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PREFACE

These are lecture notes on integration theory for a ten-week course at the
Chalmers University of Technology and the Géteborg University. The parts
defining the course essentially lead to the same results as the first three
chapters in the Folland book [F], which is used as a text book on the course.
The proofs in the lecture notes sometimes differ from those given in [F] . Here
is a brief description of the differences to simplify for the reader.

In Chapter 1 we introduce so called - and A-systems, which are substi-
tutes for monotone classes of sets [F]. Besides we prefer to emphasize metric
outer measures instead of so called premeasures. Throughout the course, a
variety of important measures are obtained as image measures of the linear
measure on the real line. In Section 1.6 positive measures in R induced by
increasing right continuous mappings are constructed in this way.

Chapter 2 deals with integration and is very similar to [F] and most
other texts.

Chapter 3 starts with some standard facts about metric spaces and relates
the concepts to measure theory. For example Ulam’s Theorem is included.
The existence of product measures is based on properties of 7- and \-systems.

Chapter 4 deals with different modes of convergence and is mostly close
to [F]. Here we include a section about orthogonality since many students
have seen parts of this theory before.

The Lebesgue Decomposition Theorem and Radon-Nikodym Theorem
in Chapter 5 are proved using the von Neumann beautiful L?-proof.

To illustrate the power of abstract integration these notes contain several
sections, which do not belong to the course but may help the student to a
better understanding of measure theory. The corresponding parts are set
between the symbols

W

and

(k)

respectively.
Finally T would like to express my deep gratitude to the students in
my classes for suggesting a variety of improvements and a special thank



to Jonatan Vasilis who has provided numerous comments and corrections in
my original text.

Goteborg 2006
Christer Borell
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CHAPTER 1
MEASURES

Introduction

The Riemann integral, dealt with in calculus courses, is well suited for com-
putations but less suited for dealing with limit processes. In this course we
will introduce the so called Lebesgue integral, which keeps the advantages of
the Riemann integral and eliminates its drawbacks. At the same time we will
develop a general measure theory which serves as the basis of contemporary
analysis and probability.

In this introductory chapter we set forth some basic concepts of measure
theory, which will open for abstract Lebesgue integration.

1.1. o-Algebras and Measures

Throughout this course

N = {0,1,2,...} (the set of natural numbers)
Z={.,-2,—-1,0,1,,2, ...} (the set of integers)
Q = the set of rational numbers

R = the set of real numbers

C = the set of complex numbers.

If ACR, A, is the set of all strictly positive elements in A.

If f is a function from a set A into a set B, this means that to every z € A
there corresponds a point f(x) € B and we write f : A — B. A function is
often called a map or a mapping. The function f is injective if

(x #y) = (f(2) # [(y))



and surjective if to each y € B, there exists an = € A such that f(z) = y.
An injective and surjective function is said to be bijective.

A set A is finite if either A is empty or there exist an n € N, and a
bijection f : {1,...,n} — A. The empty set is denoted by ¢. A set A is said
to be denumerable if there exists a bijection f : Ny — A. A subset of a
denumerable set is said to be at most denumerable.

Let X be a set. For any A C X, the indicator function y 4 of A relative
to X is defined by the equation

(x)— lifze A
XA =9 0if z € A°.

The indicator function x, is sometimes written 14. We have the following
relations:

Xae =1— X4
XAnB = min(XAa XB) = XaXB

and
Xaup = Mmax(X 4, X5) = Xa + X — XaXs.

Definition 1.1.1. Let X be a set.
a) A collection A of subsets of X is said to be an algebra in X if A has
the following properties:

(i) X € A
(ii)) A e A=A° € A, where A° is the complement of A relative to X.
(ili) If A, B € Athen AUB € A.

(b) A collection M of subsets of X is said to be a o-algebra in X if M
is an algebra with the following property:

If A, € M for all n € N, then U A, € M.



If M is a g-algebra in X, (X, M) is called a measurable space and the
members of M are called measurable sets. The so called power set P(X),
that is the collection of all subsets of X, is a o-algebra in X. It is simple to
prove that the intersection of any family of o-algebras in X is a o-algebra. It
follows that if £ is any subset of P(X), there is a unique smallest o-algebra
0(€) containing £, namely the intersection of all o-algebras containing &.

The o-algebra o(€) is called the o-algebra generated by £. The o-algebra
generated by all open intervals in R is denoted by R. It is readily seen that
the o-algebra R contains every subinterval of R. Before we proceed, recall
that a subset F of R is open if to each x € FE there exists an open subinterval
of R contained in £ and containing x; the complement of an open set is said
to be closed. We claim that R contains every open U subset of R. To see
this suppose = € U and let x € ]a,b[ C U, where —c0 < a < b < c0. Now
pick 7, s € Q such that a <r < x < s <b. Then z € |r, s| C U and it follows
that U is the union of all bounded open intervals with rational boundary
points contained in U. Since this family of intervals is at most denumberable
we conclude that U € R. In addition, any closed set belongs to R since its
complements is open. It is by no means simple to grasp the definition of R at
this stage but the reader will successively see that the o-algebra R has very
nice properties. At the very end of Section 1.3, using the so called Axiom of
Choice, we will exemplify a subset of the real line which does not belong to
R. In fact, an example of this type can be constructed without the Axiom
of Choice (see Dudley’s book [D]).

In measure theory, inevitably one encounters co. For example the real
line has infinite length. Below [0, 0o] = [0, co[U {00} . The inequalities z <y
and r < y have their usual meanings if z,y € [0, 00[. Furthermore, z < oo
if z € [0,00] and = < o0 if x € [0,00[. We define z + co = 00 + 2 = oo if
z,y € [0,00], and

x-oo:oo-x:{ 0 ifz=0
oo if 0 <z <oo.
Sums and multiplications of real numbers are defined in the usual way.

If A, € X, ne Ny, and Ay, N A, = ¢ if k # n, the sequence (A, )nen, is
called a disjoint denumerable collection. If (X, M) is a measurable space, the
collection is called a denumerable measurable partition of A if A =UX A,
and A, € M for every n € N,. Some authors call a denumerable collection
of sets a countable collection of sets.



Definition 1.1.2. (a) Let A be an algebra of subsets of X. A function
p: A — [0, 00] is called a content if

(i) u(o) =0
(i) p(AUB) = u(A) + w(B) if A,B € Aand ANB = 6.

(b) If (X, M) is a measurable space a content p defined on the o-algebra M
is called a positive measure if it has the following property:

For any disjoint denumerable collection (An)neN+ of members of M

M(UZO:lAn) = EZO=1N<ATL) .

If (X, M) is a measurable space and the function u : M — [0,00] is a
positive measure, (X, M, u) is called a positive measure space. The quantity
i(A) is called the p-measure of A or simply the measure of A if there is
no ambiguity. Here (X, M, p) is called a probability space if u(X) =1, a
finite positive measure space if u(X) < oo, and a o-finite positive measure
space if X is a denumerable union of measurable sets with finite p-measure.
The measure p is called a probability measure, finite measure, and o-finite
measure, if (X, M, ) is a probability space, a finite positive measure space,
and a o-finite positive measure space, respectively. A probability space is
often denoted by (2, F, P). A member A of F is called an event.

As soon as we have a positive measure space (X, M, u), it turns out to
be a fairly simple task to define a so called p-integral

/X f()du(z)

as will be seen in Chapter 2.
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The class of all finite unions of subintervals of R is an algebra which is
denoted by Ry. If A € Ry we denote by [(A) the Riemann integral

/_ Z Xa(z)dz

and it follows from courses in calculus that the function [: Ry — [0, 00] is a
content. The algebra Ry is called the Riemann algebra and [ the Riemann
content. If I is a subinterval of R, [(I) is called the length of I. Below we
follow the convention that the empty set is an interval.

If A e P(X), cx(A) equals the number of elements in A, when A is a
finite set, and cx(A) = oo otherwise. Clearly, cx is a positive measure. The
measure cy is called the counting measure on X.

Given a € X, the probability measure 0, defined by the equation d,(A) =
Xa(a), if A € P(X), is called the Dirac measure at the point a. Sometimes
we write d, = dx, to emphasize the set X.

If ;4 and v are positive measures defined on the same o-algebra M, the
sum 4 + v is a positive measure on M. More generally, ap + S is a positive
measure for all real a,, § > 0. Furthermore, if £ € M, the function \(A) =
(AN E), A € M, is a positive measure. Below this measure A will be
denoted by ¥ and we say that u is concentrated on E. If E € M, the class
Mg = {Ae M; AC E} is a g-algebra of subsets of F and the function
0(A) = pu(A), A € Mg, is a positive measure. Below this measure 6 will be
denoted by 1 and is called the restriction of p to M.

Let Iy, ..., I,, be subintervals of the real line. The set

L x .. xI,={(x1,...,x,) ER"; . € I}, k=1,....,n}

is called an n-cell in R™; its volume vol(l; X ... X I,) is, by definition, equal
to
vol(Iy X ... x I,) = TI}_, I(I).

If I, ..., I,, are open subintervals of the real line, the n-cell I; x ... X I, is
called an open n-cell. The o-algebra generated by all open n-cells in R" is
denoted by R,. In particular, Ry = R. A basic theorem in measure theory
states that there exists a unique positive measure v,, defined on R,, such that
the measure of any n-cell is equal to its volume. The measure v, is called the
volume measure on R,, or the volume measure on R". Clearly, v,, is o-finite.
The measure v, is called the area measure on R? and v; the linear measure
on R.
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Theorem 1.1.1. The volume measure on R" exists.

Theorem 1.1.1 will be proved in Section 1.5 in the special case n = 1. The
general case then follows from the existence of product measures in Section
3.4. An alternative proof of Theorem 1.1.1 will be given in Section 3.2. As
soon as the existence of volume measure is established a variety of interesting
measures can be introduced.

Next we prove some results of general interest for positive measures.

Theorem 1.1.2. Let A be an algebra of subsets of X and pu a content

defined on A. Then,
(a) p is finitely additive, that is

p(A U UAL) = p(A) + .o+ u(Ay)

if Aq,..., A, are pairwise disjoint members of A.
(b) if A,B € A,

n(A) = p(A\ B) + p(AN B).
Moreover, if (AN B) < oo, then
n(AU B) = u(A) + w(B) — n(AN B)

(c) A C B implies un(A) < u(B) if A, B € A.
(d) p finitely sub-additive, that is

p(AU . UA,) < pu(Ar) + .o+ u(A4y)

if Aq,..., A, are members of A.

If (X, M, p) is a positive measure space
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(e) w(An) = (A) if A=Upen,An, A, € M, and
A C A CA3C L.

() w(An) — p(A) if A=Nhen, An, Ap € M,
A1 DA D A3 D

and pu(A;) < oo.
(8) 11 is sub-additive, that is for any denumerable collection (A,),en, of

members of M,
M(UiilAn) < E;:o:l,u(An).

PROOF (a) If A, ..., A, are pairwise disjoint members of A,
(U= Ak) = p(Ar U (Up_5Ay))

= (A + (Ul Ar)

and, by induction, we conclude that y is finitely additive.

(b) Recall that
A\ B=AnN B

Now A= (A\ B) U(AN B) and we get
u(A) = u(A\ B) + u(AN B).
Moreover, since AU B = (A\ B) U B,
(AU B) = u(A\ B) + u(B)
and, if u(AN B) < oo, we have
(AU B) = u(A) + u(B) — (AN B).

(c) Part (b) yields u(B) = u(B\ A) + u(AN B) = u(B\ A) + u(A), where
the last member does not fall below p(A).
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(d) If (A;)",is a sequence of members of A define the so called disjunction
(By)j_, of the sequence (A;)?; as

Bl = Al and Bk = Ak \ Ufz_llAi for 2 S k S n.

Then By C Ag, UF_jA; =UF B, k=1,..,n,and B;NB; = ¢ if i # j. Hence,
by Parts (a) and (c),

/L(UzzlAk) = EZ:1N<Bk) < ZZ:l/'L(Ak>'

(e) Set By = Ay and B, = A, \ A,_1 for n > 2. Then A, = By U ....U B,,
B,NB;=¢ifi+# jand A= U2, B. Hence

p(An) = E5_,p(Br)

and
p(A) = X2 u(By).

Now e) follows, by the definition of the sum of an infinite series.

(f) Put C,, = Ay \ A, n>1. Then C; CCy, C C5 C ...,
AN\NA=U2,C,
and pu(A) < p(A,) < u(Ay) < oo. Thus
#(Cy) = p(Ay) — p(A,)
and Part (e) shows that

(A1) = p(A) = (AL \ A) = lim p(Cy) = p(Ar) — lim p(Ay).

n—oo n—oo

This proves (f).

(g) The result follows from Parts d) and e).
This completes the proof of Theorem 1.1.2.
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The hypothesis ”1(A;) < oo ” in Theorem 1.1.2 ( f) is not superfluous. If
N, is the counting measure on N and A,, = {n,n +1,...} , then en, (4,) =
oo for all n but A1 O A; O ... and en, (N9 A,) = 0 since N2, A, = ¢.

If A, B C X, the symmetric difference AAB is defined by the equation

AAB =g (A\ B)U (B\ A).

Note that
XAAB :| XA — XB | .

Moreover, we have

AAB = A°AB°¢

and
(UZ1A)A(UZ, B;) € U (4,AB;).

Example 1.1.1. Let x4 be a finite positive measure on R. We claim that
to each set ¥ € R and ¢ > 0, there exists a set A, which is finite union of
intervals (that is, A belongs to the Riemann algebra Ry), such that

p(EAA) < e.

To see this let S be the class of all sets £ € R for which the conclusion
is true. Clearly ¢ € S and, moreover, Rg C S. If A € Ry, A° € Ry and
therefore £° € Sif E € S. Now suppose F; € §,i € N . Then to each ¢ > 0
and 7 there is a set A; € Ry such that u(E;AA;) < 2 . If we set

then
PEAUZA)) < B2 u(EAA;) <e.

Here
EA(UZA) ={EN (NZA47) F U{E N (U2, 4:)}

and Theorem 1.1.2 (f) gives that
pn({EN (M2 A7)} U{(E N (UZ,40)}) <e
if n is large enough (hint: N;e;(D; U F) = (NierD;) U F). But then

pEA UL, A) = p({E 0 (N2 A7)} U{E N (UL A)}) < e
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if n is large enough we conclude that the set £ € S. Thus § is a o-algebra
and since Rg C S C R it follows that S = R.

Exercises

1. Prove that the sets N x N = {(7, j); i,7 € N} and Q are denumerable.

2. Suppose A is an algebra of subsets of X and p and v two contents on A
such that p < v and p(X) = v(X) < co. Prove that u = v.

3. Suppose A is an algebra of subsets of X and p a content on A with
p(X) < oo. Show that

(AU BUC) = pu(A) + u(B) + u(C)
—(ANB)—wANC)—pu(BNC)+pu(ANBNC).
4. A collection C of subsets of X is an algebra with the following property:

If A, eC,ne N, and A, NA, =¢if k#n, then U2, A, € C. Prove that
C is a o-algebra.

5. Let (X, M) be a measurable space and (u);-, a sequence of positive
measures on M such that gy < py < pg < ... . Prove that the set function

p(A) = lim g (A), Ae M

is a positive measure.

6. Let (X, M, 1) be a positive measure space. Show that

u(ﬁZﬂAk) < \n/ HZ:lN(Ak)
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for all Ay,..., A, € M.

7. Let (X, M, ) be a o-finite measure space with p(X) = co. Show that for
any r € [0, 0o[ there is some A € M with r < pu(A) < oo.

8. Show that the symmetric difference of sets is associative:

AA(BAC) = (AAB)AC.

9. (X, M, ) is a finite positive measure space. Prove that

| 1(A) = u(B) |[< p(AAB).

10. Let £ = 2N. Prove that
cN(EAA) = o0

if A is a finite union of intervals.

11. Suppose (X, P(X), 1) is a finite positive measure space such that u({z}) >
0 for every x € X. Set

d(A, B) = u(AAB), A, B € P(X).

Prove that
d(A,B)=0 < A= B,
d(A,B) =d(B, A)

and
d(A,B) <d(A,C)+d(C,B).

12. Let (X, M, 1) be a finite positive measure space. Prove that

(U Ag) > B 1(As) — Bicici<npt(Ai N Ay)
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for all Ay,..., A, € M and integers n > 2.
1.2. Measure Determining Classes

Suppose i and v are probability measures defined on the same o-algebra M,
which is generated by a class €. If ;1 and v agree on &, is it then true that u
and v agree on M? The answer is in general no. To show this, let

X ={1,2,3,4}

and
&={{1,2},{1,3}}.
Then o(£) = P(X). If p = ex and

1 1 1 1
== =0 =0 =0
v 6X,1+3X,2+3X,3+6X74

then = v on £ and pu # v.

In this section we will prove a basic result on measure determining classes
for o-finite measures. In this context we will introduce so called 7-systems
and \-systems, which will also be of great value later in connection with the
construction of so called product measures in Chapter 3.

Definition 1.2.1. A class G of subsets of X is a m-system if ANB € G
forall A,B € @.

The class of all open n-cells in R" is a m-system.

Definition 1.2.2. A class D of subsets of X is a A-system if the following
properties hold:

(a) X € D.

(b) If A,B€ D and AC B, then B\ A € D.
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(c) If (A,)nen, is a disjoint denumerable collection of members of the
class D, then U A, € D.

Theorem 1.2.1. If a class M s both a m-system and A-system, then M is
a o-algebra.

PROOF. If A € M, then A = X \ A € M since X € M and M is a
A-system. Moreover, if (A, )nen, is a denumerable collection of members of
M,

AU UA, =(AiN..NA) e M

for each n, since M is a A-system and a w-system. Let (B,)>, be the
disjungation of (A,)% ;. Then (B,),en, is a disjoint denumerable collection
of members of M and Definition 1.2.2(c) implies that U, A, = U2, B, €
M.

Theorem 1.2.2. Let G be a w-system and D a A-system such that G C
D. Then o(G) C D.

PROOF. Let M be the intersection of all A-systems containing G. The class
M is a A-system and G C M CD. In view of Theorem 1.2.1 M is a o-
algebra, if M is a m-system and in that case 0(G) C M. Thus the theorem
follows if we show that M is a m-system.

Given C' C X, denote by D¢ be the class of all D C X such that DNC €
M.

CLAIM 1. If C € M, then D¢ is a A-system.

PROOF OF CLAIM 1. First X € D¢ since X N C' = C € M. Moreover, if
A, B€Dgand AC B, then ANC,BNC € M and

(B\A)NC =(BNC)\ (ANC) € M.

Accordingly from this, B\ A € D¢. Finally, if (A,),en, is a disjoint denumer-
able collection of members of D¢, then (A, NC),en, is disjoint denumerable
collection of members of M and

(Unen, An) NC = Upen, (AN C) € M.
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Thus UneN+An € Deo.

CLAIM 2. If A € G, then M C D,.

PROOF OF CLAIM 2. f Be G, AnNnB € GC M. Thus B € Dy. We
have proved that G C D4 and remembering that M is the intersection of all
A-systems containing G Claim 2 follows since Dy is a A-system.

To complete the proof of Theorem 1.2.2, observe that B € D4 if and only
if A€ Dg. By Claim 2, if A € G and B € M, then B € D, that is A € Dg.
Thus G C Dp if B € M. Now the definition of M implies that M C Dy if
B € M. The proof is almost finished. In fact, if A, B € M then A € Dp
that is AN B € M. Theorem 1.2.2 now follows from Theorem 1.2.1.

Theorem 1.2.3. Let p and v be positive measures on M = o(G), where
G is a mw-system, and suppose u(A) = v(A) for every A € G.

(a) If u and v are probability measures, then u = v.

(b) Suppose there ezist E, € G, n € Ny, such that X = U° | E,,

E1 Q E2 Q ceey and

w(E,) =v(E,) < oo, alln € N,.
Then = v.

PROOF. (a) Let
D={AeM; u(4)= v(A)}.

It is immediate that D is a A-system and Theorem 1.2.2 implies that M =
0(G) C D since G C D and G is a 7-system.

(b) If u(E,) = v(F,) =0 for all all n € N, then

p(X) = lim p(E,) =0

n—oo
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and, in a similar way, v(X) = 0. Thus p = v. If u(E,) = v(E,) > 0, set

1 1
pn(A) = M(En)M(A NE,) and v,(A) = v(ANE,)

for each A € M. By Part (a) u,, = v, and we get
w(ANE,) =v(ANE,)

for each A € M. Theorem 1.1.2(e) now proves that p = v.

Theorem 1.2.3 implies that there is at most one positive measure defined

on R, such that the measure of any open n-cell in R" equals its volume.
Next suppose f: X — Y andlet A C X and B C Y. The image of A
and the inverse image of B are

f(A) ={y; y = f(x) for some z € A}
and
f7Y(B) = {z; f(x) € B}

respectively. Note that
) =X

and

Y\ B) =X\ f71(B).
Moreover, if (A;);c; is a collection of subsets of X and (B;);cs is a collection
of subsets of Y

f(UierAy) = Uier f(As)
and
F N UierBi) = Uier fH(B)).
Given a class £ of subsets of Y, set
fHE) ={f'(B); Be&}.

If (Y, ) is a measurable space, it follows that the class f~1 () is a o-algebra
in X. If (X, M) is a measurable space

{BeP(); f'(B)e M}
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is a g-algebra in Y. Thus, given a class £ of subsets of Y,

Definition 1.2.3. Let (X, M) and (Y, ) be measurable spaces. The func-
tion f: X — Y is said to be (M, N)-measurable if f~*(N) C M. If we say
that f: (X, M) — (Y,N) is measurable this means that f : X — Y is an
(M, N)-measurable function.

