no index control in C. Changing the loop in init to

for(k = -3; k < 11; k++)
vlik]l = k + 1;

causes no complaints, but nasty things may happen as in the following example.

1 void func(double al]l);
2

3 #include <stdio.h>

4 main()

5 {

6 double b, al[10];

7

8 b = 1;

9 func(a);
10
11 printf ("%f\n", b);
12
13 return 0;
14 3}
15
16 void func(double al[])
17 |
18 al[11] = 12345.0;
19 %

% gcc nasty.c
% a.out
12345.000000

On line 8 we set b to one, and then, on line 9, we call func with the array, a. When we print b on line 10, the
value has changed, even though b is not an argument to the function. This is very nasty, and can be very hard
to find in a large program. What is going on? The elements of a one-dimensional array is stored consecutively,
with no gaps, in memory. One can find out the addresses of the elements in the array and of the variable b,
and it tunes out that b is stored in a position that would correspond to a[11], provided a had twelve elements.
Changing a[11] to a[1000000], for example, gives Segmentation fault.

1.7 Two-dimensional arrays

Here is one small example where we multiply two 4 x 4-matrices together (order four, since we are going to work
with such matrices in the OpenGL part).

Scientific Visualization I



Thomas Ericsson
Computational Mathematics, Chalmers/GU

2008 13
1 #include <stdio.h>
2
3 void mat_mul(double[4][4], double[4][4], double[4]1[4]);
4 void mat_print(double[4][4]);
5
6 main ()
7 A
8 int row, col;
9 double A[41[4], B[41[4]1, C[4]1[4];
10
11 for (row = 0; row < 4; row++)
12 for (col = 0; col < 4; col++) {
13 A[lrow][col] = row + col;
14 Blrow][col] = row - col;
15 }
16
17 mat_mul(A, B, C);
18 mat_print(C);
19
20 return O;
21 }
22
23 void mat_mul(double A[4][4], double B[4][4], double C[4]1[4])
24 {
25 int row, col, k;
26 double sum;
27
28 for (row = 0; row < 4; row++)
29 for (col = 0; col < 4; col++) {
30 sum = 0.0;
31 for (k = 0; k < 4; k++)
32 sum += A[row][k] * B[k][coll;
33 Clrow][col] = sum;
34 }
35 }
36

37 void mat_print(double C[4][4])
38 A

39 int row, col;

40

41 for (row = 0; row < 4; row++) {

42 for (col = 0; col < 4; col++)

43 printf ("%8.2f ", C[row]l[coll);
44 printf ("\n");

45 }

46 }

One could write a more general code, but this is all we need. Line 37 can be written:

void mat_print(double C[][4])
but not

void mat_print(double C[1[])

Scientific Visualization I



Thomas Ericsson
Computational Mathematics, Chalmers/GU
14 2008

for example. The reason is that C stores matrices row after row, in memory. So the memory layout, of the
matrix C, for example, would be:

address

base c[o][0]
base + 1 c[o][1]
base + 2 c[o][2]
base + 3 Cc[o][3]
base + 4 c[1][0]
base + 5 Ccl[1][1]
base + 6 cl[1]1[2]
base + 7 C[1]1[3]
base + 8 c[2][0]

etc.

The compiler knows the baseaddress, base = &C[0] [0], and to compute &C[row] [col] it needs the know the
number of elements in a row, row_len, say (four in the example).

&C[row] [col] = base + row_len * row + col

If one should be picky, the memory on one of our machines is byte addressable, and since a double precision
variable is stored using eight bytes, the correct formula is:

&C[row] [col] = base + 8 * (row_len * row + col)

So this is the reason why void mat_print (double C[][4]) is sufficient, but void mat_print (double C[4][])
or void mat_print (double C[][]) are not.

1.8 A matter of style

The placement of braces on other details of programming style, has been the focus of many heated and lengthy
debates. In all my examples I have placed the braces using a special style, e.g:

for (k = 1; k < n; k++) {
x += dx;
sum += exp(-x * x);

}

This style is known as the “Kernighan & Ritchie coding style” and comes from the classic book I mentioned on
page one. One can write this piece of code in other ways, e.g.

for (k = 1; k < n; k++)
{
X += dx;
sum += exp (-x * x);

}

which is the GNU-style, used to write GNU software. I will not start a debate about it in this introduction; find
your own style and stick to it. One style I do not recommend is:

for (k=1;k<n;k=k++) {x+=+dx;sum+=exp (-x*x) ; }

indent is a very useful command for pretty printing, formatting, C-programs. There are many options, I use
the following:

indent -kr -i2 -nut my_program.c

Scientific Visualization I



Thomas Ericsson
Computational Mathematics, Chalmers/GU
2008 15

-kr is the Kernighan & Ritchie style, -12 means two spaces for indentation in loops and if-statements etc, -nut
means that spaces and not tabs are used for indentation.

indent -gnu -i2 -nut my_program.c

gives you the GNU style instead.

The choice of style affects other parts of the program as well, e.g. the position of braces in if-statements,
and the layout of comments and declarations.

To read about the different styles, type man indent, and read under COMMON STYLES. If you use indent on a
program with syntax errors, indent may produce an incorrectly indented program (if a brace is missing, for
example). For that reason, indent, makes a copy of your original file. In my example the copy is stored in
my_program.c”.