Theorem 1.2.4. Let (X, M) and (Y,N) be measurable spaces and suppose
E generates N'. The function [ : X —Y is (M, N)-measurable if

FHE M.

PROOF. The assumptions yield

Since
we are done.

Corollary 1.2.1. A function f:X — R is (M, R)-measurable if and only
if the set f~'(Ja, 00]) € M for all a € R.

If f: X - Y is (M, N)-measurable and p is a positive measure on M,
the equation

v(B) = u(f(B)), BEN

defines a positive measure v on N. We will write v = uf=*, v = f(u) or
v = p;. The measure v is called the image measure of ; under f and f is
said to transport p to v. Two (M, N)-measurable functions f : X — Y and
g: X — Y are said to be p-equimeasurable if f(u) = g(u).
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As an example, let a € R" and define f(z) =x+aifx € R". If B C R",
fY(B)={z; v+a€ B}=B-a.

Thus f~!(B) is an open n-cell if B is, and Theorem 1.2.4 proves that f is
(R, R,)-measurable. Now, granted the existence of volume measure v,,, for
every B € R,, define

N(B) = f(vn>(B) = Un<B - CL).

Then p(B) = v,(B) if B is an open n-cell and Theorem 1.2.3 implies that
i = v,. We have thus proved the following

Theorem 1.2.5. For any A € R,, and x € R"
A+zxeR,

and

(A + ) = v, (A).

Suppose (2, F, P) is a probability space. A measurable function ¢ defined
on {2 is called a random variable and the image measure P is called the
probability law of £. We sometimes write

Here are two simple examples.
If the range of a random variable £ consists of n points S = {s1, ..., 8,}
(n>1) and P = %cs, ¢ is said to have a uniform distribution in S. Note

that 1
Pr= =37 _.0,,..
3 k=1Ysy,

Suppose A > 0 is a constant. If a random variable ¢ has its range in N

and \n
__yoo 7t =X
Pf - En:(] n e 571

then ¢ is said to have a Poisson distribution with parameter .
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Exercises

1. Let f: X =Y, AC X, and B C Y. Show that
F(f7H(B)) € B and f1(f(A)) 2 A.

2. Let (X, M) be a measurable space and suppose A C X. Show that the
function x4 is (M, R)-measurable if and only if A € M.

3. Suppose (X, M) is a measurable space and f, : X — R, n € N, a
sequence of (M, R)-measurable functions such that

lim f,(z) exists and = f(z) € R

n—oo

for each x € X. Prove that f is (M, R)-measurable.

4. Suppose f : (X, M) — (Y,N) and g : (Y,N) — (Z,S) are measurable.
Prove that g o f is (M, S)-measurable.

5. Granted the existence of volume measure v,,, show that v, (r4) = r"v,(A)

ifr>0and A€ R.

6. Let u be the counting measure on Z? and f(x,y) = x, (z,y) € Z*. The
measure /4 is o-finite. Prove that the image measure f(u) is not o-finite.

7. Let p, v : R — [0, 00] be two positive measures such that u(I) = v(I) < oo
for each open subinterval of R. Prove that y = v.
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8. Suppose £ has a Poisson distribution with parameter A. Show that P [2IN] =
e~ cosh \.

9. Find a A-system which is not a o-algebra.

1.3. Lebesgue Measure

Once the problem about the existence of volume measure is solved the exis-
tence of the so called Lebesgue measure is simple to establish as will be seen
in this section. We start with some concepts of general interest.

If (X, M,p) is a positive measure space, the zero set Z, of p is, by
definition, the set at all A € M such that pu(A) = 0. An element of Z, is
called a null set or p-null set. If

(Ac Z,and BCA)=BeM

the measure space (X, M, i) is said to be complete. In this case the measure
p is also said to be complete. The positive measure space (X, {¢, X}, u),
where X = {0, 1} and p = 0, is not complete since X € Z, and {0} ¢ {4, X} .

Theorem 1.3.1 If (E,);>, is a denumerable collection of members of Z,
then Uy | B, € Z,,.

PROOF We have
0 < u(Upli En) < E52u(Ey) =0

which proves the result.

Granted the existence of linear measure v; it follows from Theorem 1.3.1
that Q € Z,, since Q is countable and {a} € Z,, for each real number a.

Suppose (X, M, u) is an arbitrary positive measure space. It turns out
that p is the restriction to M of a complete measure. To see this suppose
M~ is the class of all E C X is such that there exist sets A, B € M such that
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ACFECBand B\ Acec 2, It is obvious that X € M~ since M C M. If
E € M~ choose A,B € M such that A C E C B and B\ A € Z,. Then
B¢ C E° C A®and A°\ B° = B\ A € Z, and we conclude that £° € M~ If
(E;)2, is a denumerable collection of members of M ™, for each i there exist
sets A;, B; € M such that A; C E C B; and B; \ 4; € Z,. But then

Uz Ai © UL E; € UZ, B
where U, A;,UX, B; € M. Moreover, (U2, B;) \ (U2, A;) € Z, since
(U1 Bi) \ (U2 Ai) C U (B \ 4y).

Thus U°, E; € M~ and M~ is a o-algebra.
If E € M, suppose A;, B; € M are such that A; C E C B; and B; \ 4; €
Z, for i = 1,2. Then for each i, (B; N Bs) \ 4; € Z, and

(BN Ba) = pu((B1 N Ba) \ Ai) + pu(Ai) = p(A;).

Thus the real numbers ;(A;) and p(Az) are the same and we define (E) to
be equal to this common number. Note also that pu(B;) = p(FE). It is plain
that a(¢) = 0. If (E;)°, is a disjoint denumerable collection of members
of M, for each i there exist sets A;, B; € M such that A; C E; C B; and
B; \ A; € Z,. From the above it follows that

UZ Ey) = p(Ui2, Ai) = X027 pu(Ay) = X502 a(E).

We have proved that pi is a positive measure on M~. If F € Z; the
definition of i shows that any set A C E belongs to the o-algebra M™. It
follows that the measure [ is complete and its restriction to M equals p.

The measure 1 is called the completion of ;1 and M~ is called the com-
pletion of M with respect to .

Definition 1.3.1 The completion of volume measure v, on R" is called
Lebesgue measure on R" and is denoted by m,,. The completion of R,, with
respect to v, is called the Lebesgue o-algebra in R™ and is denoted by R, .
A member of the class R, is called a Lebesgue measurable set in R" or a
Lebesgue set in R™. A function f : R” — R is said to be Lebesgue measurable
if it is (R,,, R)-measurable. Below, m; is written m if this notation will not
lead to misunderstanding. Furthermore, R{ is written R~.
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Theorem 1.3.2. Suppose £ € R, and x €R". Then E +x € R, and
mp(E + x) = m,(F).

PROOF. Choose A, B € R,, such that A C EC Band B\ A € Z, . Then,
by Theorem 1.2.5, A+ z, B+ x € Ry, v,(A+ x) = v,(A) = m,(F), and
(A+2)\(B+2)=(A\B)+z€ 2,,. Since A+x C E+a C B+ z the
theorem is proved.

The Lebesgue o-algebra in R"™ is very large and contains each set of
interest in analysis and probability. In fact, in most cases, the o-algebra R, is
sufficiently large but there are some exceptions. For example, if f : R" — R"
is continuous and A € R,,, the image set f(A) need not belong to the class
R, (see e.g. the Dudley book [D]). To prove the existence of a subset of the
real line, which is not Lebesgue measurable we will use the so called Axiom
of Choice.

Axiom of Choice. If (4;);c; is a non-empty collection of non-empty sets,
there exists a function f : I — U, A; such that f(i) € A; for every i € 1.

Let X and Y be sets. The set of all ordered pairs (z,y), where x € X
and y € Y is denoted by X x Y. An arbitrary subset R of X x Y is called a

relation. If (z,y) € R, we write x ~ y. A relation is said to be an equivalence
relation on X if X =Y and

(i)  ~ x (reflexivity)
(ii) z ~y = y ~ x (symmetry)
(0-

ii) (r ~y and y ~ 2) = z ~ z (transitivity)

The equivalence class R(z) =4 {y; y ~ x}. The definition of the equiv-
alence relation ~ implies the following:

(a) z € R(x)
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(b) R(x) N R(y) # ¢ = R(x) = R(y)
(C) UzEXR(x) = X.

An equivalence relation leads to a partition of X into a disjoint collection
of subsets of X.

Let X = [—%, %} and define an equivalence relation for numbers z, y in X
by stating that x ~ y if x — y is a rational number. By the Axiom of Choice
it is possible to pick exactly one element from each equivalence class. Thus
there exists a subset N L of X which contains exactly one element from each
equivalence class.

If we assume that NL € R~ we get a contradiction as follows. Let (r;)3°,

be an enumeration of the rational numbers in [—1,1]. Then

and it follows from Theorem 1.3.1 that r; + NL ¢ Z,, for some i. Thus, by
Theorem 1.3.2, NL ¢ Z,,,.

Now assume (r; + NL) N (r; + NL) # ¢. Then there exist a’,a” € NL
such that 7, +a' =r; +a" or @’ —a" = r; — r;. Hence o’ ~ o” and it follows
that @’ and a” belong to the same equivalence class. But then o’ = a”. Thus
r; = r; and we conclude that (r; + NL)en, is a disjoint enumeration of
Lebesgue sets. Now, since

33
U2, (r;i + NL)C |—=, =
SURR OIS
it follows that
3>m(U(r;+ NL)) =% m(NL).

But then NL € Z,,, which is a contradiction. Thus NL ¢ R™.

In the early 1970’ Solovay [S] proved that it is consistent with the usual
axioms of Set Theory, excluding the Axiom of Choice, that every subset of
R is Lebesgue measurable.

From the above we conclude that the Axiom of Choice implies the exis-
tence of a subset of the set of real numbers which does not belong to the class
R. Interestingly enough, such an example can be given without any use of
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the Axiom of Choice and follows naturally from the theory of analytic sets.
The interested reader may consult the Dudley book [D] .

Exercises

1. (X, M, ) is a positive measure space. Prove or disprove: If A C E C B
and p(A) = p(B) then E belongs to the domain of the completion f.

2. Prove or disprove: If A and B are not Lebesgue measurable subsets of
R, then AU B is not Lebesgue measurable.

3. Let (X, M, ) be a complete positive measure space and suppose A, B €
M, where B\ A is a p-null set. Prove that £ € M if A C E C B (stated
otherwise M~ = M).

4. Suppose £ C R and E ¢ R~. Show there is an € > 0 such that
m(B\ A) > ¢

forall A,B € R suchthat AC EFC B.

5. Suppose (X, M, 1) is a positive measure space and (Y, N') a measurable
space. Furthermore, suppose f : X — Y is (M, N)-measurable and let
v = puf~t that is v(B) = u(f~'(B)), B € N. Show that f is (M~ ,N")-
measurable, where M~ denotes the completion of M with respect to ;1 and
N~ the completion of N with respect to v.

1.4. Carathéodory’s Theorem
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In these notes we exhibit two famous approaches to Lebesgue measure. One
is based on the Carathéodory Theorem, which we present in this section, and
the other one, due to F. Riesz, is a representation theorem of positive linear
functionals on spaces of continuous functions in terms of positive measures.
The latter approach, is presented in Chapter 3. Both methods depend on
topological concepts such as compactness.

Definition 1.4.1. A function 0 : P(X) — [0,00] is said to be an outer
measure if the following properties are satisfied:

(i) 6(¢) = 0.
(i) 0(A) < 0(B) if A C B.
(iii) for any denumerable collection (A,,)22; of subsets of X

BU 1AL < E32,0(A,).

Since

E=(ENA)U(ENA9
an outer measure 6 satisfies the inequality
O(F) <O(ENA)+0(FEnNA°.

If 0 is an outer measure on X we define M(f) as the set of all A C X
such that
O(F)=0(ENA)+6(ENA°) foral EC X

or, what amounts to the same thing,
O(F)>0(ENA)+0(FENA°) forall E C X.

The next theorem is one of the most important in measure theory.
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Theorem 1.4.1. (Carathéodory’s Theorem) Suppose 6 is an outer
measure. The class M(0) is a o-algebra and the restriction of 6 to M(0) is
a complete measure.

PROOF. Clearly, ¢ € M(f) and A € M(0) if A € M(A). Moreover, if
A,Be M(#) and E C X,

O(F)=0(ENA)+6(EnN A

=0(ENANB)+60(ENANB°
+0(ENA°NB)+0(ENA°NB°).

But
AUB=(ANB)U(ANB°)U(A°NB)
and
A°NB°=(AUDB)°
and we get

g(E)>60(EN(AUB))+0(EN(AUB)°).

It follows that AU B € M(f) and we have proved that the class M(0) is an
algebra. Now if A, B € M(#) are disjoint

B(AUB) = 0((AUB) N A) +0((AUB) N A°) = 0(A) + 0(B)

and therefore the restriction of # to M(0) is a content.
Next we prove that M(0) is a o-algebra. Let (A;)°, be a disjoint denu-
merable collection of members of M(6) and set for each n € N

B, = Uj<i<nA; and B = U2 A;
(here By = ¢). Then for any F C X,
0(ENB,) =0ENB,NA,)+0(ENB,NAY)
=0(ENA,)+0(ENDB,)

and, by induction,
0(ENB,) =% ,0(ENA;).

But then
0(E)=0(ENB, +0(FENB;)
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> ¥ 0(ENA)+0(ENBY
and letting n — oo,
O(F) > X2, 0(ENA;) +0(EnN B°)

> 0(U2 (ENA;))+0(ENB°
=0(ENB)+0(ENDB°)>0(FE).

All the inequalities in the last calculation must be equalities and we conclude
that B € M(f) and, choosing F = B, results in

0(B) = %2,6(A:).

Thus M(0) is a o-algebra and the restriction of 6 to M(6) is a positive
measure.
Finally we prove that the the restriction of 6 to M(0) is a complete

measure. Suppose B C A € M(f) and 0(A) =0. If £ C X,
8(E) < 0(EN B) +0(E N B°) < §(E N B°) < §(E)

and so B € M(6). The theorem is proved.

Exercises

1. Suppose 0; : P(X) — [0,00[, ¢ = 1,2, are outer measures. Prove that
6 = max(0y, 0,) is an outer measure.

2. Suppose a,b € R and a # b. Set § = max(d,, ). Prove that

{a}, {b} & M(0).

1.5. Existence of Linear Measure
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The purpose of this section is to show the existence of linear measure on R
using the Carathéodory Theorem and a minimum of topology.

First let us recall the definition of infimum and supremum of a non-
empty subset of the extended real line. Suppose A is a non-empty subset
of [—00,00] = RU{—00,00}. We define —oo < z and x < oo for all x €
[—00,00]. An element b € [—o0, 0] is called a majorant of A if x < b for all
x € A and a minorant if x > b for all z € A. The Supremum Axiom states
that A possesses a least majorant, which is denoted by sup A. From this
follows that if A is non-empty, then A possesses a greatest minorant, which
is denoted by inf A. (Actually, the Supremum Axiom is a theorem in courses
where time is spent on the definition of real numbers.)

Theorem 1.5.1. (The Heine-Borel Theorem; weak form) Let [a,b] be
a closed bounded interval and (U;);e; a collection of open sets such that

UierU; 2 [a, b] .

Then
Uie Ui 2 [a, b]

for some finite subset J of I.

PROOF. Let A be the set of all « € [a, b] such that
UiesUi 2 |a, 7]

for some finite subset J of I. Clearly, a € A since a € U; for some 7. Let
¢ = sup A. There exists an ig such that ¢ € Uy,. Let ¢ € Jag, bo[ C U;,, where
ag < bg. Furthermore, by the very definition of least upper bound, there
exists a finite set J such that

Uies Ui 2 [a, (ao +¢)/2].

Hence
Uicsugio}Ur 2 [a, (¢ + bo) /2]
and it follows that ¢ € A and ¢ = b. The lemma is proved.
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A subset K of R is called compact if for every family of open subsets U;,
1 € I, with U;c;U; O K we have U;c;U; O K for some finite subset J of 1.
The Heine-Borel Theorem shows that a closed bounded interval is compact.
If x,yec Rand E, FF CR, let

d(xz,y) =| v -y |
be the distance between z and y, let

d(xz, E) = inf d(z,u)

uekl

be the distance from x to E, and let

d(E,F)= inf d(u,v)

ueEveF

be the distance between E and F' (here the infimum of the emty set equals
00). Note that for any u € E,

d(z,u) < d(x,y) + d(y,u)

and, hence

d(xz, E) < d(x,y) + d(y,u)

and
d(z,E) < d(z,y) +d(y, E).

By interchanging the roles of x and y and assuming that E # ¢, we get

Note that if /' C R is closed and x ¢ F| then d(z, F') > 0.
An outer measure 6 : P(R) — [0, 00 is called a metric outer measure if

O(AU B) = 0(A) + 0(B)

for all A, B € P(R) such that d(A, B) > 0.

Theorem 1.5.2. If 6 : P(R)—[0,00] is a metric outer measure, then

R C M(0).
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PROOF. Let F' € P(R) be closed. It is enough to show that F' € M(0). To
this end we choose F C X with §(E) < oo and prove that

O(FE) > 0(ENF)+0(ENF.

Let n > 1 be an integer and define
1
A, = {xEEﬂFC; d(z, F) > —}.
n

Note that A, C A,,11 and
ENF°=Uy A,.
Moreover, since f is a metric outer measure
O(E) > 0(ENF)UA,) =0(ENF)+0(A,)
and, hence, proving

0(E N F°) = lim 0(A,)

n—oo

we are done.
Let B, = A,+1 NAS. It is readily seen that

1
d Bn aAn Z TN
( +1 ) n(n+ 1)
since if z € B,,;; and
1
d
(z,y) < n(n+1)
then
dy, F) < d(y,z) +d(z, F) < = + S
5 = &, ’ nn+1) n+1 n
Now

0(Agg11) > 0(Bay, U Agg—1) = 0(Bay,) + 0(Agg—1)

and in a similar way
0(Aar) > 57,0 Bai1).
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But 0(A,,) < 0(F) < oo and we conclude that

We now use that
EnNFe=A,U(Ux, B;)

to obtain
0(E N F9) < 0(A,) + 52,0(B).

Now, since 0(E N F°) > 0(A,),

O(E N F°) = lim 0(A,)

n—oo

and the theorem is proved.

PROOF OF THEOREM 1.1.1 IN ONE DIMENSION. Suppose § > 0. If
A CR, define

05(A) = inf X322 1(1)
the infimum being taken over all open intervals [}, with [(I;) < ¢ such that
Obviously, 05(¢) = 0 and 05(A) < 05(B) if A C B. Suppose (4,)52, is a
denumerable collection of subsets of R and let € > 0. For each n there exist

intervals Iy,, k € N, such that [(Ix,) <,

and
Y (Ikn) < 0s5(A,) +e277.
Then
A —def UzozlAn C Uz?nzljkn
and
sznzll(]kn) < 3% 05(A,) + €.
Thus

05(A) < X02,05(A,) +¢
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and, since € > 0 is arbitrary,
05(A) < X2 ,05(A,).

It follows that 65 is an outer measure.
If I is an open interval it is simple to see that

0:(1) < I(1I).

To prove the reverse inequality, choose a closed bounded interval J C I. Now,
if

where each [}, is an open interval of I([};) < ¢, it follows from the Heine-Borel
Theorem that

for some n. Hence

() < R l(Le) < X35 0(1)

and it follows that
1(J) < 6s5(1)

and, accordingly from this,
I(I) < 05(I).

Thus, if I is an open interval, then
Os5(1) = I1(1).
Note that 05, > 05, if 0 < 67 < d2. We define
0o(A) = (151—I>I(1) 0s(A) if ACR.

It obvious that y is an outer measure such that 6(7) =I([), if I is an open
interval.

To complete the proof we show that 0 is a metric outer measure. To this
end let A, B C R and d(A, B) > 0. Suppose 0 < § < d(A, B) and

where each [, is an open interval with (/) < . Let

a={k I,NA#¢}
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and
B={k; I N B # ¢}.
Then anN g = ¢,
A C Ugealk
and
B C Ugeply

and it follows that
Y20 1(Ix) > Epeal(ly) + Xiepl(y)

> 05(A) + 05(B).

Thus
95(A U B) > 95(14) + (95(3)

and by letting 6 — 0 we have
0o(AU B) > 0y(A) + 0y(B)

and
0o(AU B) = 0y(A) + 0o(B).

Finally by applying the Carathéodory Theorem and Theorem 1.5.2 it
follows that the restriction of 0y to R equals v;.

We end this section with some additional results of great interest.

Theorem 1.5.3. For any 6 > 0, 05 = 0y. Moreover, if ACR
0o(A) = inf X2, U(1)

the infimum being taken over all open intervals I, k € Ny, such that
UX I 2 A.
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PROOF. It follows from the definition of 6y that 05 < 6y,. To prove the
reverse inequality let A C R and choose open intervals I, k € N, such that
U Ix O A. Then

0o(A) < Oo(UpZi 11) < X32,00(1x)

= E20:1 ([k)

Hence

the infimum being taken over all open intervals I, & € N,, such that
UX I 2 A. Thus 0y(A) < 65(A), which completes the proof of Theorem
1.5.3.

Theorem 1.5.4. If A CR,

Oo(A) = inf 0,(U).

UDA
U open
Moreover, if A € M(6y),
Bo(A) = sup  Oo(K).

KCA
K closed bounded

PROOF. If A C U, 0y(A) < 6y(U). Hence
bo(A) < it 0u(0).

U open

Next let ¢ > 0 be fixed and choose open intervals I, & € N, , such that
UX I 2 A and

(here observe that it may happen that 6y(A) = 0o0). Then the set U =g4.¢
Uz, 1) is open and

Oo(U) < 392100(1)) = X2, U(11) < 6p(A) +&.

Thus

o Oo(U) < 6o(A)
U open
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and we have proved that

0o(A) = nf 0o (U).
U open

If K CA, 0yK)<60y(A) and, accordingly from this,

sup eo(K) S 90(14)
KCA
K closed bounded

To prove the reverse inequality we first assume that A € M(6y) is bounded.
Let € > 0 be fixed and suppose J is a closed bounded interval containing A.
Then we know from the first part of Theorem 1.5.4 already proved that there
exists an open set U O J ~. A such that

90(U> < Ho(J AN A) + €.
But then
Qo(J) < Qo(J\ U) +00(U) < 80(:]\ U) +90<J\A) +e

and it follows that
0o(A) —e < Oo(J\U).
Since J ~. U is a closed bounded set contained in A we conclude that
QO(A) < sup Ho(K)

KCA
K closed bounded

If Ae M(y) let A, = An[—n,n],n € Ny. Then given ¢ > 0 and n €
N., let K,, be a closed bounded subset of A,, such that 6y(K,) > 0y(A,) —¢.
Clearly, there is no loss of generality to assume that K1 C Ky, C K3 C ...
and by letting n tend to plus infinity we get

Hence
0o(A) = sup  Gy(K).
KCA
K compact

and Theorem 1.5.4 is completely proved.
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Theorem 1.5.5. Lebesgue measure my equals the restriction of 0y to M(0y).

PROOF. Recall that linear measure v; equals the restriction of 6y to R and
my = v1. First suppose £ € R~ and choose A, B € R such that AC F C B
and B\NA € Z,,. But then §y(E~A) =0and £ = AU(E~ A) € M(6y) since
the Carathéodory Theorem gives us a complete measure. Hence m;(F) =
v1(A) = 0o(E).

Conversely suppose £ € M(fy). We will prove that £ € R~ and m;(F) =
0o(E). First assume that E is bounded. Then for each positive integer n there
exist open U, O E and closed bounded K,, C F such that

0o(U,) < Oo(E) + 27"

and

GO(Kn) > Qo(E) — 27",
The definitions yield A = U°K,,, B = N°U,, € R and

Qo(E) = eo(A) = eo(B) = ’Ul(A) = Ul(B) = m1<E)

It follows that £ € R~ and 0y(E) = my(F).

In the general case set £, = F'N[—n,n], n € N,. Then from the above
E, € R~ and 0y(E,) = my(E,) for each n and Theorem 1.5.5 follows by
letting n go to infinity.

The Carathéodory Theorem can be used to show the existence of volume
measure on R™ but we do not go into this here since its existence follows by
several other means below. By passing, let us note that the Carathéodory
Theorem is very efficient to prove the existence of so called Haussdorff mea-
sures (see e.g. [F]), which are of great interest in Geometric Measure Theory.

Exercises

1. Prove that a subset K of R is compact if and only if K is closed and
bounded.
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2. Suppose A € R~ and m(A) < 0. Set f(z) = m(AN]—o0,z]), z € R.
Prove that f is continuous.

3. Suppose A € Z,, and B = {23;2 € A}. Prove that B € Z,,.

4. Let A be the set of all real numbers x such that

1
|$_1—?‘§—3
q q

for infinitely many pairs of positive integers p and ¢g. Prove that A € Z,,,.

5. Let I, ..., I, be open subintervals of R such that
QN[0,1] C Up_ .
Prove that X7_,m(I;) > 1.
6. If E € R~ and m(E) > 0, for every « € |0, 1] there is an interval I such

that m(EN 1) > am(l). (Hint: m(E) = inf %2 ,m(/}), where the infimum
is taken over all intervals such that U2 I, O E.)

7. If E € R~ and m(E) > 0, then the set £ —FE = {x — y; x,y € E'} contains
an open non-empty interval centred at 0.(Hint: Take an interval I with
m(ENI) > 3m(I). Set e = im(I). If | = |< e, then (ENI)N(z+(ENI)) # ¢.)

8. Let p be the restriction of the positive measure 220:15&% to R. Prove that

Juf pw(U) > p(A)
U open

if A={0}.
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1.6. Positive Measures Induced by Increasing Right Continuous
Functions

Suppose F': R — [0, 00] is a right continuous increasing function such that

lim F(z) = 0.
Set
L = lim F(x).

We will prove that there exists a unique positive measure p : R — [0, L] such
that
/L(]—OO,LUD = F(LU), r€R.

The special case L = 0 is trivial so let us assume L > 0 and introduce
H(y)=inf{z e R;F(z) >y}, 0<y< L.

The definition implies that the function H increases.
Suppose a is a fixed real number. We claim that

{y €10, L[; H(y) <a} =]0,F(a)]N]0, L.

To prove this first suppose that y € ]0, L[ and H(y) < a. Then to each
positive integer n, there is an z,, € [H(y), H(y) + 27"[ such that F(z,) > y.
Then z,, — H(y) as n — oo and we obtain that F'(H(y)) > y since F is right
continuous. Thus, remembering that F' increases, F'(a) > y. On the other
hand, if 0 < y < L and 0 < y < F(a), then, by the very definition of H(y),
H(y) < a.

We now define

= H(vipo.ry)

and get
p(]—o0,z]) = F(z), x € R.

The uniqueness follows at once from Theorem 1.2.3. Note that the measure
( is a probability measure if L = 1.
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Exercises
1. Suppose F': R — R is a right continuous increasing function. Prove that

there is a unique positive measure p on R such that

w(la,z)) = F(z) — F(a), if a,2 € R and a < z.

2. Suppose F' : R — R is an increasing function. Prove that the set of
all discontinuity points of F' is at most denumerable. (Hint: Assume first
that F' is bounded and prove that the set of all points x € R such that
F(z+) — F(z—) > ¢ is finite for every € > 0.)

3. Suppose p is a o-finite positive measure on R. Prove that the set of all
x € R such that u({z}) > 0 is at most denumerable.

4. Suppose p is a o-finite positive measure on R,,. Prove that there is an at
most denumerable set of hyperplanes of the type

xp=c (k=1,...,n, ceR)

with positive py-measure.

5. Construct an increasing function f : R — R such that the set of discon-
tinuity points of f equals Q.
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CHAPTER 2
INTEGRATION

Introduction

In this chapter Lebesgue integration in abstract positive measure spaces is
introduced. A series of famous theorems and lemmas will be proved.

2.1. Integration of Functions with Values in [0, co]

Recall that [0, 00] = [0,00[ U {oco} . A subinterval of [0, 00| is defined in the
natural way. We denote by Ry the o-algebra generated by all subintervals
of [0,00]. The class of all intervals of the type |o, 0], 0 < a < 00, (or of
the type [a,00], 0 < o < 00) generates the o-algebra R and we get the
following

Theorem 2.1.1. Let (X, M) be a measurable space and suppose f : X —
[0, 0] .

(a) The function [ is (M, Rg)-measurable if f~'(Ja,o0]) € M for
every 0 < a < o0.

(b) The function f is (M, Rge0)-measurable if f~*([a,00]) € M for
every 0 < a < o0.

Note that theset {f > a} € M for all real aif f is (M, Ry, )-measurable.
If f,g: X — [0, 00] are (M, R )-measurable, then min( f, g), max(f, g),
and f + g are (M, Ry« )-measurable, since, for each a € [0, oo],

min(f,g) > a< (f > aand g > «)

max(f,g) > a < (f >aorg>a)
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and
{f+g>at={J{f>a-qtn{g>q}).
q€Q
Given functions f, : X — [0,00], n = 1,2,..., f = sup,>; f, is defined

by the equation

flz) =sup{fu(z); n=1,2,...}.
Note that

7 ay 00]) = URZ, £ (Jev, 00])
for every real o > 0 and, accordingly from this, the function sup,>; f, is

(M, Ry )-measurable if each f, is (M, R )-measurable. Moreover, f =
inf,,>1 f, is given by

flz) =inf{f,(z); n=1,2,...}.

Since
F7H(0,af) = Uiz, £1([0,a)

for every real v > 0 we conclude that the function f = inf,>; f,, is (M, R 00)-
measurable if each f,, is (M, R )-measurable.
Below we write

fu 1 S

if f,, n=1,2,..., and f are functions from X into [0, oo] such that f, < f,11
for each n and f,(z) — f(z) for each z € X as n — oc.

An (M, Ry )-measurable function ¢ : X — [0,00] is called a simple
measurable function if ¢(X) is a finite subset of [0, co[. If it is neccessary to
be more precise, we say that ¢ is a simple M-measurable function.

Theorem 2.1.2. Let f: X — [0,00] be (M, R )-measurable. There exist
simple measurable functions ¢,, n € Ny, on X such that ¢, T f .

PROOF. Given n € N, set

1—1 1
2n 7 2n

Emzf‘l({ {), i€ N,
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and
oo

1—1
i=1

It is obvious that p, < f and that p, < p,,,. Now set ¢,, = min(n, p,) and
we are done.

Let (X, M, 1) be a positive measure space and ¢ : X — [0, 00[ a simple
measurable function. If g, ..., a,, are the distinct values of the simple function
@, and if E; = o '({a;}), 1 =1,...,n, then

¥ = E?zlaiXEi'
Furthermore, if A € M we define
v(A) = / pdp = S aip(E; N A) = E’;Z’:loéqui (A).
A

Clearly, v is a positive measure since each term in the right side is a positive
measure as a function of A. Note that

/agoduza/¢duif0§a<oo
A A

and

/A odps = ap(A)

if a € [0,00[ and p is a simple measurable function such that ¢ = a on A.
If v is another simple measurable function and ¢ < 1),

/A edp < /A Ydp.

To see this, let §y,..., 5, be the distinct values of ¢ and F; = 1/)_1({6].}),
Jj =1,...,p. Now, putting B;; = F; N I},

/ pdp = v(Ui;(AN Byj))
A

ANB;; ANB;;
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<3, /A  Bydu= /A b
N ij

In a similar way one proves that

/A(soJr@/))dM:/Asodwr/Azbdu.

From the above it follows that

/ OX adp = / Y0 X g nadp
A A

= 2?1%‘/ XEnadpt = Y aipu(E; N A)
A

/ X adp = / edp.
A A

If f: X —[0,00] isan (M, Rg)-measurable function and A € M, we
define

and

/ fdp = sup {/ wdp; 0 < < f, @ simple measurable}
A A

= sup {/ wdp; 0 < < f, ¢ simple measurable and ¢ = 0 on AC} .
A

The left member in this equation is called the Lebesgue integral of f over A
with respect to the measure ;. Sometimes we also speek of the p-integral of f
over A. The two definitions of the p-integral of a simple measurable function
¢ : X — [0,00[ over A agree.

From now on in this section, an (M, R « )-measurable function f : X —
[0, 0] is simply called measurable.

The following properties are immediate consequences of the definitions.
The functions and sets occurring in the equations are assumed to be mea-
surable.

(a)If f,g>0and f < gon A, then [, fdu < [, gdp.



48
b) [, fdu= [ xafdp.

(¢) If f>0and « € [0,00], then [, afdu =« [, fdp.
d) [, fdp=0if f =0 and p(A) = co.

e) [, fdu=0if f =00 and pu(A) = 0.

If f: X — [0,00] is measurable and 0 < a < 0o, then f > ax ;-1

ax{fZOé}and
/fdMZ/aX{fm}dM:Oé/ X{f>aydft-
X X X

This proves the so called Markov Inequality

1
_@)Sa/xfdu

where we write u(f > «) instead of the more precise expression pu({f > a}).

[ov,00]) —

Example 2.1.1. Suppose [ : X — [0, 00| is measurable and

/de#< 00.

{f =00} =f"({oc}) € Z,.

To prove this we use the Markov Inequality and have

We claim that

p(f =o00) <pu(f>a)< /fdu
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for each v € |0, 00[. Thus u(f = o0) = 0.

Example 2.1.2. Suppose f: X — [0, 00| is measurable and

| fin=o

{f>0}=f10,00]) € Z,..

We claim that
To see this, note that
-1 00 -1 1
F7100,00) = U o))
Furthermore, for every fixed n € N, the Markov Inequality yields

u(f>%)§n/xfdu=0

and we get {f > 0} € Z, since a countable union of null sets is a null set.

We now come to one of the most important results in the theory.

Theorem 2.1.3. (Monotone Convergence Theorem) Let f, : X —
[0,00] , n = 1,2,3,...., be a sequence of measurable functions and suppose
that f, T f,thatis0< f1 < fo < ... and

fo(z) — f(x) as n — oo, for every x € X.

Then f is measurable and

/fnduﬁ/fduasnaoo.
X X

PROOF. The function f is measurable since f = sup,,>; fn-
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The inequalities f, < fo1 < f yield [y fodp < [ foyrdp < [y fdp and
we conclude that there exists an o € [0, 0o such that

/fndu—wvasnﬁoo
X

and

aS/deu.

To prove the reverse inequality, let ¢ be any simple measurable function
such that 0 < ¢ < f, let 0 < # < 1 be a constant, and define, for fixed

n € Ny,
Ap={z € X; fu(z) > 0p(2)}.
If o, ..., are the distinct values of ¢,

A, =Ul_ ({r e X; falz) > 0o} N{p =ar})

and it follows that A,, is measurable. Clearly, A; C Ay C ... . Moreover, if
f(x) =0, then z € Ay and if f(z) > 0, then Op(z) < f(x) and = € A, for
all sufficiently large n. Thus U® A, = X. Now

az/ fnduzef oy
An An

aZ@/gpdu
D'

since the map A — [, ¢du is a positive measure on M. By letting 6 1 1,

ozz/sodu
X

aZ/deu.

and we get

and, hence

The theorem follows.

Theorem 2.1.4. (a) Let f,g: X — [0,00] be measurable functions. Then

/X(f+g)du=/xfdu+/xgdu-
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(b) (Beppo Levi’s Theorem) If f; : X — [0,00] , k = 1,2,... are mea-
surable,

T

X X

PROOF. (a) Let (¢,,)22, and (¢,,)5°; be sequences of simple and measurable
functions such that 0 < ¢, T f and 0 < ,, T g. We proved above that

/X(sonern)du:/Xsondu+/Xwndu

and, by letting n — oo, Part (a) follows from the Monotone Convergence
Theorem.

(b) Part (a) and induction imply that

/ S fedp = / fedu
X X

and the result follows from monotone convergence.

Theorem 2.1.5. Suppose w : X — [0,00] is a measurable function and
define

v(A) = / wdp, A e M.
A

Then v is a positive measure and

/Afdz/:/Afwdu, AeM

for every measurable function f: X — [0, 00].

PROOF. Clearly, v(¢) = 0. Suppose (Ej)32, is a disjoint denumerable col-
lection of members of M and set £ = U2, Ej. Then

WU Ee) = [

wdp = / Xpwdp = / X, wdp
E X X
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where, by the Beppo Levi Theorem, the right member equals
Eio—l/ X g, wdp = 2?—1/ wdp = X2 v (Ey).
X Ey,

This proves that v is a positive measure.
Let A € M. To prove the last part in Theorem 2.1.5 we introduce the
class C of all measurable functions f : X — [0, co| such that

/A fdv = /A Fwdy.

The indicator function of a measurable set belongs to C and from this we
conclude that every simple measurable function belongs to C. Furthermore, if
fn€C,neN,and f, T f, the Monotone Convergence Theorem proves that
f € C. Thus in view of Theorem 2.1.2 the class C contains every measurable
function f : X — [0, 00]. This completes the proof of Theorem 2.1.5.

The measure v in Theorem 2.1.5 is written
V=wi

or
dv = wdp.

Let (a,)$2; be a sequence in [—o0, oo] . First put 8, = inf {ag, agi1, agro, ...}
and v = sup {5, By, B3, ..} = lim,,_, 3,,- We call 7y the lower limit of ()3,
and write

~v = lim inf av,.

n—oo

Note that

v = lim o,
n—oo

if the limit exists. Now put 8, = sup {a, agr1, Qgro, ...} and v = inf {S4, 55, B3, ..} =
lim,, o 3,,- We call v the upper limit of («,)? , and write

v = lim sup «,.
Note that

v = lim o,
n—oo



93

if the limit exists.
Given measurable functions f, : X — [0,00], n = 1,2, ..., the function
liminf,_. f, is measurable. In particular, if

f(@) = lim f, ()

exists for every x € X, then f is measurable.

Theorem 2.1.6. (Fatou’s Lemma) If f,: X — [0,00], n=1,2,..., are
measurable

/ liminf f,dp < liminf/ fndp.
X e JX

n—o0

PROOF. Introduce

9 = 0L v

The definition gives that g T liminf, .. f, and, moreover,

/gkdué/fndu, n>k
X X

A%wsgéﬁm

The Fatou Lemma now follows by monotone convergence.

and

Below we often write

/Lfcwdu@»

| rau

Example 2.1.3. Suppose ¢ € R and f : (R;R7) — ([0,00],Ro.0) is
measurable. We claim that

th@+aMm@%iAj@Mm®)

instead of
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First if f = x4, where A € R,

/R f(o+ a)dm(z) = /R Yoa(2)dm(z) = m(A - a) =

m(A):/Rf(x)dm(x).

Next it is clear that the relation we want to prove is true for simple mea-
surable functions and finally, we use the Lebesgue Dominated Convergence
Theorem to deduce the general case.

Exercises
1. Suppose f, : X — [0,00], n = 1,2, ..., are measurable and
EpZip(fo > 1) < oo
Prove that

{limsupfn > 1} €z, .

n—oo

2. Set f, = nQX[O 1], M € N.. Prove that

/ liminf f,dm =0 < oo = lim inf/ fndm
R R

n—oo n—oo

(the inequality in the Fatou Lemma may be strict).

3. Suppose f: (R;R™) — ([0,00], Ro.) is measurable and set
9(x) = X2, f(z + k), = € R.

Show that

gdm < oo if and only if {f > 0} € Z,,.
R
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4. Let (X, M,u) be a positive measure space and f : X — [0,00] an
(M, R )-measurable function such that

f(X)CN

and

/de,u< 00.

For every t > 0, set

F(t) = p(f > 1) and G(t) = u(f > 1)

Prove that
[ fin =32 P ) = 572,60
X

2.2. Integration of Functions with Arbitrary Sign

As usual suppose (X, M, 1) is a positive measure space. In this section when
we speak of a measurable function f : X — R it is understood that f is an
(M, R)-measurable function, if not otherwise stated. If f,g : X — R are
measurable, the sum f + ¢ is measurable since

{f+g>at={JUf>a-qgn{g>q})

7€Q

for each real a. Besides the function —f and the difference f — g are mea-
surable. It follows that a function f : X — R is measurable if and only if

the functions f* = max(0, f) and f~ = max(0,—f) are measurable since
f=r—r.
We write f € £(u) if f: X — R is measurable and
<o
b

and in this case we define

/X fu = /X frdp - /X I dn
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Note that

|Jéffdu|§![;lmf|du

since | f |= f* + f~. Moreover, if E € M we define

Lﬂ%zéﬁwwiéfw
/Efduz/XXEfdu-

/fd,uinf,u(E) =0.
E

and it follows that
Note that

Sometimes we write

/Lf«wducw

| rau

If f,g € LY(u), setting h = f + g,

/|mws/rﬂww/|mm<m
X X X

and it follows that h + g € £'(u). Moreover,

instead of

W —hm=f"—f"+g" —g"

and the equation
W+ f+g =f"+g"+h

gives

/h*du—l—/fdu+/gdu:/f+du+/g+du+/ h™dju.
X b X X X X
Thus

/hdu:/fdu—ir/gdu.

X X p%
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Moreover,

/onfdu:oz/xfdu

for each real a. The case @ > 0 follows from (c) in Section 2.1. The case
«a = —1 is also simple since (—f)* = f~ and (—f)” = fT.

Theorem 2.2.1. (Lebesgue’s Dominated Convergence Theorem)
Suppose f,: X — R, n=1,2,..., are measurable and

exists for every x € X. Moreover, suppose there exists a function g € £1(u)
such that
| fu(z) |[< g(z), all z € X and n € N,.

Then f € L' (u),
lim | fa—f|du=0
n—oo X

and
i [ fudn= [ san

Proof. Since | f |< g, the function f is real-valued and measurable since
fT and f~ are measurable. Note here that

f(x) = lim ff(z),all z € X.

n—oo

We now apply the Fatous Lemma to the functions 2g— | f, — f |,n =
1,2,..., and have

/ 2g9dp < liminf/ (29— | fu— f Ddp
X n—oo X

=/ 29du—limsup/ | fo — [ | dp.
X n—oo Jx
But [ + 29dy is finite and we get

i [ | a7 du=0.
n—oo X
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Since

[ udn= [ tan =l [ (5= gdni< [ 15 a1 dn

the last part in Theorem 2.2.1 follows from the first part. The theorem is
proved.

Example 2.2.1. Suppose f : ]a,b[ x X — R is a function such that f(¢,-) €

L (1) for each t € Ja, b| and, moreover, assume 2/ exists and

ot
o
ot
where g € L(u). Set

(t,x) |< g(x) for all (t,z) € Ja,b] x X

F(t) = /}(f(t,x)dﬂ(x) if t € a,b[.