1.9 If-statements and logical expressions

Here are a few examples. Note single & and | are bitwise operations.

double a, b, c, d, q;

if (a<b&& c==4d 1] !q) {
zero or more statements

} else {

zero or more statements

}
The relational operators, <, <=, ==, >=> are written the same way as in Matlab, with the exception of “not
equal” which is written !=.

Note: if (! q == 1.25 ) < if ( (!q) == 1.25 ), not if( ! ( q == 1.25) ).

Now a word about the so-called dangling else. What if does the else belong to, if you have nested if-statements?
One the next page comes an example:

Scientific Visualization I



Thomas Ericsson
Computational Mathematics, Chalmers/GU

16 2008
1 #include <stdio.h>
2
3 int main ()
4 A
5 int al[l = {0, 0, 1, 1}, b[]l = {
6 0, 1, 0, 1}, k;
7
8 for (k = 0; k < 4; k++) {
9 printf("-----------—- k = %d\n", k);
10 if (alk])
11 if (b[k1)
12 printf ("1: then\n");
13 else /*¥ incorrect indentation #*/
14 printf("1: else\n");
15
16 /# Correct interpretation #*/
17 if (alk]) {
18 if (b[k1)
19 printf ("2: then\n");
20 else
21 printf ("2: else\n");
22 }
23
24 if (alk]) {
25 if (b[k])
26 printf ("3: then\n");
27 } else
28 printf ("3: else\n");
29
30 } /* end for */
31
32 return 0;
33 }

When we have nested if-statements, the else belongs to the innermost if, so lines 10-14 and lines 17-22 are
equivalent. Note the incorrect indentation on line 14. If you want the else to belong the outer if, use braces
as in lines 24-28.

% a.out
————————————— k=0
3: else
————————————— k=1
3: else
————————————— k=2
1: else

else
————————————— k=3
1: then
2: then
3: then

Lines 5, 6 show new syntax. a and b will be integer arrays with four elements. The next page contains a
precedence table for the operators in C, but we have not looked at all of them in this introduction.

Scientific Visualization I



Thomas Ericsson

Computational Mathematics, Chalmers/GU

2008

17

1.10 Precedence and associativity of C-operators

Operators have been grouped in order of decreasing precedence, where operators between horizontal lines have

the same precedence.

Operator | Meaning Associativity
(D) function call —
[1] vector index
-> structure pointer

structure member
++ postfix increment
- postfix decrement
! logical negation —
- bitwise negation
++ prefix increment
-- prefix decrement
+ unary addition
- unary subtraction
* indirection
& address
(type) | type cast
sizeof | number of bytes
* multiplication —
/ division
) modulus
+ binary addition —
binary subtraction
< left shift —
> right shift
< less than —
<= less or equal
> greater than
>= greater or equal
== equality —
1= inequality
& bitwise and —
- bitwise xor —
| bitwise or N
&& logical and —
'l logical or —
7: conditional expression —
= assignment —
+= combined assignment and addition
-= combined assignment and subtraction
*= combined assignment and multiplication
= combined assignment and division
%= combined assignment and modulus
&= combined assignment and bitwise and
~= combined assignment and bitwise xor
[= combined assignment and bitwise or
<= combined assignment and left shift
»= combined assignment and right shift
, comma —

Scientific Visualization I



18

Thomas Ericsson
Computational Mathematics, Chalmers/GU
2008

Here

are a few comments, see a textbook or my links for a complete description.

Left to right associativity (—) means that a-b-c is evaluated as (a-b)-c and not a-(b-c).a = b = c,
on the other hand, is evaluated as a = (b = c). Note that the assignment b = c returns the value of c.

if (a<b<c) ...;meansif ( (a < b) < c ) ...; wherea < bis1 (true)ifa < band 0 (false)
otherwise. This number is then compared to c. The statement does not determine “if b is between a and
¢’

a++; is short for a = a + 1;, sois ++a;. Both a++ and ++a can be used in expressions, e.g. b = a++;,
c = ++a;. The value of a++; is a’s value before it has been incremented and the value of ++a; is the new
value.

a += 3; is short fora = a + 3;.

As in many languages, integer division is exact (through truncation), so 4 / 3 becomes 1.
Similarly, i = 1.25;, will drop the decimals if i is an integer variable.

exprl 7 expr2 : expr3 equals expr?2 if exprl is true, and equals expr3, otherwise.

(type) is used for type conversions, e.g. (double) 3
becomes 3.0 and (int) 3.25 is truncated to 3.

sizeof (type_name) or sizeof expression gives the size in bytes necessary to store the quantity. So,
sizeof (double) is 8 on our system and sizeof (1 + 2) is 4 (four bytes for an integer).

When two or more expressions are separated by the comma operator, they evaluate from left to right.
The result has the type and value of the rightmost expression. In the following example, the value 1 is
assigned to a, and the value 2 is assignedtob.a =b =1, b += 2, b -= 1;

Do not write too tricky expressions. It is easy to make mistakes, it is hard to read and one may end up
with undefined statements. a[i++] = i; and i = ++i + 1; are both undefined. See the standard, section
6.5, if you are interested in why.

Scientific Visualization I