We claim that F' is differentiable and

Fﬁﬁ:X%mmwwy

To see this let t, € ]a, b| be fixed and choose a sequence (£,)°; in ]a,b[ \
{t.} which converges to t,. Define

f(tnvx) — f(t*,ﬂj)

hn(z) = if r € X.
t, —t,
Here each h,, is measurable and
lim h,(z) = %(t*,x) for all x € X.

Furthermore, for each fixed n and « there is a 7, , € |t,, t.[ such that h,(z) =

%(Tn,x, x) and we conclude that | h,(x) |< g(z) for every z € X. Since

F(t,) — F(t.)
tn — Ts

= [ mat@yina

the claim above now follows from the Lebesgue Dominated Convergence The-
orem.
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Suppose S(x) is a statement, which depends on = € X. We will say that
S(x) holds almost (or p-almost) everywhere if there exists an N € Z, such
that S(x) holds at every point of X \ N. In this case we write ”S holds a.e.
7 or 7S holds a.e. [u]”. Sometimes we prefer to write ”S(z) holds a.e.”
or ”S(x) holds a.e. [u]”. If the underlying measure space is a probability
space, we often say ”almost surely” instead of almost everywhere. The term
“almost surely” is abbreviated a.s.

Suppose f : X — R, is an (M, R)-measurable functions and g : X — R.
If f =g ae. [p] there exists an N € Z, such that f(x) = g(x) for every
x € X \ N. We claim that ¢ is (M ™, R)-measurable. To see this let « € R
and use that

{g>a} =[{f >} n(X\N)JU[{g > a} N N].

Now if we define
A={f>a}nN(X\N)

the set A € M and
AC{g>a} CAUN.

Accordingly from this {g > a} € M~ and ¢ is (M~, R)-measurable since «
is an arbitrary real number.

Next suppose f, : X — R, n € N, is a sequence of (M, R)-measurable
functions and f : X — R a function. Recall if

lim f,(z) = f(z), allz € X

then f is (M, R)-measurable since
{f > CV} = Uk ieN, Mp>k {fn > o+ l_l} , all o € R.
If we only assume that

lim f,(z) = f(x), a.e. [y

n—oo

then f need not be (M, R)-measurable but f is (M~, R)-measurable. To
see this suppose N € Z,, and

lim f,(z) = f(z), allz € X \ N.
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Then
nhj{.lo XX\N(x)fn(x) = XX\N(x)f<x)

and it follows that the function xy\y/f is (M, R)-measurable. Since f =
Xx\wf a.e. [p] it follows that f is (M, R)-measurable. The next example
shows that f need not be (M, R)-measurable.

Example 2.2.2. Let X ={0,1,2}, M = {¢,{0},{1,2}, X}, and p(A) =
xa(0), A € M. Set f, = X(12;, » € Ny, and f(x) = x, v € X. Then each
fn is (M, R)-measurable and

lim f,(z) = f(z) a.e. [u]

since

{reXi im f)=f@)} = (0.1}

and N = {1,2} is a p-null set. The function f is not (M, R)-measurable.

Suppose f,g € L'(1). The functions f and g are equal almost everywhere
with respect to p if and only if {f # g} € Z,. This is easily seen to be an
equivalence relation and the set of all equivalence classes is denoted by L ().
Moreover, if f = g a.e. [p], then

/ fdp = / gdp

X X

[ran= [ tas [ gan= [ g [ g
X {f=g} {f#g} {f=g} {f=g}

and, in a similar way,
oo - /
{f= g}

Below we consider the elements of L' () as members of £!(y) and two mem-
bers of L'(u) are identified if they are equal a.e. [u]. From this convention

since



61

it is straight-forward to define f + ¢ and af for all f,g € L'(u) and o € R.
Moreover, we get

dp= [ fd dp if It
/X(f+9)u /Xfwr/xgul frg€ L (n)

and
/afdpb:a/ fduif f € L'(u) and o € R.
X X

Next we give two theorems where exceptional null sets enter. The first
one is a mild variant of Theorem 2.2.1 and needs no proof.

Theorem 2.2.2. Suppose (X, M, ) is a positive complete measure space
and let f, : X — R, n € N, be measurable functions such that

sup | fu(2) [< g(z) ace. [u]

TLEN+

where g € L*(u). Moreover, suppose f: X — R is a function and

f(z) = lim f,(z) a.e. [y].

Then, f € L'(p),
lim | fo—[ldp=0

n—oo
and

lim fnd,u / fdu.
X

n—oo

Theorem 2.2.3. Suppose (X, M, 1) is a positive measure space.

(a) If f: (X, M™)— ([0,00],Ro0) is measurable there exists a measur-
able function g : (X M) — (]0,00],Ro.0) such that f =g a.e. [p].

(b) If f: (X, M") — (R,R) is measurable there exists a measurable
function g : (X, ) (R,R) such that f = g a.e. [u].

PROOF. Since f = f™— f~ it is enough to prove Part (a). There exist simple
M~ -measurable functions ¢, , n € N, such that 0 < ¢, T f. For each fixed
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n SUppose vy, ..., A, are the distinct values of ¢,, and choose for each fixed
i=1,..k,aset Ay C o ({ain}) such that A;, € M and o, (i) \ Ain
wn = EfilainXAm'

Clearly 1, (7) 1 f(z) if € E =gp N2, (U As) and (X \ E) = 0. We
now define g(z) = f(z), if x € E, and g(x) =0 if x € X \ E. The theorem
is proved.

Exercises

1. Suppose f and g are real-valued measurable functions. Prove that f? and
fg are measurable functions.

2. Suppose f € L'(u). Prove that

lim | f]du=0.

(Here [, means [y, ..)

3. Suppose f € L'(u). Prove that to each & > 0 there exists a § > 0 such

that
[ 18 ldu<e
E

whenever p(E) < 6.

4. Let (f,)32, be a sequence of (M, R)-measurable functions. Prove that
the set of all x € R such that the sequence (f,(x))3, converges to a real
limit belongs to M.

5. Let (X, M, R) be a positive measure space such that p(A) = 0 or co for
every A € M. Show that f € L'(u) if and only if f(z) =0 a.e. [u].
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6. Let (X, M,u) be a positive measure space and suppose f and g are
non-negative measurable functions such that

/fdu:/gdy, all A e M.
A A

(a) Prove that f = g a.e. [u] if p is o-finite.
(b) Prove that the conclusion in Part (a) may fail if 4 is not o-finite.

7. Let (X, M, i) be a finite positive measure space and suppose the functions
fn: X — R, n=1,2,..., are measurable. Show that there is a sequence
()22, of positive real numbers such that

lim o, f, =0 ae. [y].

n—oo

8. Let (X, M, ) be a positive measure space and let f,, : X - R,n=1,2, ..,
be a sequence in L'(x) which converges to f a.e. [u] as n — oo. Suppose
f € LY(pn) and

i [ ldu= [ 1 Fd

Show that
iim [ | a7 du=0.
n—oo X

9. Let (X, M,u) be a finite positive measure space and suppose f € L'(u)
is a bounded function such that

/X Py = /X Fdy = /X iz

Prove that f = x4 for an appropriate A € M.

10. Let (X, M, ) be a finite positive measure space and f : X — R a
measurable function. Prove that f € L'(u) if and only if

Spiaml| f 1z k) < oo
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11. Suppose f € L'(m). Prove that the series %2°

* o J(x+ k) converges for
m-almost all x.

12. a) Suppose f : R —[0,00[ is Lebesgue measurable and [; fdm < oo.
Prove that
lim am(f > «) = 0.

a— 00

b) Find a Lebesgue measurable function f : R — [0, 00[ such that f ¢
LY(m), m(f > 0) < oo, and

lim am(f > «) =0.

a—00

2.3 Comparison of Riemann and Lebesgue Integrals

In this section we will show that the Lebesgue integral is a natural general-
ization of the Riemann integral. For short, the discussion is restricted to a
closed and bounded interval.

Let [a,b] be a closed and bounded interval and suppose f : [a,b] — R is
a bounded function. For any partition

Ata=xg<11<..<x,=0

of [a, b] define
Saf =3 ( sup f)(zi —zi)

|z 1,24

and
saf =351 ( inf f)(zi — i)

}Ii—lvzi}

The function f is Riemann integrable if

inf SAf =supsaf
A A

and the Riemann integral fab f(x)dx is, by definition, equal to this common
value.
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Below an ((R7 )[4z, R)-measurable function is simply called Lebesgue
measurable. Furthermore, we write m instead of 144

Theorem 2.3.1. A bounded function f : [a,b] — R is Riemann integrable
if and only if the set of discontinuity points of f is a Lebesgue null set.
Moreover, if the set of discontinuity points of f is a Lebesgue null set, then
f is Lebesgue measurable and

/abf(x)dx: /[ab] fdm.

PROOF. A partition A’ : @ = 2 < 2} < ... < 2/, = b is a refinement of a
partition A : a = zp < 21 < ... < x,, = b if each z;, is equal to some z; and in
this case we write A < A’. The definitions give Sxn f > Sa/f and sa f < sarf
if A < A’. We define, mesh(A) = max<j<,(z; — x;-1).

First suppose f is Riemann integrable. For each partition A let

GA = f(a)X{a} + Z?:l( sup f)X]xi,l,wi}

T5_1,24)
and
an = f(a)X{a} + E?:l( inf ]f)X]xzfl,xz]

lwi—1,@;
and note that
/ GAdm = SAf
[a,b]

and

/ gadm = saf.
[a,b]

Suppose Ay, k= 1,2, ..., is a sequence of partitions such that A, < Ay,

b
SAkfl/ f(z)dz

and

b
saf 1 / f(z)dz
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as k — o00. Let G = limy_,oc Ga, and g = limy_ ga,. Then G and g are
(Ria), R)-measurable, g < f < G, and by dominated convergence

b
/ de:/ gdm:/ f(z)dx.
[a,b] [a,b] a

/ (G = g)dm =0

[a,b]

But then

so that G = ¢ a.e. [m] and therefore G = f a.e. [m]. In particular, f is
Lebesgue measurable and

/abf(x)dx = /[ab] fdm.

N ={z; g(x) < f(x) or f(x) < G(x)}.

We proved above that m(N) = 0. Let M be the union of all those points which
belong to some partition Ay. Clearly, m(M) = 0 since M is denumerable.
We claim that f is continuous off N U M. If f is not continuous at a point

¢ ¢ N UM, there is an € > 0 and a sequence (¢,)5%, converging to ¢ such
that

Set

| flen) — f(c) |> ¢ all n.

Since ¢ ¢ M, ¢ is an interior point to exactly one interval of each partition
Ay and we get

Ga,(c) —ga,lc) > €

and in the limit
Gle) — g(c) > =

But then ¢ € N which is a contradiction.

Conversely, suppose the set of discontinuity points of f is a Lebesgue null
set and let (Ag)2, is an arbitrary sequence of partitions of [a, b] such that
Ag < Ajyq and mesh(Ag) — 0 as k — oo. By assumption,

lim Ga, (x) = lim ga, (x) = f(2)

k—o0
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at each point x of continuity of f. Therefore f is Lebesgue measurable and
dominated convergence yields

lim Ga,dm = fdm
k=00 J14.6] [a,b]

and
lim ga,dm = fdm.
k=00 Jiap) [a,b]

Thus f is Riemann integrable and

QAaﬂxﬂxziémfmn

In the following we sometimes write

lLﬂ@m (AeR)

instead of
/ fdm (AeR).
A

In a similar way we often prefer to write

lLﬂ@m (AcR)

instead of

jcfmnn (AeR;).

Furthermore, ff fdm means f[a b fdm. Here, however, a warning is moti-

vated. It is simple to find a real-valued function f on [0, co[, which is bounded
on each bounded subinterval of [0, 00[, such that the generalized Riemann

integral
/ f(z)dz
0

b
lim /0 f(z)dz

b—oo

is convergent, that is
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exists and the limit is a real number, while the Riemann integral

| 1@ e

is divergent (take e.g. f(z) = *22). In this case the function f does not
belong to £ with respect to Lebesgue measure on [0, oo[ since

b
/ |f|dmzlim/|f(m)|dx:oo.
[0,00] b—oo Jo

Exercises

1. Let f, : [0,1] — [0,1], n € N, be a sequence of Riemann integrable
functions such that

lim f,(z) exists = f(x) all x € [0,1].

n—oo

Show by giving an example that f need not be Riemann integrable.
2. Suppose f,(z) =n?| x| e € R, n € N,. Compute lim,_. f, and
lim,, oo [ fndm.

3. Compute the following limits and justify the calculations:

a)

lim sin(e”) dx.
n—oo [q 1 + nx2
b)
: " T,
lim (1+ —)"cosxdz.

n—oo 0 n

n

lim [ (1+ z)”e’2xal:1:.

n—oo J n

o0

lim (1+ E)" exp(—(1 + %)”)daﬁ

n—oo 0

3
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lim [ (1-— £)_"e%dav.
n—oo [, n
f)
" 1
lim [ (1-— E)" * cos xdx
n—oo Jq n nr—x
g) .
lim (1+ E)”26_mcdx.
n—oo Jq n

4. Let (r,)22; be an enumeration of Q and define
flx) =32,27"p(x — )
where p(z) = 272 if 0 <z < 1 and ¢(z) = 0 if 2 < 0 or z > 1. Show that
a)
/ f(z)dz = 2.
b)
b
/ fA(z)dr = oo if a < b.

f<ooas. [m].

d)
sup f(z) = +ooifa <b.
a<z<b
5. Suppose
< In(1+x)
t) = " dx, t > 0.
fo = [ e o>

a) Show that [ f(t)dt < oo.
b) Show that f is infinitely many times differentiable.

6. Suppose

oo —z2
f(t):/ T x>0
0

x2 + 12
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Compute
hm f(t) and / f(t)

Finally, prove that f is differentiable.

2.4. Expectation

Suppose (€2, F, P) is a probability space and ¢ : (2, F) — (S5,S) a random
variable. Recall that the probability law i of £ is given by the image measure

Py. By definition,
/XBdu—/XB(E)dP
5 Q

for every B € S, and, hence

/Ssoduz/ﬂw(ﬁ)dP

for each simple S-measurable function ¢ on S (we sometimes write f o g =
f(g)). By monotone convergence, we get

/S fu = /Q f(€)ap

for every measurable f : S — [0,00]. Thus if f : S — R is measurable,
f € L'(u) if and only if f(¢) € L'(P) and in this case

/5 Fu = /Q f(€)ap

In the special case when ¢ is real-valued and & € L!(P),

/ wdp(x / ¢dPp.

The integral in the right-hand side is called the expectation of ¢ and is
denoted by E [£].
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CHAPTER 3

Further Construction Methods of Measures

Introduction

In the first section of this chapter we collect some basic results on metric
spaces, which every mathematician must know about. Section 3.2 gives a
version of the Riesz Representation Theorem, which leads to another and
perhaps simpler approach to Lebesgue measure than the Carathéodory The-
orem. A reader can skip Section 3.2 without losing the continuity in this
paper. The chapter also treats so called product measures and Stieltjes in-
tegrals.

3.1. Metric Spaces

The construction of our most important measures requires topological con-
cepts. For our purpose it will be enough to restrict ourselves to so called
metric spaces.

A metric d on a set X is a mapping d : X x X — [0, oo[ such that

(a) d(z,y) =0if and only if z =y

(b) d(x,y) = d(y, x) (symmetry)
(c) d(z,y) < d(x,z) + d(z,y) (triangle inequality).

Here recall, if Ay, ..., A,, are sets,
Ay x o x Ay ={(x1, .., z); mp € A foralli =1, ...,n}

A set X equipped with a metric d is called a metric space. Sometimes we
write X = (X, d) to emphasize the metric d. If E is a subset of the metric
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space (X,d), the function djgxg(z,y) = d(z,y), if z,y € E, is a metric on
E. Thus (E,d|gxg) is a metric space.
The function ¢(t) = min(1,t), ¢ > 0, satisfies the inequality

p(s +1) < pls) + o(t).

Therefore, if d is a metric on X, min(1,d) is a metric on X. The metric
min(1,d) is a bounded metric.

The set R equipped with the metric d;(z,y) =| © — y | is a metric space.
More generally, R" equipped with the metric

dn($7y) = dn((xla "'7xn)7 <y17 7yn)) = 121]??” ’ T — Yk |
is a metric space. If not otherwise stated, it will always be assumed that R"
is equipped with this metric.
Let C'[0,T] denote the vector space of all real-valued continuous functions
on the interval [0,7], where T' > 0. Then

doo(,y) = max | z(t) —y(t) |
is a metric on C'[0,77].
If (Xg,ex), k=1,...,n, are metric spaces,

d(l’,y) = 1<,?’<Xn6k(xkayk)7 T = (1’1, axn) Y = (yla -"7yn)

is a metric on X; X ... X X,,. The metric d is called the product metric on
X X ... xX,.

If X = (X,d) is a metric space and z € X and r > 0, the open ball with
centre at x and radius r is the set B(z,r) = {y € X;d(y,z) <r} . f ECX
and F is contained in an appropriate open ball in X it is said to be bounded.
The diameter of E is, by definition,

diam E = sup d(z,y)
zyek

and it follows that F is bounded if and only if diam E < co. A subset of X
which is a union of open balls in X is called open. In particular, an open

ball is an open set. The empty set is open since the union of an empty family
of sets is empty. An arbitrary union of open sets is open. The class of all
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open subsets of X is called the topology of X. The metrics d and min(1, d)
determine the same topology. A subset E of X is said to be closed if its
complement E° relative to X is open. An intersection of closed subsets of
X is closed. If £ C X, E° denotes the largest open set contained in £ and
E~ (or E) the smallest closed set containing E. E° is the interior of £ and
E~ its closure. The o-algebra generated by the open sets in X is called the
Borel g-algebra in X and is denoted by B(X). A positive measure on B(X)
is called a positive Borel measure.
A sequence (z,)°; in X converges to z € X if
lim d(z,,z) = 0.

n—oo

If, in addition, the sequence (x,)32 ; converges to y € X, the inequalities
0 < d(z,y) < d(xn, x) +d(zn,y)

imply that y = x and the limit point z is unique.
If £ C X and z € X, the following properties are equivalent:

(i) z € E™.
(ii) B(x,r)NE # ¢, all r > 0.
(iii) There is a sequence (x,)2° ; in E which converges to x.

If B(z,r) N E = ¢, then B(x,r)" is a closed set containing F but not x.
Thus x ¢ E~. This proves that (i)=-(ii). Conversely, if z ¢ E~, since E° is
open there exists an open ball B(y, s) such that € B(y,s) C E¢ C E°. Now
choose r = s — d(z,y) > 0 so that B(z,r) C B(y, s). Then B(xz,r) N E = ¢.
This proves (ii)=-(i).

If (ii) holds choose for each n € N, a point z, € E with d(z,,z) < +
and (iii) follows. If there exists an r > 0 such that B(z,r) N E = ¢, then
(iii) cannot hold. Thus (iii)=-(ii).

If £ C X, theset E~ \E” is called the boundary of E and is denoted by
OF.

A set A C X is said to be dense in X if A~ = X. The metric space X is
called separable if there is an at most denumerable dense subset of X. For
example, Q" is a dense subset of R". The space R" is separable.
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Theorem 3.1.1. B(R") =R,.

PROOF. The o-algebra R, is generated by the open n-cells in R"™ and an
open n-cell is an open subset of R". Hence R,, C B(R"). Let U be an open
subset in R™ and note that an open ball in R" = (R",d,,) is an open n-cell.
If x € U there exist an a €Q™ N U and a rational number r» > 0 such that
xz € B(a,r) C U. Thus U is an at most denumerable union of open n-cells
and it follows that U € R,,. Thus B(R") C R,, and the theorem is proved.

Let X = (X,d) and Y = (Y,e) be two metric spaces. A mapping f :
X =Y (or f:(X,d) — (Y,e) to emphasize the underlying metrics) is said
to be continuous at the point a € X if for every ¢ > 0 there exists a § > 0
such that
x € B(a,0) = f(x) € B(f(a),e).

Equivalently this means that for any sequence ()%, in X which converges
to a in X, the sequence (f(z,))5; converges to f(a) in Y. If f is continuous
at each point of X, the mapping f is called continuous. Stated otherwise
this means that

f7Y1(V) is open if V is open

or
f71(F) is closed if F is closed.

The mapping f is said to be Borel measurable if
f(B) € B(X)if Be B(Y)

or, what amounts to the same thing,
(V) € B(X)if V is open.

A Borel measurable function is sometimes called a Borel function. A
continuous function is a Borel function.

Example 3.1.1. Let f : (R,d;)— (R,d;) be a continuous strictly increasing
function and set p(z,y) =| f(z) — f(y) |, ,y € R. Then p is a metric on R.
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Define j(x) = z, x € R. The mapping j : (R,d;)— (R,p) is continuous. We
claim that the map j : (R,p) — (R,d;) is continuous. To see this, let a € R
and suppose the sequence (z,,)%°; converges to a in the metric space (R,p),
that is | f(z,) — f(a) | = 0 as n — oo. Let ¢ > 0. Then

flzn) — fla) > fla+¢€) — f(a) >0ifx, >a+e¢
and

fla) = f(z,) > fla) — fla—e) >0ifz, <a—e.

Thus z,, € Ja—¢,a+ ¢[ if n is sufficiently large. This proves that he map
j: (R,p) — (R,dy) is continuous.

The metrics d; and p determine the same topology and Borel subsets of
R.

A mapping [ : (X,d) — (Y,e) is said to be uniformly continuous if for
each € > 0 there exists a 6 > 0 such that e(f(x), f(y)) < e as soon as
d(z,y) < 6.

If reXand F, FCX,let

d(z, E) = inf d(z,u)

uekl

be the distance from z to £ and let

d(E,F)= inf d(u,v)

ueEveF

be the distance between £ and F. Note that d(z, F) = 0 if and only if x € E.
Ifx,ye X andu € FE,

d(z,u) < d(z,y) + d(y,u)

and, hence

d(z, E) < d(z,y) + d(y,u)

and
d(z,E) <d(x,y) +d(y, E).

Next suppose E # ¢. Then by interchanging the roles of z and y, we get

| d(z, E) — d(y, E) |< d(z,y)
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and conclude that the distance function d(z, E), € X, is continuous. In
fact, it is uniformly continuous. If z € X and r > 0, the so called closed ball
B(z,r) = {y € X; d(y,z) <r} is a closed set since the map y — d(y,z),
y € X, is continuous.

If F C X is closed and € > 0, the continuous function
1
Higa = max(O, 1- _d('a F))
’ €

fulfils 0 < I, < 1 and I, = 1 on F. Furthermore, ITj _(a) > 0 if and only
ifa € F. =4y {v € X; d(z,F) <e}. Thus

X
Xp < HF,a < Xp.-

Let X = (X,d) be a metric space. A sequence (z,)3; in X is called
a Cauchy sequence if to each € > 0 there exists a positive integer p such
that d(x,,x,) < e for all n,m > p. If a Cauchy sequence (z,,)$> ; contains a
convergent subsequence (z,, )52, it must be convergent. To prove this claim,
suppose the subsequence (x,, )72, converges to a point z € X. Then

d(zm, ) < d(Tm, Tp, ) + d(zp,, T)

can be made arbitrarily small for all sufficiently large m by choosing £ suffi-
ciently large. Thus (z,)5%, converges to x.

A subset E of X is said to be complete if every Cauchy sequence in £
converges to a point in E. If £ C X is closed and X is complete it is clear
that F is complete. Conversely, if X is a metric space and a subset E of X
is complete, then FE' is closed.

It is important to know that R is complete equipped with its standard
metric. To see this let (z,)°, be a Cauchy sequence. There exists a positive
integer such that | x,, — z,, |< 1 if n,m > p. Therefore

| T || T —2p | + | 2y [S 14| 2 |

for all n > p. We have proved that the sequence (z,,)%, is bounded (the
reader can check that every Cauchy sequence in a metric space has this
property). Now define

a = sup {z € R; there are only finitely many n with x, < z}.

The definition implies that there exists a subsequence (z,, )52, which con-
verges to a (since for any r > 0, x,, € B(a,r) for infinitely many n). The
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original sequence is therefore convergent and we conclude that R is complete
(equipped with its standard metric d;). It is simple to prove that the product
of n complete spaces is complete and we conclude that R"™ is complete.

Let E C X. A family (V;);e; of subsets of X is said to be a cover of E
if Uie/V; 2 E and E is said to be covered by the Vs. The cover (V;);er is
said to be an open cover if each member V; is open. The set E is said to be
totally bounded if, for every ¢ > 0, E can be covered by finitely many open
balls of radius €. A subset of a totally bounded set is totally bounded.

The following definition is especially important.

Definition 3.1.1. A subset E of a metric space X is said to be compact if
to every open cover (V;);c; of E, there is a finite subcover of £, which means
there is a finite subset J of I such that (V;);c; is a cover of E.

If K is closed, K C E, and E is compact, then K is compact. To see this,
let (V;)ier be an open cover of K. This cover, augmented by the set X \ K

is an open cover of E and has a finite subcover since E is compact. Noting
that K N (X \ K) = ¢, the assertion follows.

Theorem 3.1.2. The following conditions are equivalent:
(a) E is complete and totally bounded.
(b) Every sequence in E contains a subsequence which converges to a
point of E.
(c) E is compact.

PROOF. (a)=-(b). Suppose (x,)>, is a sequence in E. The set £ can be
covered by finitely many open balls of radius 27! and at least one of them
must contain z,, for infinitely many n € N, . Suppose x, € B(a,27!) if
n € N; C Ny =45 N, where N; is infinite. Next E N B(ay,27!) can be
covered by finitely many balls of radius 272 and at least one of them must
contain x,, for infinitely many n € N;. Suppose x, € B(a,27!) if n € Ny,
where Ny C N; is infinite. By induction, we get open balls B(a;,277) and
infinite sets N; C N;_; such that z,, € B(a;,277) for all n € N; and j > 1.
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Let n; < ng < ..., where ny, € Ny, k = 1,2, ... . The sequence (z,,)52, is a
Cauchy sequence, and since F is complete it converges to a point of F .

(b)=>(a). If E is not complete there is a Cauchy sequence in F with no
limit in E. Therefore no subsequence can converge in E, which contradicts
(b). On the other hand if E is not totally bounded, there is an ¢ > 0 such
that £ cannot be covered by finitely many balls of radius €. Let x1 € F
be arbitrary. Having chosen a1, ...,7, 1, pick x, € E\ U} B(x;,¢), and
so on. The sequence (z,)%°; cannot contain any convergent subsequence as
d(xp, Tm) > € if n # m, which contradicts (b).

{(a) and (b)} =-(c). Let (V;)ier be an open cover of E. Since E is totally
bounded it is enough to show that there is an ¢ > 0 such that any open
ball of radius € which intersects F is contained in some V;. Suppose on the
contrary that for every n € N, there is an open ball B, of radius < 27"
which intersects E and is contained in no V;. Choose z,, € B, N E and
assume without loss of generality that (z,)%; converges to some point z in
E by eventually going to a subsequence. Suppose x € V;, and choose r > 0
such that B(z,r) C V;,. But then B, C B(x,r) C V,, for large n, which
contradicts the assumption on B5,,.

(¢)=(b). If (x,)32, is a sequence in F with no convergent subsequence in
E, then for every « € E there is an open ball B(z,r,) which contains z,, for
only finitely many n. Then (B(z,r,)).cr is an open cover of E without a

finite subcover.

Corollary 3.1.1. A subset of R is compact if and only if it is closed and
bounded.

PROOF. Suppose K is compact. If x, € K and z, ¢ B(0,n) for every
n € Ny, the sequence (z,)%°; cannot contain a convergent subsequence.
Thus K is bounded. Since K is complete it is closed.



79

Conversely, suppose K is closed and bounded. Since R" is complete and
K is closed, K is complete. We next prove that a bounded set is totally
bounded. It is enough to prove that any n-cell in R" is a union of finitely
many n-cells I; X ... x I, where each interval I, ..., [, has a prescribed positive
length. This is clear and the theorem is proved.

Corollary 3.1.2. Suppose f: X — R is continuous and X compact.
(a) There ezists an a € X such that maxy f = f(a) and a b€ X
such that miny f = f(b).

(b) The function f is uniformly continuous.

PROOF. (a) Foreacha € X, let V, ={z € X : f(z) <1+ f(a)}. The open
cover (V,)a.ex of X has a finite subcover and it follows that f is bounded. Let
(2,)22; be a sequence in X such that f(z,) — supg f as n — oo. Since X is
compact there is a subsequence (x,, )72, which converges to a point a € X.
Thus, by the continuity of f, f(x,,) — f(a) as k — oo.

The existence of a minimum is proved in a similar way.

(b) If f is not uniformly continuous there exist ¢ > 0 and sequences
(zn)pzy and (yn)p2; such that | f(2,) — f(yn) |> € and | @, — y, [< 277
for every n > 1. Since X is compact there exists a subsequence (z,, )2, of
()52, which converges to a point a € X. Clearly the sequence (yn, )32,
converges to a and therefore

‘ f(xnk> - f(ynk) ’§| f(xnk) - f(a) ‘ + ’ f(a) - f(ynk) ’_> 0

as k — oo since f is continuous. But | f(z,,) — f(yn,) |> € and we have got
a contradiction. The corollary is proved.

Example 3.1.2. Suppose X = ]0,1] and define p,(z,y) = di(z,y) and
po(z,y) =| %—i |, z,y € X. As in Example 3.1.1 we conclude that the metrics
p; and p, determine the same topology of subsets of X. The space (X, p;)
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totally bounded but not complete. However, the space (X, p,) is not totally
bounded but it is complete. To see this, let (x,)22 ;be a Cauchy sequence in
(X, py). As a Cauchy sequence it must be bounded and therefore there exists
an ¢ € |0,1] such that x, € [e,1] for all n. But then, by Corollary 3.1.1,
(x,)22, contains a convergent subsequence in (X, p;) and, accordingly from
this, the same property holds in (X, p,). The space (X, p,) is not compact,
since (X, p;) is not compact, and we conclude from Theorem 3.1.2 that the
space (X, py) cannot be totally bounded.

Example 3.1.3. Set R=RU {—00, 00} and

~

d(x,y) =| arctanz — arctany |

ifx,y € R. Here
arctan oo = g and arctan —oo = —g.

Example 3.1.1 shows that the standard metric d; and the metric cZ|RxR
determine the same topology.

We next prove that the metric space R is compact. To this end, consider
a sequence (z,)2°, in R. If there exists a real number M such that | z,, |[< M
for infinitely many n, the sequence (z,,)$° ; contains a convergent subsequence
since the interval [— M, M] is compact. In the opposite case, for each positive
real number M, either x, > M for infinitely many n or z, < —M for
infinitely many n. Suppose z,, > M for infinitely many n for every M €
N_. Then d(z,, ,c0) =| arctan z,, — % |— 0 as k — oo for an appropriate
subsequence (2, )5 .

The space R= (f{,cz) is called a two-point compactification of R.

It is an immediate consequence of Theorem 3.1.2 that the product of
finitely many compact metric spaces is compact. Thus R” equipped with
the product metric is compact.

We will finish this section with several useful approximation theorems.

Theorem 3.1.3. Suppose X is a metric space and p positive Borel measure
in X. Moreover, suppose there is a sequence (U,)s,of open subsets of X
such that

X =U2,U0,
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and
w(U,) < oo, all n € N..

Then for each A € B(X) and € > 0, there are a closed set F' C A and an
open set VO A such that
p(V\F)<e.

In particular, for every A € B(X),

p(A) = inf u(V)
V open

and

p(A) = sup p(F)
FCA
F' closed

If X =Rand p(Ad) =%°,61(A) , A€ R, then u({0}) =0 and pu(V) =
oo for every open set containing {0} . The hypothesis that the sets U, n €
N, are open (and not merely Borel sets) is very important in Theorem 3.1.3.

PROOF. First suppose that p is a finite positive measure.

Let A be the class of all Borel sets A in X such that for every ¢ > 0
there exist a closed F' C A and an open V' D A such that p(V\ F) <e. If F
is a closed subset of X and V,, = {x; d(z, F) < %} , then V, is open and, by
Theorem 1.1.2 (f), u(Vy,) | v(F) as n — oo. Thus F' € A and we conclude
that A contains all closed subsets of X.

Now suppose A € A. We will prove that A¢ € A. To this end, we choose
e >0 and a closed set F' C A and an open set V' O A such that u(V\ F) < .
Then V¢ C A° C F*° and, moreover, u(F°\ V°) < ¢ since

V\F=F\Ve

If we note that V¢ is closed and F¢ open it follows that A¢ € A.

Next let (A;)$2; be a denumerable collection of members of A. Choose
e > 0. By definition, for each i € N there exist a closed F; C A; and an
open V; D A; such that u(V; \ F;) < 27%. Set
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Then
p(V A (U1 F)) < (U2, (Vi \ 7))
<2V \ F) < e.
But
VA(UEF) = Mz AV (UL B}

and since p is a finite positive measure
u(V\ (U, F)) = lim u(V\ (U F)).
Accordingly, from these equations
p(VA (UL F)) <e

if n is large enough. Since a union of open sets is open and a finite union of
closed sets is closed, we conclude that U°; A; € A. This proves that A is a
o-algebra. Since A contains each closed subset of X, A = B(X).

We now prove the general case. Suppose A € B(X). Since uU» is a finite
positive measure the previous theorem gives us an open set V,, O ANU, such
that u¥(V,,\ (ANU,)) < e27". By eventually replacing V,, by V,,NU,, we can
assume that V,, C U,. But then u(V,,\ (ANU,)) = u¥(V, \(ANU,)) < 27"

Set V = U |V, and note that V' is open. Moreover,

VAAC UL (Va\ (ANUL))

and we get
p(V\NA) <E2 0V \ (ANT,)) <e.

By applying the result already proved to the complement A we conclude
there exists an open set W O A¢ such that

PANWE) = (W A%) <e.

Thus if F' =4 W€ it follows that ¥ C A C V and p(V \ F) < 2e. The
theorem is proved.

If X is a metric space C'(X) denotes the vector space of all real-valued
continuous functions f : X — R. If f € C(X), the closure of the set of
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all  where f(z) # 0 is called the support of f and is denoted by suppf.
The vector space of all all real-valued continuous functions f : X — R with
compact support is denoted by C.(X).

Corollary 3.1.3. Suppose p and v are positive Borel measures in R™ such
that
pu(K) < oo and v(K) < o0

for every compact subset K of R™. If

Rnf(ﬁ)du(flf) = Rnf(fv)dV(x% all f € C(R")

then p=wv.

PROOF. Let F be closed. Clearly p(B(0,i)) < oo and v(B(0,7)) < oo for
every positive integer i. Hence, by Theorem 3.1.3 it is enough to show that
w(F) = v(F). Now fix a positive integer i and set K = B(0,i) N F. It is
enough to show that u(K) = v(K). But

| @duto) = [T, @

for each positive integer j and letting j — oo we are done.

A metric space X is called a standard space if it is separable and com-
plete. Standard spaces have a series of very nice properties related to measure
theory; an example is furnished by the following

Theorem 3.1.4. (Ulam’s Theorem) Let X be a standard space and
suppose |1 s a finite positive Borel measure on X. Then to each A € B(X)
and € > 0 there exist a compact K C A and an open V. O A such that
pw(V\K) <e.
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PROOF. Let ¢ > 0. We first prove that there is a compact subset K of X

such that u(K) > pu(X)—e. To this end, let A be a dense denumerable subset

of X and let (a;)2, be an enumeration of A. Now for each positive integer

J, U2, B(a;,277¢) = X, and therefore there is a positive integer n; such that
w(U7 B(ag,277¢)) > p(X) — 27,

Set ) .
Fy = U2, B(a;,27¢)

and

The set L is totally bounded. Since X is complete and L closed, L is complete.
Therefore, the set L is compact and, moreover

p(K) = p(X) = p(LF) = p(X) — p(U52, FY)

> u(X) = T2 () = p(X) — 532, (u(X) — ()
> pu(X) - X227 = p(X) —e.

Depending on Theorem 3.1.3 to each A € B(X) there exists a closed
F C A and an open V 2O A such that u(V \ F)) < . But

VN(FNL)=(V\F)U(F\L)
and we get
p(VA(FNL) <p(V\F)+p(X\K) < 2.

Since the set F'N L is compact Theorem 3.1.4 is proved.

Two Borel sets in R" are said to be almost disjoint if their intersection
has volume measure zero.

Theorem 3.1.5. FEvery open set U in R" is the union of an at most denu-
merable collection of mutually almost disjoint cubes.
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Before the proof observe that a cube in R" is the same as a closed ball
in R" equipped with the metric d,,.

PROOF. For each, k € N, let Q;be the class of all cubes of side length 2%
whose vertices have coordinates of the form i27%, i € Z. Let I} be the union
of those cubes in Q; which are contained in U. Inductively, for k£ > 1, let
I}, be the union of those cubes in Q;, which are contained in U and whose
interiors are disjoint from Uf;llF] Since d(z,R"\ U) > 0 for every z € U it
follows that U = U372, F}.

Exercises

1. Suppose f: (X, M) — (R4, Ry) and g : (X, M) — (R",R,) are measur-
able. Set h(z) = (f(x),g(r)) € R¥*" if z € X. Prove that h : (X, M) —
(R4 R4y, is measurable.

2. Suppose f: (X,M) — (R,R) and g : (X, M) — (R, R) are measurable.
Prove that fg is (M, R)-measurable.

3. The function f : R — R is a Borel function. Set g(z,y) = f(z), (z,y) €
R2?. Prove that g : R? — R is a Borel function.

4. Suppose f : [0,1] — R is a continuous function and ¢ : [0,1] —[0,1] a
Borel function. Compute the limit

1

lim f(g(x)")dx.

n—oo 0

5. Suppose X and Y are metric spaces and f : X — Y a continuous mapping.
Show that f(FE) is compact if E is a compact subset of X.
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6. Suppose X and Y are metric spaces and f : X — Y a continuous bijection.
Show that the inverse mapping f~! is continuous if X is compact.

7. Construct an open bounded subset V' of R such that m(9V) > 0.

8. The function f : [0,1] —R has a continuous derivative. Prove that the
set f(K) € 2, if K = ()" ({0}).

9. Let P denote the class of all Borel probability measures on [0,1] and L
the class of all functions f : [0,1] — [—1, 1] such that

| f(2) = @) <l 2=y 2,y €[0,1].

For any u,v € P, define

p(p,v) = sup | fdp — fdv].
feL [0,1] [0,1]

(a) Show that (P, p) is a metric space. (b) Compute p(u,v) if u is linear

measure on [0,1] and v = 57716, where n € N, (linear measure on [0, 1]
is Lebesgue measure on [0, 1] restricted to the Borel sets in [0, 1]).

10. Suppose p is a finite positive Borel measure on R™. (a) Let (V;);cr be a
family of open subsets of R and V = U,;¢;V;. Prove that

(b) Let (F});e; be a family of closed subsets of R™ and F' = N;c/F;. Prove
that
p(F)= inf p(F, N...NE,).

11, iK €1
LEN
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H

3.2. Linear Functionals and Measures

Let X be a metric space. A mapping T : C.(X) — R is said to be a linear
functional on C.(X) if

T(f+g)=Tf+Tg, all f,g € Ce(X)

and

T(af)=aTf, ala € R, f € C.(X).

If in addition T'f > 0 for all f > 0, T is called a positive linear functional
on C.(X). In this case Tf < Tgif f<gsinceg—f>0and Tg—Tf =
T(g— f) > 0. Note that C.(X) = C(X) if X is compact.

The main result in this section is the following

Theorem 3.2.1. (The Riesz Representation Theorem) Suppose X is
a compact metric space and let T be a positive linear functional on C(X).
Then there exists a unique finite positive Borel measure p in X with the
following properties:

(a)
7f = [ fau, 1 eCx),

(b) For every E € B(X)

p(E) = sup  p(K).
KCE
K compact

(c) For every E € B(X)

p(E) = inf p(V).
V open
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The property (c) is a consequence of (b), since for each £ € B(X) and
e > 0 there is a compact K C X \ E such that

WX\ E) < pu(K) +e.

But then
X\ K) <p(E)+e

and X \ K is open and contains E. In a similar way, (b) follows from (c)
since X is compact.

The proof of the Riesz Representation Theorem depends on properties of
continuous functions of independent interest. Suppose K C X is compact
and V C X is open. If f: X — [0,1] is a continuous function such that

f =Xy and suppf €V

we write
f=<Vv
and if
Xk < f <Xy and suppf CV
we write

K< f=<V

Theorem 3.2.2. Let K be compact subset X.
(a) Suppose K CV where V is open. There exists a function f on X
such that
K< f<V

(b) Suppose X is compact and K C V1 U...UV,,, where K is compact and
Vi,..., V. are open. There exist functions hq, ..., h, on X such that

hiKV;, izl,...,n

and
hi+..+h,=1o0n K.
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PROOF. (a) Suppose ¢ = 3 ming d(-, V¢). By Corollary 3.1.2, ¢ > 0. The
continuous function f = Hf(’e satisfies xrr < f < xg_, that is K < f < K..

Part (a) follows if we note that the closure (K.)~ of K. is contained in V.

(b) For each z € K there exists an r, > 0 such that B(z,r,) C V; for some
i. Let U, = B(z,ir,). It is important to note that (U,)~ C V; and (U,)~
is compact since X is compact. There exist points x1, ..., z,, € K such that
UL, Uy, 2 K. If 1 <0 <n, let F; denote the union of those (Us,;)~ which are
contained in V;. By Part (a), there exist continuous functions f; such that
F;, < fi <V, i=1,...,n. Define

hi = h
hy = (1= fi)fe

ho = (1= f1)..(1 = fas1) fa-

Clearly, h; < V;, i =1, ...,n. Moreover, by induction, we get

hid ot hy=1—(1— f)(l— o)1 — o).

Since U} F; O K we are done.

The uniqueness in Theorem 3.2.1 is simple to prove. Suppose p; and
iy are two measures for which the theorem holds. Fix € > 0 and compact
K C X and choose an open set V' so that (V) < puy(K)+e. K < f <V,

ul(K)z/Xdeulﬁ/dem:Tf

:/ fdpy < / Xvdpg = pa(V) < pa(K) + &
b X

Thus p,(K) < py(K). If we interchange the roles of the two measures, the
opposite inequality is obtained, and the uniqueness of p follows.

To prove the existence of the measure p in Theorem 3.2.1, define for every
open V in X,

p(V) =supTf.
F=V
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Here p(¢) = 0 since the supremum over the empty set, by convention, equals
0. Note also that u(X) = T'1. Moreover, (V) < u(V2) if V; and V5 are open
and V; C V,. Now set

u(E) = V‘}ng p(V)if B e B(X).
open

Clearly, p(Ey) < u(Ey), if By C Ey and Ey Ey € B(X). We therefore say
that p is increasing.

Lemma 3.2.1. (a) If V4,...,V,, are open,
(Ui, Vi) < B u(Va).
(b) If By, B, ... € B(X),

(U2, E;) < 532, ().

(¢) If Ky, ..., K, are compact and pairwise disjoint,
p(Uiny Ki) = B p(KG).

PROOF. (a) It is enough to prove (a) for n = 2. To this end first choose
g < ViUVy and then h; < V;, i = 1,2, such that h; +hs = 1 on supp g. Then
g =hig + hag

and it follows that

Tg = T(h1g) + T(hag) < (Vi) + p(V2),

Thus
p(ViuVa) < p(Va) + p(Va).
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(b) Choose € > 0 and for each i € N, choose an open V; DO E; such u(V;) <
w(E;) +27%. Set V = U, V; and choose f < V. Since suppf is compact,
f<ViU..uUV, for some n. Thus, by Part (a),

Tf<p(ViU..UVy) < S (Vi) < BZu(E) + ¢

and we get
p(V) < B pu(E;)

since ¢ > 0 is arbitrary. But U2, E; C V' and it follows that

(U Ey) < B2 ().

(c) It is enough to treat the special case n = 2. Choose ¢ > 0. Set p =

d(K1,K;) and Vi = (K4),/2 and Vi = (K3),/2. There is an open set U 2

K, UK, such that u(U) < p(K;UK3)+¢€ and there are functions f; < UNV;

such that T'f; > u(U NV;) — e for i = 1,2. Now, using that u increases
(K1) + p(K2) < p(UN VL) + p(U N V)

S Tfl + Tf2 + 28 = T(fl + f2) + 28.
Since f1 + fo < U,

n(K1) + p(Ks) < p(U) + 26 < p(Ky U K) + 3¢
and, by letting ¢ — 0,
p(Ky) + p(K) < p(K1 U K»).

The reverse inequality follows from Part (b). The lemma is proved.

Next we introduce the class

M= EeB(X); p(E)= sup u(K)
KKQE t
compac
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Since p is increasing M contains every compact set. Recall that a closed
set in X is compact, since X is compact. Especially, note that ¢ and X € M.

COMPLETION OF THE PROOF OF THEOREM 3.2.1:

CLAIM 1. M contains every open set.

PROOF OF CLAIM 1. Let V' be open and suppose a < p(V'). There exists
an f < Vsuchthat o <Tf. If Uisopenand U O K =4 ¢suppf, then f < U,
and hence T'f < p(U). But then T'f < p(K). Thus a < pu(K) and Claim 1
follows since K is compact and K C V.

CLAIM 2. Let (E;)2, be a disjoint denumerable collection of members of
M and put E = U2, E;. Then

W(E) = 2, u(E)

and F € M.

PROOF OF CLAIM 2. Choose € > 0 and for each i € N, choose a compact
K; C E; such that u(K;) > p(E;) —27%. Set H, = K; U ... U K,,. Then, by
Lemma 3.2.1 (c),

w(E) > p(Hy,) = S p(K) > Sy pu(E;) — €

and we get

W(E) = S, u(E).
Thus, by Lemma 3.2.1 (b), u(F) = £°,u(E;). To prove that E € M, let ¢
be as in the very first part of the proof and choose n such that

p(E) < XL p(Es) + €.
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Then
pw(E) < p(Hy,) + 2¢

and this shows that ¥ € M.

CLAIM 3. Suppose E € M and € > 0. Then there exist a compact K and
an open V such that K C ECV and u(V \ K) <e.

PROOF OF CLAIM 3. The definitions show that there exist a compact K
and an open V such that

u(V) = 5 < u(E) < p(K) + 3.

The set V' \ K is open and V \ K € M by Claim 1. Thus Claim 2 implies
that
pE) +p(V A K) = p(V) < p(K) +¢

and we get u(V \ K) < e.

CLAIM 4. If A € M, then X \ A € M.

PROOF OF CLAIM 4. Choose ¢ > 0. Furthermore, choose compact K C A
and open V' O A such that u(V \ K) < e. Then

X\VAC(VNK)U(X\V).
Now, by Lemma 3.2.1 (b),
WX\ A) <e+pu(X\V).

Since X \ V' is a compact subset of X \ A, we conclude that X \ A € M.

Claims 1, 2 and 4 prove that M is a o-algebra which contains all Borel
sets. Thus M = B(X).
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We finally prove (a). It is enough to show that

Tf < /deu

for each f € C(X). For once this is known

~Tf = T(~f) < /X —fdp < - /X fdu

and (a) follows.
Choose € > 0. Set f(X) = [a,b] and choose yy < y; < ... < y, such that
Y1 =a, Yo—1 = b, and y; — y;_1 < . The sets

Ei=f"Yyi—n,ul), i=1,..,n

constitute a disjoint collection of Borel sets with the union X. Now, for each i,
pick an open set V; 2 E; such that u(V;) < p(E;)+£ and V; C f~(]—o00, 1)
By Theorem 3.2.2 there are functions h; < V;, i = 1,...,n, such that X! | h; =
1 on suppf and h;f < y;h; for all i. From this we get

Tf=%_Thif) < S yiThy <X y:u(Vi)
19
< Z?:1yiﬂ(Ei) + E?:ﬂ/iﬁ
< Ny (yi — e)u(Ey) +ep(X) + (b +e)e

< Z?l/ fdu+eu(X)+ (b+¢e)e
E;

= /X fdp~+ep(X) + (b+e)e.

Since ¢ > 0 is arbitrary, we get

Tf < /X fdp.

This proves Theorem 3.2.1.

It is now simple to show the existence of volume measure in R". For
pedagogical reasons we first discuss the so called volume measure in the unit
cube @ = [0,1]" in R™.
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The Riemann integral

Lf@ﬂ%

is a positive linear functional as a function of f € C(Q). Moreover, T1 = 1
and the Riesz Representation Theorem gives us a Borel probability measure

w1 in @ such that
[ rtars= [ su
Q Q

Suppose A C @ is a closed n-cell and i € N . Then
vol(A) < / M9, (a)de < vol(Ay 1)
o &

and

1154

ao-i(®) = xa(z) as i — o0

for every x €R". Thus
p(A) = vol(A).

The measure p is called the volume measure in the unit cube. In the special
case n = 2 it is called the area measure in the unit square and if n = 1 it is
called the linear measure in the unit interval.

PROOF OF THEOREM 1.1.1. Let R=RU {—00, 00} be the two-point com-
pactification of R introduced in Example 3.1.3 and let R"™ denote the product
of n copies of the metric space R. Clearly,

B(R") = {A NR™ Ae B(Rn)} .

Moreover, let w : R" — 0, 00| be a continuous map such that

/nw(x)dm 1

Tf= . f(@)w(z)dz, fe CRM).

Now we define



96

Note that 71 = 1. The function T is a positive linear functional on C'(R™)
and the Riesz Representation Theorem gives us a Borel probability measure
1 on R™ such that

(v)w(z)dr = fdu, feC@RM).

R’IL Rn

As above we get

for each compact n-cell in R". Thus

p(R™) = lim w(z)dr =1

oSl

and we conclude that p is concentrated on R™. Set py,(A) = pu(A), A €
B(R™), and

1
dm, = —du,.

w

Then, if f € C.(R"),
fayw)ds = [ fdug
Rn Rn
and by replacing f by f/w,
f(z)dz = fdm,,.
R" R"

From this m,,(A) =vol(A) for every compact n-cell A and it follows that m,,
is the volume measure on R". Theorem 1.1.1 is proved.

(k)

3.3 g-Adic Expansions of Numbers in the Unit Interval

To begin with in this section we will discuss so called g-adic expansions of
real numbers and give some interesting consequences. As an example of an
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application, we construct a one-to-one real-valued Borel map f defined on
a proper interval such that the range of f is a Lebesgue null set. Another
example exhibits an increasing continuous function G on the unit interval
with the range equal to the unit interval such that the derivative of G' is
equal to zero almost everywhere with respect to Lebesgue measure. In the
next section we will give more applications of g-adic expansions in connection
with infinite product measures.

To simplify notation let (Q2, P, F) = ([0, 1], vyjp,17, B([0, 1[)). Furthermore,
let ¢ > 2 be an integer and define a function h : R —{0,1,2,...,q — 1} of
period one such that

k kE+1
h(z) = k, —§x<L, k=0,..,qg—1.
q q

Furthermore, set for each n € N,
£, (W) =hlg"'w), 0<w< 1.

Then ]
P, =k] = 5, k=0,..q—1.

Moreover, if ki, ....,k, € {0,1,2,...,¢ — 1}, it becomes obvious on drawing a
figure that

P& =ki, &y =kna] = S0P [& =k, oo €y = K1, €, = 1]
where each term in the sum in the right-hand side has the same value. Thus
Pl& =k, &y =kna] =qP (& =k, &y = ko1, & = ki

and
P [51 =ky,..&y =kno1,€, = kn} =P [51 =ky,.., &1 = kn_l] Pg, =k,].
By repetition,

P [51 =k, .., 1 =kn1,§, = kn} =1 ,P[¢, =K.
From this we get

P |:§1 € A17 "'fnfl € An717€n € An] = H?:lp [61 € Al]
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for all Ay,..., A, C€{0,1,2,...,q—1}.
Note that each w € [0, 1] has a so called g-adic expansion

fz(w)

i

_ yo0
w =22,

If necessary, we write £, = 5,(1‘1) to indicate ¢ explicitly.

Let ko € {0,1,2,...,q — 1} be fixed and consider the event A that a num-
ber in [0, 1[ does not have ko in its g-adic expansion. The probability of A
equals

PIA]=P[¢ # ko, 1=1,2,...] = lim P, # ko, i =1,2,...,n]

n—oo

-1
= lim T2, P& # ko] = lim (1—=)" = 0.
n—oo n—00 q
In particular, if

D, — {w cl0,1; ¥ £1, i= 1n}

then, D =N, D, is a P-zero set.
Set o
[e’s) 257, w
flw) =%, 32-( )
We claim that f is one-to-one. If 0 < w,w’ < 1 and w # W' let n be the
least i such that 51(2)@1) # 552)@/ ); we may assume that £ (w) = 0 and
£@(w') = 1. Then

, 0<w< 1.

20 (w) 260w | 2
) > L, e = N -
fw') =X, 3 i=1 30 + 3n
12600 g 4 o 2687(W)
= Z31‘:11 3i + Zi:n+1§ > X2 30 = f(w).

Thus f is one-to-one. We next prove that f(£2) = D. To this end choose
y e D.If §§3) (y) =2 for all i € N, then y = 1 which is a contradiction. If
k > 1 is fixed and 5,(63) (y) = 0 and §§3) (y) = 2,4 >k + 1, then it is readily
seen that £ S’) (y) = 1 which is a contradiction. Now define

1¢(3)
W= 25012&2_1'(3/)
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and we have f(w) =y.

Let C,, = D, n € N;. The set C' = N2 ,C,, is called the Cantor set.
The Cantor set is a compact Lebesgue zero set. The construction of the
Cantor set may alternatively be described as follows. First Cy = [0, 1]. Then
trisect Cy and remove the middle interval ] %, % [ to obtain Cy = Cp \ } %, % [ =
[O, %} U [%, 1} . At the second stage subdivide each of the closed intervals
of (] into thirds and remove from each one the middle open thirds. Then
Cy=C1\ (|3, 2[U]1L,2]). What is left from C,,_; is C,, defined above. The

set [0, 1]\ O,? i: the union of 2" —1 intervals numbered I}, k =1,...,2" — 1,
where the interval I} is situated to the left of the interval I}* if k < [.

Suppose n is fixed and let G, : [0,1] — [0, 1] be the unique monotone in-
creasing continuous function, which satisfies G,,(0) = 0,G,,(1) = 1,G,(z) =
k27" for x € I} and which is affine on each interval of C,, It is clear that
Gpn = G4 on each interval I, k = 1,...,2" — 1. Moreover, | G,, — G411 |<
271 and thus

n

Let G(z) = lim, 0o Gn(z), 0 < z < 1. The continuous and increasing func-
tion G is constant on each removed interval and it follows that G’ = 0 a.e.
with respect to linear measure in the unit interval. The function G is called
the Cantor function or Cantor-Lebesgue function.

Next we introduce the following convention, which is standard in Lebesgue
integration. Let (X, M, i) be a positive measure space and suppose A € M
and p(A°) = 0. If two functions g, h € L' (1) agree on A,

/gdu:/ hd .
X X

If a function f : A — R is the restriction to A of a function g € £'(u) we

define
/ fdp = / gdp.
X X

Now suppose F' : R — R is a right continuous increasing function and
let 1 be the unique positive Borel such that

w(la,z]) = F(z) — F(a) ifa,z € R and a < z.
If h € L'(u) and E € R, the so called Stieltjes integral

/E h(z)dF ()
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is by definition equal to

/ hd .
E

Ifa,b e R, a <b, and F' is continuous at the points a and b, we define

/a ’ h(z)dF(z) = /1 hdp

where [ is any interval with boundary points a and b.
The reader should note that the integral

/R h(z)dF ()

in general is different from the integral

/R h(z) ' (2)da.

For example, if G is the Cantor function and G is extended so that G(x) = 0
for negative x and G(z) = 1 for = larger than 1, clearly

/R h(@)G (x)dz = 0

since G'(x) = 0 a.e. [m]. On the other hand, if we choose h = xq y,

/ h(z)dG(x) = 1.
R

3.4. Product Measures

Suppose (X, M) and (Y,N) are two measurable spaces. If A € M and
B € N, the set A x B is called a measurable rectangle in X x Y. The product
o-algebra M ®@N is, by definition, the o-algebra generated by all measurable
rectangles in X x Y. If we introduce the projections

Wx(l',y) =, (x,y) €EX XY

and
’/TY(-%,Q) =Y, (:an) € X X Y7
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the product o-algebra M ® N is the least o-algebra S of subsets of X x Y,
which makes the maps 7x : (X xY,8) — (X, M) and 7y : (X xY,S) —
(Y, N) measurable, that is M @ N = o (7' (M)Ury (N))..

Suppose £ generates M, where X € £, and F generates N, where Y € F.
We claim that the class

EXRF={ExXF;Ee€fand F € F}
generates the o-algebra M @ N. First it is clear that
cERF)CMRN.
Moreover, the class
{EEM;ExY €c(ERF)}=MN{ECX; 7 (E) €d(ERF) }

is a o-algebra, which contains £ and therefore equals M. Thus A x Y €
o(EXF) for all A € M and, in a similar way, X x B € o(E X F) for all
B € N and we conclude that A x B=(AxY)N (X x B) € 0(EXF) for
all A€ M and all B € M. This proves that

MON Co(EXRF)
and it follows that
c(ERF)=MeN.

Thus
c(EXF)=0()@c(F)if X e and Y € F.

Since the o-algebra R, is generated by all open n-cells in R”, we conclude
that
Risn = Rr @ Ry,

Given FF C X x Y, define
E,={y; (z,y) e E} ifre X

and
EY ={z; (z,y) e E} ifyeY.

Iff:XxY — Zisafunctionand xr € X,y €Y, let

f(y) = fz,y), ifyeY
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and
f(x) = f(z,y), ifz e X.

Theorem 3.4.1 (a) If E € M N, then E, € N and EY € M for every
reX and yey.

) If f: (X XY, M@N)— (Z,0) is measurable, then f, is (N,O)-
measurable for each x € X and fY is (M, O)-measurable for each y € Y.

Proof. (a) Let
S={Fe MN;E,e¢ Nand EY € M for every z € X and y € Y}.

Clearly, X xY € S. Furthermore, if E, Fy F,... € S, (E9), = (E,)* € N
and (U2, E;), = U2, (E;), € N for every z in X and (E°)Y = (EY)° € M
and (U2 E;)Y = UR,(E;)Y € M for every y in Y. It follows that S is a
o-algebra. Furthermore, if Ae¢ Mand BeEN, (AxB),=BeNifzecA
and (Ax B), =¢peNifr ¢ Aand (Ax B)Y = A e Mify e B and
(AxB)Y =¢ec Mify ¢ B. Thus A x B € S and, accordingly from this,
S=MeN.
(b) For any set V € O,

and
(V)Y = (1)1 (V).

Part (b) now follows from (a).

Below an (M, R « )-measurable or (M, R )-measurable function is simply
called M-measurable.

Theorem 3.4.2. Suppose (X, M,u) and (Y,N,v) are positive o-finite
measurable spaces and suppose B € M@ N. If

f(z) =v(E,) and g(y) = u(EY)
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for every x € X and y €Y, then [ is M-measurable, g is N -measurable,

and
/fd,u—/gdy.
X Y

Proof. We first assume that (X, M,u) and (Y,N,v) are finite positive
measure spaces.

Let D be the class of all sets £ € M ® N for which the conclusion of
the theorem holds. It is clear that the class G of all measurable rectangles
in X xY is a subset of D and G is a w-system. Furthermore, the Beppo
Levi Theorem shows that D is a A-system. Therefore, using Theorem 1.2.2,
MRN =0(G) C D and it follows that D = M @ N.

In the general case, choose a denumerable disjoint collection (Xj)52 ;of

members of M and a denumerable disjoint collection (Y,)52 ;of members of
N such that

U Xy =X and U2, Y, =Y.
Set
M = Xx s b =1,2, ...
and
Un =Xy, V,n=12,...

Then, by the Beppo Levi Theorem, the function

f(z) = /X Yol Xe (T, y) Xy, (y)dv(y)

=0 /X Xe(T, )Xy, (y)dv(y) = ol vn(Ey)

is M-measurable. Again, by the Beppo Levi Theorem,

/deuzﬁiil/xfduk

and
[ tin= s [ i) = S5 [ vaEBodua).

X

In a similar way, the function g is N -measurable and

[ atv =i [ neE)n ) = s [ B0,
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Since the theorem is true for finite positive measure spaces, the general case
follows.

Definition 3.4.1. If (X, M, ) and (Y, N,v) are positive o-finite measur-
able spaces and £ € M @ N, define

(e B) = [ W(EBa)auta) = [ p(E")in(y),

The function p x v is called the product of the measures p and v.

Note that Beppo Levi’s Theorem ensures that p x v is a positive measure.

Before the next theorem we recall the following convention. Let (X, M, u)
be a positive measure space and suppose A € M and pu(A°) = 0. If two
functions g, h € £(u1) agree on A,

/gd,u—/ hdyu.
X X

If a function f : A — R is the restriction to A of a function g € £'(u) we

define
/ fdp = / gdj.
X X

Theorem 3.4.3. Let (X, M,pu) and (Y,N,v) be positive o-finite measur-
able spaces.

(a) (Tonelli’s Theorem) If h: X XY — [0,00] is (M ® N)-measurable
and

f(fr)zfyh(w7y)dV(y> and g(y)z/ h(x,y)du(x)

X
for every x € X and y € Y, then [ is M-measurable, g is N-measurable,

and
/fdu:/ hd(uxu):/gdy
X XxY Y

(b) (Fubini’s Theorem)
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(i) If h: X xY — R is (M ® N )-measurable and
/ ( / | Wz, y) | dv(y))du(z) < oo
X Y

then h € L*(u x v). Moreover,

[ meavtnin) = [ vdgexn) = [ (] we i)
(i) If h € L'((u x v)™), then h, € L*(v) for p-almost all x and

[ wixw) = [ ([ nyive)ante)

(4ii) If h € L'((u x v)7), then h¥ € L*(p) for v-almost all y and

/Xxyhdw”)_/Y(/Xh(ﬂf»y)du(w))dV(y)

PROOF. (a) The special case when & is a non-negative (M ® N )-measurable
simple function follows from Theorem 3.4.2. Remembering that any non-
negative measurable function is the pointwise limit of an increasing sequence
of simple measurable functions, the Lebesgue Monotone Convergence Theo-
rem implies the Tonelli Theorem.

(b) PART (i) : By Part (a)

o> [ ([ Wit = [ wtdgo)

XxXY

:/Y(/X b (z,y)dp(z))dv(y)

and

o> [ ([ W @i = [ wdgo)

XxY

:/Y(/Xh—(a:,y)du(w))dV(y)-
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Let
A={z e X; (W), (h ). € L'(v)}.

Then A° is a p-null set and we get

[ e mdtinine = [ wtdgecn)

" [ @it = [ wigeoon.
o [ pemirtan) = [ natex o)
and, hence,

| weavtinine) = [ wdgex),

The other case can be treated in a similar way. The theorem is proved.

PART (ii) : We first use Theorem 2.2.3 and write h = ¢ + 1) where ¢ €
LY x v), ¢ is (M ® N) " -measurable and 1) = 0 a.e. [u X v]. Set

A={zeX; (¢ (¢ ) € L'(V)}.
Furthermore, suppose E D {(z,y); ¥(z,y) # 0}, E € M®N and
(% ¥)(E) = 0.

Then, by Tonelli’s Theorem

0= /X V(E,)du(z).

Let B = {z € X; v(E,) # 0} and note that B € M. Moreover u(B) = 0
and if x ¢ B, then ¢, = 0 a.e. [v] that is h, = ¢, a.e. [v]. Now, by Part (i)

fo o= [ et = [ (f et iisine
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= ([ ez, y)dv(y))du(r) = ([ h(x,y)dv(y))du(x)
[ [
= [ ([ hopavtnyinto)

Part (i4i) is proved in the same manner as Part (ii). This concludes the
proof of the theorem.

If (X;,M,;), i = 1,...,n, are measurable spaces, the product o-algebra
My ® ... ® M, is, by definition, the o-algebra generated by all sets of the
form

A x ... x A,

where A; € M;,i =1,...,n. Now assume (X;, M;, 11;), i = 1, ..., n, are o-finite
positive measure spaces. By induction, we define v; = py and vy = vg_1 X i,
k=1,2,...,n. The measure, v, is called the product of the measures 1, ..., 41,
and is denoted by pq X ... X pu,,. It is readily seen that

R,=Ri®.. ® Ry (n factors)

and
U, = U1 X ... X 01 (n factors).

Moreover,
R, 2 (Ri{)" =def Ry ®...@ Ry (n factors).

If A e P(R)\ Ry, by the Tonelli Theorem, the set A x {0,...,0} (n — 1
zeros) is an m,-null set, which, in view of Theorem 3.4.1, cannot belong to
the o-algebra (R;)". Thus the Axiom of Choice implies that

R, #(Ry)"
Clearly, the completion of the measure m; X ... x my (n factors) equals

M.
Sometimes we prefer to write

/ f(zq, ...y xy)dxy.. dxy,
A1 X...XAp
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instead of

/141><..‘><An f(@)dmn ()

A1 X...XAp
Moreover, the integral

/ / f(l‘l,...,l'n)dllfl...dl’n
Aq A

/ f(zq, .y xy)dey..dx,.
A1 X...xXAp

or

is the same as

Definition 3.4.2. (a) The measure

2

2 dx
A) = Tr— A€
'71( ) Ae \/ﬁ

is called the canonical Gauss measure in R.

R

(b) The measure
Y = Y1 X ... Xy (n factors)

is called the canonical Gauss measure in R". Thus, if

|z |=1/22+ .. +22, 2= (21,...,2,) €ER"

we have 2 g
|z X
LA = e 2 ——, AeR,.
Yn(A) ; o

(c¢) A Borel measure i in R is said to be a centred Gaussian measure if
p = f(v,) for some linear map f: R — R.
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(d) A real-valued random variable ¢ is said to be a centred Gaussian
random variable if its probability law is a centred Gaussian measure in R.
Stated otherwise, £ is a real-valued centred Gaussian random variable if either

L(&) = dp (abbreviated & € N(0,0))

or there exists a o > 0 such that

£<§> =, (abbreviated £ € N(0,0)).

(e) A family (&,)er of real-valued random variables is said to be a centred
real-valued Gaussian process if for all ¢1,....t, € T, aq, ..., a,, € R and every
n € N, the sum

é- - EZZIOéké-tk

is a centred Gaussian random variable.

Exercises

1. Let (X, M, 1) and (Y, N, v) be two o-finite measure spaces. Let f € L!(u)
and g € L'(v) and define h(z,y) = f(z)g9(y), (z,y) € X x Y. Prove that

h e L'Y(u x v) and
/ hd(pu x v) :/ fdu/ gdv.
XxY X Y

2. Let (X, M, 1) be a o-finite measure space and f : X — [0, co[ a measur-
able function. Prove that

/deuzwxm){(x,y); 0<y<f(z), z€X}.

3. Let (X, M, i) be a o-finite measure space and f : X — R a measurable
function. Prove that (u x m)({(x, f(z)); z € X }) = 0.
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4. Let E € Ry and E C [0,1] x [0,1]. Suppose m(E,) < % for m-almost all
x € [0,1]. Show that

m({y € [0,1];m(E¥) = 1}) <

N[ =

5. Let ¢ be the counting measure on R restricted to R and
D ={(x,x); z € R}.

Define for every A € (RXR)U{D},

() = [ ([ o) (@)dets)

and

/)= [ (] xalepde)ano)

(a) Prove that p and v agree on R X R.
(b) Prove that p(D) # v(D).

6. Let I =)0, 1] and

22 — o2
h(‘r?y) = ma (‘Tay) € I'x1I.
Prove that
T
1 JrI
T
([ h(x,y)dr)dy = 1
1 JrI
and

/ | h(z,y) | dedy = oc.
IxI

7. Fort >0 and z € R let
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and

Given a > 0, prove that

/Z(/aoo h(t, x)dt)de = —1
/aoo(/z h(t, z)dz)dt = 0

| h(t, ) | dtdx = cc.

and

and conclude that

[a,00[xR
(Hint: First prove that
/ g(t,x)dx =1
and
dg  19% )
ot 20x%

8. Given f € L'(m), let

z+1
o(z) = %/1 f(t)dt, 7 € R.

Prove that

/R|9($)|d$§/R|f(x)|dx.

9. Let I = [0,1] and suppose f : I — R is a Lebesgue measurable function
such that

[ 15w = 1) sty < .

Prove that

xT1
/|f(x)|dx<oo.
I
10. Suppose A € R~ and f € L'(m). Set

o) = /Rd(y,A)f(y)dy, CER.

|z —y |?
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Prove that

IRECIEEES

11. Suppose that the functions f,g : R — [0, 00 are Lebesgue measurable
and introduce p = fm and v = gm. Prove that the measures p and v are
o-finite and

(uxv)(E) = /Ef($)g(y)dxdy ifEFEER @R ™.

12. Suppose p is a finite positive Borel measure on R” and f : R - R a
Borel measurable function. Set g(z,y) = f(x) — f(y), =,y € R". Prove that
f € LY(p) if and only if g € L* (1 x ).

13. A random variable £ is non-negative and possesses the distribution func-
tion F(x) = P[£ < x]. Prove thatE [¢] = [[7(1 — F(z))dx.

14. Let (X, d) be a metric space and suppose Y € B(X). Then Y equipped
with the metric djyy is a metric space. Prove that

B(Y)={ANY; A e B(X)}.

15. The continuous bijection f : (X,d) — (Y,e) has a continuous inverse.
Prove that f(A) € B(Y) if A € B(X)

16. A real-valued function f(x,y),z,y € R, is a Borel function of x for every
fixed y and a continuous function of y for every fixed x. Prove that f is a
Borel function. Is the same conclusion true if we only assume that f(z,y) is
a real-valued Borel function in each variable separately?
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17. Suppose a > 0 and

o0 n

W, =€ “ Z %(SH

n=0

where §,(A) = x4(n) if n € N ={0,1,2,...} and A C N. Prove that

(Ma X ,Lbb)S_l = :ua-i-b

for all a,b > 0, if s(z,y) =x +vy, x,y € N.

18. Suppose

g2

< xe
t) = ——dx, t > 0.
0= | e
Compute

tlir()I}r f(t) and/O f(t)dt.

Finally, prove that f is differentiable.
3.5 Change of Variables in Volume Integrals

If T is a non-singular n by n matrix with real entries, we claim that

1
—= /Un
| det T |

T'(v,)

(here T' is viewed as a linear map of R™ into R™). Remembering Corollary
3.1.3 this means that the following linear change of variables formula holds,
viz.

1
Tr)dr = ————
R" f( x> v | detT | R
The case n = 1 is obvious. Moreover, by Fubini’s Theorem the linear change
of variables formula is true for arbitrary n in the following cases:
(a) Tz = (Tx(1); ---» Tx(n)), Where 7 is a permutation of the numbers 1, ..., n.
(b) Tx = (axq, 2, ..., Tp), Where « is a non-zero real number.

(x)dz all f e C.(R"™).



114

(¢) Tx = (z1 + x, T, ..., Tyy).

Recall from linear algebra that every non-singular n by n matrix 7' can be
row-reduced to the identity matrix, that is 7' can by written as the product
of finitely many transformations of the types in (a),(b), and (c). This proves
the above linear change of variables formula.

Our main objective in this section is to prove a more general change
of variable formula. To this end let 2 and I' be open subsets of R™ and
G : Q — I a C" diffeomorphism, that is G = (gi,...,9,) is a bijective
continuously differentiable map such that the matrix G'(z) = (g—g;(l‘))lgi,jgn
is non-singular for each z € 2. The inverse function theorem implies that
G™':T — Qis a C! diffeomorphism [DI].

Theorem 3.5.1. If f is a non-negative Borel function in §2, then

/f dx—/f ) | det G'(z) | da.

The proof of Theorem 3.5.1 is based on several lemmas.
Throughout, R" is equipped with the metric

Let K be a compact convex subset of 2. Then if z,y € K and 1 <1 < n,

@) =aits) = [ Gty tlo =)

— [ S g+t = o~ et

and we get
dn(G(2),G(y)) < M(G, K)dn(z,y)
where
M(G, K) = max X} _ 1max| 991

1<i<n zeK [L‘k

5 (2) ]

Thus if B(a;7) is a closed ball contained in K,

G(B(a;r)) € B(G(a); M(G, K)r).
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Lemma 3.5.1. Let (Qr)2 be a sequence of closed balls contained in € such
that

Qi1 C Qx

and
diam @, — 0 as k — oc.

Then, there is a unique point a belonging to each Q) and

lim sup onlG(Qn)) <| detG'(a) | .

n—oo Un<Qk)
PROOF. The existence of a point a belonging to each @); is an immediate
consequence of Theorem 3.1.2. The uniqueness is also obvious since the
diameter of Q) converges to 0 as k — oo. Set T'= G'(a) and F = T~'G.

Then, if Qr = B(xg;71),

un(G(Qr)) = va(T(T7'G(Q1))) =| det T | v, (T G(B(xy;71)))
<| det T | v, (B(T'G(21); M(T*G; Qp)ry) =| det T | M(TG; Q) v, (Qp).
Since

lim M(T'G;Qy) =1

k—oo

the lemma follows at once.

Lemma 3.5.2. Let () be a closed ball contained in 2. Then

1, (G(Q)) < /Q | det G'(x) | dx.

PROOQOF. Suppose there is a closed ball () contained in {2 such that

v, (G(Q)) > /Q | det G'(x) | dx.

This will lead us to a contradiction as follows.
Choose € > 0 such that

v (G(Q)) > (1 +6)/Q | det G'(z) | dx.
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Let Q = U?" B, where By, ..., Byn are mutually almost disjoint closed balls
with the same volume. If

v (G(Bg)) < (1 —1—5)/ | det G'(z) | dx, k=1,...,2"

we get
ua(G(Q)) < ZiL10a(G(By))
<X (1+ 5)/3 | det G'(z) | dx = (1 —1—6)/@ | det G'(z) | dx

which is a contradiction. Thus
v(G(Bg)) > (1 +€)/ | det G'(z) | dx
By

for some k. By induction we obtain a sequence (Qx)52; of closed balls con-
tained in €2 such that

Qi1 € Ok,
diam @), — 0 as k — o0

and

v (G(Qr)) > (1 —|—5)/Q | det G'(z) | dx.

But applying Lemma 3.5.1 we get a contradiction.

PROOF OF THEOREM 3.5.1. Let U C €2 be open and write U = U2, Q);
where the @)}s are almost disjoint cubes as in Theorem 3.1.5. Then

0(G0)) < E20(G(Q)) <2, [ |det G/ (o) | da

7

:/ | det G'(z) | dz.
U

Using Theorem 3.1.3 we now have that

v (G(E)) < /E | det G'(z) | dx
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for each Borel set £ C ). But then

/f dm</f ) | det G'(x) | dx

for each simple Borel measurable function f > 0 and, accordingly from this
and monotone convergence, the same inequality holds for each non-negative
Borel function f. But the same line of reasoning applies to G replaced by
G~! and f replaced by f(G) | det G’ |, so that

/f ) | det G'(x) \dx</f ) | det G'(G1(2)) || det(G™1Y(x) | dx

= /Ff(x)dx

This proves the theorem.

Example 3.5.1. If f: R? — [0,00] is (R2, Ry )-measurable and 0 < & <
R < oo, the substitution

G(r,0) = (rcos@,rsinb)

yields
R 27
f(z1, x9)dx1dTe = / / f(rcos@,rsin@)rdrdd
/£<w/a:%+x§<R € 0
and by letting ¢ — 0 and R — oo, we have
0 2w
f(z1, xe)dx1dae = / f(rcos@,rsin@)rdrdd.
R2 o Jo

The purpose of the example is to show an analogue formula for volume
measure in R™.

Let S"' = {z € R";| # |= 1} be the unit sphere in R". We will define a
so called surface area Borel measure o,,_; on S™ ! such that

flz)de = /Oo ferw)r™tdrdo, 1 (w)
R" 0o Jgn
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for any (R, Ro.c0)-measurable function f : R™ — [0, oo]. To this end define
G :R"\ {0} —]0,00[ x S"! by setting G(z) = (r,w), where

r=|z| and w = —.
z |

Note that G™!:]0,00[ x S"~* — R™\ {0} is given by the equation
G Hr,w) = rw.

Moreover,

G1(]0,a] x E) =aG7%(]0,1] x E)ifa >0and E C S" ',
If £ € B(S"!) we therefore have that

v, (G7H(0,a] x E)) = a™v,(G(]0,1] x E)).
We now define
on1(E) = nv,(G7Y]0,1] x E)) if E € B(S"™)

and

p(A) = /Arn_ldr if A € B(]0,00).

Below, by abuse of language, we write v, g {0y = v,. Then, if 0 < a <

b<ooand E € B(S"™™),
G (vn)(]0,a] x E) = p(]0,a])on1(E)

and
G(vn)(Ja, 0] x E) = p(Ja,b])on-1(E).

Thus, by Theorem 1.2.3,
G(vp) =p X op1

and the claim above is immediate.
To check the normalization constant in the definition of o,_1, first note
that
R Rn
u(lz |< R) = / / r"drdo(w) = —0,_1(S™)
0 Snfl n
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and we get

ﬁvnﬂ r|<R)=R"1o,1(S").

Exercises

1. Extend Theorem 3.5.1 to Lebesgue measurable functions.

2. The function f : R — [0, 00[ is Lebesgue measurable and [, fdm = 1.
Determine all non-zero real numbers « such that fR hdm < oo, where

h(z) =% f(a"x+n), z € R.

1
3.6. Independence in Probability

Suppose (€2, F, P) is a probability space. The random variables &, : (2, P) —
(Sk,Sk), k=1, ...,n are said to be independent if

A family (&;)ies of random variables is said to be independent if &, , ..., &;,
are independent for any 1iy,...i, € [  with ¢ # 4 if & # [. A family of
events (A;);es is said to be independent if (x 4. )ics is a family of independent
random variables. Finally a family (A;);c; of sub-o-algebras of F is said to
be independent if, for any A; € A;, i € I, the family (A;);cs is a family of
independent events.

Example 3.6.1. Let ¢ > 2 be an integer. A real number w € [0, 1] has a
g-adic expansion

é](;])

W= X5 2
k=1 qk
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The construction of the Cantor set shows that (fl(f))zo:l is a sequence of
independent random variables based on the probability space

([0’ 1[ » U10,1[5 B([()? 1[))

Example 3.6.2. Let (X, M, 1) be a positive measure space and let 4; € M,
t € N, be such that
S p(As) < oo

The first Borel-Cantelli Lemma asserts that p-almost all z € X lie in A;
for at most finitely many 7. This result is an immediate consequence of the
Beppo Levi Theorem since

/ Z;.i1XAld/jJ = 2?21/ XAzdﬂ <
X X

implies that
YiZiXa, <00 ae. [u].

Suppose (€2, F, P) is a probability space and let (A;)?°; be independent
events such that

The second Borel-Cantelli Lemma asserts that almost surely A; happens for
infinitely many 1.
To prove this, we use the inequality

l1+zx<e”, z€R

to obtain
P[NP AS] = TP A]

=M (1 — P[A)]) < TTH e P = g vn)

By letting n — oo,
P[NZ, A =0

or
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But then
PN, U A] =1

and the second Borel-Cantelli Lemma is proved.

Theorem 3.6.1. Suppose &, ...,&,, are independent random variables and
£, € N0,1), k=1,...n. If aq,...,a, € R, then

Sp_apy, € N(0, 531 07)

PROOQOF. The case aq, ..., a, = 0 is trivial so assume «; # 0 for some k. We
have for each open interval A,

PS0_ o5y € A] = / 0y (1) ()

P aprp€A

1 1.2 2
/ e 2@t AT gy da,.
Zkzlakl‘keA V 27T

Set 0 = \/a?+ ...+ a2 and let y = Gz be an orthogonal transformation
such that

1
Yy = ;(061371 + ...+ anﬂj‘n).

Then, since det G =1,

— 5+ Fy?

e Vdyi ...dy,

1
P X2 oy € A :/

ocy1€A V 2m

1 1,2
= €_§y1 dyl
/oyleA \% 27T

where we used Fubini’s theorem in the last step. The theorem is proved.

Finally, in this section, we prove a basic result about the existence of
infinite product measures. Let u;, £k € N, be Borel probability measures
in R. The space RN+ is, by definition, the set of all sequences = = (z;)32,
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of real numbers. For each k € N, set mx(7) = x3. The o-algebra RN+
is the least o-algebra S of subsets of RN+ which makes all the projections
7, (RN+)S) — (R,R), k € N, measurable. Below, (71, ...,7,) denotes
the mapping of RN+ into R™ defined by the equation

(71, ey ™) () = (m1(T), .oy T ().

Theorem 3.6.1. There is a unique probability measure j on RN+ such that

Tn) =y X Xy,

-----

for every n € N ..

The measure p in Theorem 3.6.1 is called the product of the measures
iy, k € N, and is often denoted by

[ee]
X =1

PROOF OF THEOREM 3.6.1. Let (Q,P7 ]—") = ([0, 1[,U1|[0,1[7B([0, 1[) and
set

We already know that P, = P. Now suppose (k;)°; is a strictly increasing
sequence of positive integers and introduce

)
Y
/= z;-;szzﬁ ), w € Q.

Note that for each fixed positive integer n, the R"-valued maps (£; (2) s 522))
and (&, ),. . ,(jl)) are P-equimeasurable. Thus, if f: ) — R is contlnuous,

[ snar = 1w [ sz .

n—oo Qk
(2
~ lim [ o / f(n

and it follows that P, = P77 = P.



123

By induction, we define for each k£ € N, an infinite subset N of the set
N, \ U N; such that the set N, \U%_ | N; contains infinitely many elements
and define -

nk‘ = Eizl 22
where (n;,)$2; is an enumeration of Nj. The map
U(w) = (m(w)its
is a measurable map of (2, F) into (RN+, RN+) and
P\p = Xzozl)\i

where \; = P for each i € N,.
For each ¢ € N there exists a measurable map ¢, of (€2, ) into (R, R)
such that P, = p; (see Section 1.6). The map

[(z) = (pil:))iZy

is a measurable map of (RN+, RN+) into itself and we get u = (Py)r. This
completes the proof of Theorem 3.6.1.

[k
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CHAPTER 4
MODES OF CONVERGENCE

Introduction

In this chapter we will treat a variety of different sorts of convergence notions
in measure theory. So called L?-convergence is of particular importance.

4.1. Convergence in Measure, in L'(;), and in L?(p)

Let (X, M, i) be a positive measure space and denote by F(X) the class of
measurable functions [ : (X, M) — (R,R). For any f € F(X), set

| £ lh= /X | (@) | du(z)

| £ lla= \/ /X F2(@)dpz).

The Cauchy-Schwarz inequality states that

and

/XIfglduSHf||z||g||ziff,g€f(X>-

To prove this, without loss of generality, it can be assumed that
0<|| flla2<oo and 0 <|| g ||l2< o0.

We now use the inequality

0f < 5(0*+ ), a.f €R
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to obtain

f1 19l L f g’
d = dp =1
.AHfMHMb“S/2Wf%+H9M)M

and the Cauchy-Schwarz inequality is immediate.
If not otherwise stated, in this section p is a number equal to 1 or 2. If it
is important to emphasize the underlying measure || f ||, is written || f ||, -
We now define

L) ={f € F(X); [ [ llp< o0}

The special case p = 1 has been introduced earlier. We claim that the
following so called triangle inequality holds, viz.

If+gllp<I fllp+ gl if f,g9 € L)

The case p = 1, follows by u-integration of the relation

[ f+gl<lfl+1g].

To prove the case p = 2, we use the Cauchy-Schwarz inequality and have

If+g =l f 1+ 1glll3

=Hf||§+2/X!fg!du+ g2

<IAUZ+2 0 f M2l gl + g llz= (1 £ ll2+ 11 g [12)®

and the triangle inequality is immediate.

Suppose f, g € LP(n). The functions f and g are equal almost everywhere
with respect to p if {f # g} € Z,. This is easily seen to be an equivalence
relation and the set of all equivalence classes is denoted by LP(u). Below
we consider the elements of LP(u) as members of £P(y) and two members
of LP(u) are identified if they are equal a.e. [u]. From this convention it is
straight-forward to define f + g and af for all f,g € LP() and o € R and
the function d®)(f, g) =| f — g ||, is a metric on LP(u). Convergence in the
metric space LP(u) = (LP(u),d®)) is called convergence in LP(u1). A sequence
(fr)72, in F(X) converges in measure to a function f € F(X) if

klimﬂ(|fk—f|>5):(]alls>0.
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If the sequence (f;)52; in F(X) converges in measure to a function f
€ F(X) as well as to a function g € F(X), then f = g a.e. [u] since

Ur-glac{lr-fl>s uf{ir-g>35}

and
Wl f=gl>e) <ull f=fil> )+l fi=g 1> 3)

for every € > 0 and positive integer k. A sequence (fx)72; in F(X) is said
to be Cauchy in measure if for every € > 0,

pll fi = fu [> €) = 0 as k,n — oo,

By the Markov inequality, a Cauchy sequence in L”(y) is Cauchy in measure.

Example 4.1.1. (a) If f; = \/EX[O%], k € N, then

1
| fr llzm=1and || fi |lLm= 7
Thus f — 0 in L1<m) as k — oo but f - 0in Lz(m) as k — oo,
(b) L'(m) € L*(m) since
1 5 .
X[l,oo[(x)m € L*(m)\ L' (m)

and L*(m) € L*(m) since

Yo (£)—— € L}(m) \ L3(m).

viEll

Theorem 4.1.1. Suppose p =1 or 2.
(a) Convergence in LP(u) implies convergence in measure.
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(b) If w(X) < oo, then L*(u) C L'(u) and convergence in L*(p) implies
convergence in L'(j).

Proof. (a) Suppose the sequence (f,)>2; converges to f in LP(u) and let
¢ > 0. Then, by the Markov inequality,

= f 1z 5 [ 1h=fPdu= S0 f=F I

and (a) follows at once.

(b) The Cauchy-Schwarz inequality gives for any f € F(X),

([ 1512 < [ P [ 1

IS <1 F e v/i(X)

or
and Part (b) is immediate.

Theorem 4.1.2. Suppose f, € F(X), n € N,.

(a) If (fn)22, is Cauchy in measure, there is a measurable function f :
X — R such that f, — f in measure as n — oo and a strictly increasing
sequence of positive integers (n;)52, such that f,, — f a.e. [u] as j — oc.

(b) If w is a finite positive measure and f, — f € F(X) a.e. [u] as
n — oo, then f, — f in measure.

(c) (Egoroff’s Theorem) If u is a finite positive measure and f, —
f e F(X) a.e [u] as n — oo, then for every € > 0 there exists E € M such
that p(E) < € and

sup | fe(z) — f(z) |— 0 as n — oo.
k>n
rek*

PROOF. (a) For each positive integer j, there is a positive integer n; such
that | |
pl| fo— frl>27) <27, all k1 > n;.
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There is no loss of generality to assume that n; < ny < ... . Set

E] = {| f’flj - fTL]‘+1 |> 2_j}

and

fxeFandi>j>k

| fm(l’) _fnj('r) |S Z | fnl+1<x) - fnl<x) |

j<i<i

and we conclude that (f,,(z))32, is a Cauchy sequence for every x € Fy. Let
G = U | F¢ and note that for every fixed positive integer £,

plG) < p(F) < 30270 = 27k,
=k

Thus G is a p-null set. We now define f(r) = lim; . f5,(z) if € G and
flz)=0ifz ¢ G.

We next prove that the sequence (f,)5°; converges to f in measure. If
x € Fy and j > k we get

| f(z) = fo,(z) |< 279

Thus, if j > k A
p(| f = foy 1> 27770 < p(Fy) < 274

Since
i fo = £ 1 &) S il fu = Fuy 1> 5) + il fo, = £ 1> 5)

if ¢ > 0, Part (a) follows at once.
(b) For each € > 0,

il fo f 1> 2) = /X Vel fu— 7 Dip
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and Part (c) follows from the Lebesgue Dominated Convergence Theorem.

(c) Set for fixed k,n € N,

1
We have
and since p is a finite measure

w(Exn) — 0 as n — oo.

Given ¢ > 0 pick nj, € N, such that p(Ey,, ) < €27%. Then, if E = U° | By,
u(E) < e. Moreover, if x ¢ E and j > ny,

i

| fi(z) = flz) |<

The theorem is proved.

Corollary 4.1.1. The spaces L'() and L*(u1) are complete.

PROOF. Suppose p =1 or 2 and let (f,)32; be a Cauchy sequence in LP ().
We know from the previous theorem that there exists a subsequence (fy, );";1
which converges pointwise to a function f € F(X) a.e. [u]. Thus, by Fatou’s
Lemma,

/If—fkl”duéliminf/ | for = i P du
X J—oo Jx

and it follows that f — f; € LP(u) and, hence f = (f — fi) + fx € LP(u).
Moreover, we have that || f — fi ||,— 0 as k — oo. This concludes the proof
of the theorem.

Corollary 4.1.2. Suppose &, € N(0,0%), n € N, and &, — & in L*(P) as
n — oo. Then & is a centred Gaussian random variable.
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PROOF. We have that || &, [2=\/E [§3] = 0, and || &, [2= ]| € l2=ues 0

as n — oo.
Suppose f is a bounded continuous function on R. Then, by dominated
convergence,

Ef(,)] = /R F(0n)d () — /R f(ow)dm (2)

as n — oo. Moreover, there exists a subsequence (&, )72, which converges
to £ a.s. Hence, by dominated convergence

E[f(&,,)] = E[f(8)]

as k — oo and it follows that
BIAEN = | Honin).

By using Corollary 3.1.3 the theorem follows at once.

Theorem 4.1.3. Suppose X is a standard space and i a positive o-finite
Borel measure on X. Then the spaces L'(u) and L*(u) are separable.

PROOF. Let (Ej)2,; be a denumerable collection of Borel sets with finite
p-measures and such that Fy C Fy,, and U2 Fy = X. Set ), = xp, p and
first suppose that the set Dy is at most denumerable and dense in LP ()
for every k € N,. Without loss of generality it can be assumed that each
member of Dj vanishes off F;. By monotone convergence

/ fdp = lim / fdpy, f > 0 measurable,
X k—oo Jx

and it follows that the set U2, Dy, is at most denumerable and dense in LP(11).

From now on we can assume that p is a finite positive measure. Let A
be an at most denumerable dense subset of X and and suppose the subset
{rn; m € N4, } of ]0,00[ is dense in |0, 00[. Furthermore, denote by U the
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class of all open sets which are finite unions of open balls of the type B(a,r,),
a€ A,neN,. IfUisany open subset of X

U=U[V:VCUandV elU]
and, hence, by the Ulam Theorem
p(U) =sup{p(V); Veldand V C U}.

Let K be the class of all functions which are finite sums of functions of
the type kX, where k is a positive rational number and U € U. It follows
that I is at most denumerable.

Suppose ¢ > 0 and that f € LP(u) is non-negative. There exists a
sequence of simple measurable functions (y;)°; such that

0<¢; T fae [y

Since | f — ¢, |P< fP, the Lebesgue Dominated Convergence Theorem shows

that || f — ¢, [[p< § for an appropriate k. Let a1,...,q; be the distinct

positive values of ¢, and set
Cc=1 + 22:104]6.

Now for each fixed j € {1,...,l} we use Theorem 3.1.3 to get an open
U; 2 ¢, ' ({a;}) such that || XU, = X~ (a1 |,< 4= and from the above we
get a V; € U such that V; C U; and || xp, — xv; [[,< 15 Thus

€
| Xv; 7 Xept({ay}) Ip< 20

and
I f = Ehoaxy, lb<e

Now it is simple to find a ¢ € K such that || f — ¢ [[,< €. From this we
deduce that the set

K—-K={g9—h; ghe€K}

is at most denumerable and dense in LP(u).
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The set of all real-valued and infinitely many times differentiable functions
defined on R™ is denoted by C(*)(R") and

CI(R") = {fe C)(R™M); suppf compact } .

Recall that the support suppf of a real-valued continuous function f defined
on R" is the closure of the set of all x where f(z) # 0. If

fla) = [THe( +a)e( =2}, o = (21, ..20) €R”

where p(t) = exp(—t~1), if t > 0, and p(t) = 0, if t <0, then f € C(R") .
The proof of the previous theorem also gives Part (a) of the following

Theorem 4.1.4. Suppose p is a positive Borel measure in R"™ such that
pu(K) < oo for every compact subset K of R™. The following sets are dense
in L'Y(p), and L*(p) :

(a) the linear span of the functions

X7, I open bounded n-cell in R",

(b) CL(R™).

PROOF. a) The proof is almost the same as the proof of Theorem 4.1.3.
First the Ej:s can be chosen to be open balls with their centres at the origin
since each bounded set in R" has finite y-measure. Moreover, as in the proof
of Theorem 4.1.3 we can assume that p is a finite measure. Now let A be an
at most denumerable dense subset of R™ and for each a € A let

R(a)={r>0;, p{z e X; |z —ag|=7}) >0 forsome k=1,...,n}.

Then U,c4R(a) is at most denumerable and there is a subset {r,; n € N}
of |0, 00[ \ UseaR(a) which is dense in |0, co[. Finally, let & denote the class
of all open sets which are finite unions of open balls of the type B(a,r,),
a € A, n € N, and proceed as in the proof of Theorem 4.1.3. The result
follows by observing that the characteristic function of any member of U
equals a finite sum of characteristic functions of open bounded n-cells a.e.

(1] -
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Part (b) in Theorem 4.1.4 follows from Part (a) and the following

Lemma 4.1.1. Suppose K C U C R", where K is compact and U is open.
Then there exists a function f € C (R"™) such that

K< f=<U

that is
X < f < xp and suppf C U.

PROOF. Suppose p € C(R") is non-negative, supp p C B(0,1), and

/ pdm,, = 1.

Moreover, let € > 0 be fixed. For any g € L'(v,) we define

fo = [ gl o - gy

Since
akl"rm"rknp

l€ LY (vy,), all ky,...,k, € N

AR ST

the Lebesgue Dominated Convergent Theorem shows that f. € C*°(R").
Here f. € C°(R") if g vanishes off a bounded subset of R". In fact,

supp f: C (supp g)-.

Now choose a positive number e < 1d(K, U*) and define g = x_. Since

f@)= | gt cppliy

we also have that f.(z) =1 if 2 € K. The lemma is proved.
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Example 4.1.2. Suppose f € L'(m,) and let g : R™ — R be a bounded
Lebesgue measurable function. Set

h(z) = . fx—y)g(y)dy, v € R".

We claim that A is continuous.
To see this first note that

a+ Aa) ~ hla) = [ (f(o+ Do =) = fa ~y)glu)dy
and

[ ho o Aa) — h(a) [< K [ S+ D)~ fle =) | dy

=K Rn\f(Aery)—f(y)!dy

if | g(z) |< K for every x € R". Now first choose € > 0 and then ¢ € C.(R")
such that
If—¢li<e

Using the triangle inequality, we get

| Wz + Az) = h(z) [S K| f=¢ 1 +/ | p(Az +y) = »(y) | dy)

n

SK(2€+/ | o(Az +y) — o(y) | dy)

n

where the right hand side is smaller than 3Ke¢ if | Az | is sufficiently small.
This proves that A is continuous.

Example 4.1.3. Suppose A € R, and m,(A) > 0. We claim that the set

A-—A={z—uz0ec A}

contains a neighbourhood of the origin.
To show this there is no loss of generality to assume that m,(A) < oco.
Set
flz)=m,(AN(A+2z)), x € R™
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Note that
f@)z/}Xwaﬁy—wMy

and Example 4.1.2 proves that f is continuous. Since f(0) > 0 there exists a
d > 0 such that f(z) > 01if | z |< §. In particular, AN(A+zx) # ¢ if | z |< 9,
which proves that

B(0,6) C A— A.

The following three examples are based on the Axiom of Choice.

Example 4.1.4. Let NL be the non-Lebesgue measurable set constructed
in Section 1.3. Furthermore, assume A C R is Lebesgue measurable and
A C NL. We claim that m(A) = 0. If not, there exists a 6 > 0 such that
B(0,0)) CA-—ACNL—-NL.If0<r < ¢ andr € Q, there exist a,b € NL
such that

a=>b+r.

But then a # b and at the same time a and b belong to the same equivalence
class, which is a contradiction. Accordingly from this, m(A) = 0.

Example 4.1.5. Suppose A C [—%, %} is Lebesgue measurable and m(A) >

0. We claim there exists a non-Lebesgue measurable subset of A. To see this
note that
A=UZ,((rn+NL)NA)

where (7;)$°, is an enumeration of the rational numbers in the interval [—1, 1] .
If each set (r; + NL) N A, is Lebesgue measurable

m(A) = X2 ,m((r; + NL)N A)

and we conclude that m((r; + NL) N A) > 0 for an appropriate i. But then
m(NLN(A—r;))>0and NLN(A—r;) C NL, which contradicts Example
4.1.4. Hence (r; + NL) N A is non-Lebesgue measurable for an appropriate i.
If A is a Lebesgue measurable subset of the real line of positive Lebesgue
measure, we conclude that A contains a non-Lebesgue measurable subset.
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Example 4.1.6. Set I = [0,1]. We claim there exist a continuous function
f: I — I and a Lebesgue measurable set L C I such that f~!(L) is not
Lebesgue measurable.

First recall from Section 3.3 the construction of the Cantor set C' and the
Cantor function G. First Cy = [0, 1]. Then trisect Cy and remove the middle
interval ]%,%[ to obtain C; = Cj \ }%,%[ = [0, %] U [%, 1} . At the second
stage subdivide each of the closed intervals of (' into thirds and remove
from each one the middle open thirds. Then Co = Cy \ (J§,2[ U], 3[). We
repeat the process and what is left from C,,_; is C),. The set [0, 1]\ C,, is the
union of 2" —1 intervals numbered I}, k =1, ...,2" — 1, where the interval I}
is situated to the left of the interval I}* if £ < [. The Cantor set C' = N2, C,,.

Suppose n is fixed and let G,, : [0,1] — [0, 1] be the unique the monotone
increasing continuous function, which satisfies G,,(0) = 0, G,,(1) = 1, G, (x) =
k27" for x € I}! and which is linear on each interval of C), It is clear that
G, = Gp41 on each interval I}', kK = 1,...,2" — 1. The Cantor function is
defined by the limit G(x) = lim,,_,oc Gp(z), 0 < 2 < 1.

Now define

h(x) = %(m +G(x), v el

where G is the Cantor function. Since h : I — [ is a strictly increasing and
continuous bijection, the inverse function f = h~! is a continuous bijection
from I onto I. Set

A=h(I\C)

and
B = h(C).

Recall from the definition of GG that GG is constant on each removed interval
I} and that h takes each removed interval onto an interval of half its length.

Thus m(A) = 3 and m(B) =1 —m(A4) = 1.

By the previous example there exists a non-Lebesgue measurable subset
M of B. Put L = h™'(M). The set L is Lebesgue measurable since L C C'
and C' is a Lebesgue null set. However, the set M = f~1(L) is not Lebesgue
measurable.

Exercises
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1. Let (X, M,u) be a finite positive measure space and suppose @(t) =
min(t, 1), ¢t > 0. Prove that f,, — f in measure if and only if (| f,—f|) — 0
in L'(u).

2. Let u = myj,). Find measurable functions f, : [0,1] — [0,1], n € N,
such that f,, — 0 in L?(u) as n — oo,

liminf f,(z) =0 all x € [0, 1]

n—oo

and
limsup f,(z) =1 all z € [0,1].

n—oo

3. If f e F(X) set
I'f llo= inf {a € [0,00); u(] f|> @) <aj.

Let
L) = {f € F(X); || £ llo< o0}
and identify functions in L°(x) which agree a.e. [u].

(a) Prove that d®© =| f — g ||o is a metric on L°(x) and that the corre-
sponding metric space is complete.

(b) Show that F(X) = L°(u) if u is a finite positive measure.

4. Suppose LP(X, M, u) is separable, where p = 1 or 2. Show that LP(X, M~ i)
is separable.

5. Suppose g is a real-valued, Lebesgue measurable, and bounded function
of period one. Prove that

[e.e]

im [ f(x)g(na)de = / : F(a)dz /0 o)

n—oo
—00
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for every f € L*(m).

6. Let h,(t) =2+sinnt, 0 <t <1, and n € N,. Find real constants « and
[ such that

lim f dt—a/f

n—oo

[T f() '
lim hn(t)dt = ﬁ/o f(t)dt

n—o0 0

and

for every real-valued Lebesgue integrable function f on [0,1].

7. I k= (k... kn ) € N7, set ex(z) = I sinkz;, © = (21, ...,x,) € R”,
and | k |= (S k2)z. Prove that

lim fexrdm, =0

\k\ﬁoo R”

for every f € L*(m,).

8. Suppose f € L'(m,,), where m,, denotes Lebesgue measure on R™. Com-
pute the following limit and justify the calculations:

lim | f(x+h)— f(x) | de.

4.2 Orthogonality

Suppose (X, M, 11) is a positive measure space. If f,g € L*(u), let

(f,9) =des / fadu
X
be the so called scalar product of f and ¢g. The Cauchy-Schwarz inequality

| (Frg) I<I T Hl2l g ll2



139

shows that the map f — (f, g) of L?*(;1) into R is continuous. Observe that

If+gll=lf 1z +2(f. 9+ 1 9 113

and from this we get the so called Parallelogram Law

If+gll+1f—glz=20lF15+1gl2).

We will say that f and g are orthogonal (abbr. f L g) if (f,g) = 0. Note
that
If+glle=Il 13+ 1l gll2if andonlyif f L g.
Since f 1 ¢ implies ¢ L f, the relation 1 is symmetric. Moreover, if
f L hand g L h then (af + 8g) L h for all o, 3 €R. Thus h* =4y
{f € L*(u); f L h} is a subspace of L?(u), which is closed since the map
f — {f,h), f € L*(n) is continuous. If M is a subspace of L?(), the set

M* =4ef Npenrh™

is a closed subspace of L?(u). The function f = 0 if and only if f L f.

If M is a subspace of L?(u1) and f € L?(u) there exists at most one point
g € M such that f — g € M=*. To see this, let go,g1 € M be such that
f—gre Mt k=0,1. Then g; — go = (f — go) — (f — g1) € M+ and hence
g1 — 9o L g1 — go that is go = g1.

Theorem 4.2.1. Let M be a closed subspace in L*(p) and suppose [ €
L*(p1). Then there exists a unique point g € M such that

I f=gl2ZIl f=hl2 all he M.
Moreover,

f—ge M

The function g in Theorem 4.2.1 is called the projection of f on M and
is denoted by Proj,; f.

PROOF OF THEOREM 4.2.1. Set

d =ieg d®(f,M) = inf || f =g >
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and let (g,)2%, be a sequence in M such that
d= i | /g .
Then, by the Parallelogram Law
I (f =ge)+(F=ga) I3+ 1| (F =91) = (F=9a) 3= 201l f=gx I3+ | f=3a 12)

that is

1
A =5+ 9n) 5+ g =90 [5=201f = ge 5+ 11 f = 9n [15)
and, since 3 (gx + gn) € M, we get

Ad*+ [ g — g <201 F =g 12+ 11 f = gn [12)-

Here the right hand converges to 4d? as k and n go to infinity and we conclude
that (g,)%%, is a Cauchy sequence. Since L?(u) is complete and M closed
there exists a g € M such that g, — g as n — oo. Moreover,

d=[f—=gl2-

We claim that f — g € M*. To prove this choose h € M and o > 0
arbitrarily and use the inequality

I(f=9) +ah 3=l f—gl;

to obtain
I f=gll3+2a({f =g )+ [ R[5> f =g 3
and
2(f —g.h) +a| k]3>0
By letting o — 0, (f — g, h) > 0 and replacing h by —h, {f — g, h) < 0. Thus
f — g € h* and it follows that f — g € M*.

The uniqueness in Theorem 4.2.1 follows from the remark just before the
formulation of Theorem 4.2.1. The theorem is proved.

A linear mapping 7 : L*(i) — R is called a linear functional on L?(p).
If h € L*(u), the map h — (f,h) of L?*(uu) into R is a continuous linear
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functional on L?(y1). It is a very important fact that every continuous linear
functional on L?(y) is of this type.

Theorem 4.2.2. Suppose T is a continuous linear functional on L?(u).
Then there exists a unique w € L*(u1) such that

Tf = (f,w) all f € L*(n).

PROOF. Uniqueness: If w,w’ € L?(u) and (f,w) = (f,w’) forall f € L*(u),
then (f,w—w') =0 for all f € L*(u). By choosing f = w —w' we get f L f
that is w = w'.

Existence: The set M =4, T7'({0}) is closed since T is continuous and
M is a linear subspace of L?(u) since T is linear. If M = L*(u) we choose
w = 0. Otherwise, pick a g € L*(u) \ M. Without loss of generality it can be
assumed that T'g = 1 by eventually multiplying g by a scalar. The previous
theorem gives us a vector h € M such that u =45 g — h € M*. Note that
0 <[l u 3= (u,g — h) = {u,g).

To conclude the proof, let fixed f € L?(u) be fixed, and use that (T'f)g —
f € M to obtain

(Tf)g—fu)=0

or
(Tf)(g,u) = (f,u).
By setting
1
T
we are done.
M

4.3. The Haar Basis and Wiener Measure
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In this section we will show the existence of Brownian motion with continu-
ous paths as a consequence of the existence of linear measure A in the unit
interval. The so called Wiener measure is the probability law on C'[0, 1] of
real-valued Brownian motion in the time interval [0,1]. The Brownian mo-
tion process is named after the British botanist Robert Brown (1773-1858).
It was suggested by Lous Bachelier in 1900 as a model of stock price fluctua-
tions and later by Albert Einstein in 1905 as a model of the physical phenom-
enon Brownian motion. The existence of the mathematical Brownian motion
process was first established by Norbert Wiener in the twenties. Wiener also
proved that the model can be chosen such that the patht — W (¢),0 <t <1,
is continuous a.s. Today Brownian motion is a very important concept in
probability, financial mathematics, partial differential equations and in many
other fields in pure and applied mathematics.

Suppose n is a non-negative integer and set I,, = {0,...,n}. A sequence
(€:)icr, in L?(u) is said to be orthonormal if e; L e; for all ¢ # j, i,j € I,
and || ¢; ||=1 for each i € I,,. If (e;);cz, is orthonormal and f € L*(p),

= Ziern, (freiei Lejall jel
and Theorem 4.2.1 shows that

| f—=Siern, (f,enei |2<|| [ — Zier,aie; |2 all real a, ..., a,.

Moreover

I f =1 f = Bier (freiei 3 + || Sier, (f e |3
and we get
Sier (fren)? <I £ 13-

We say that (e,,)ner, is an orthonormal basis in L?(y) if it is orthonormal
and

f="Sier,(freie all f e L (),
A sequence (€;)2, in L?(u) is said to be orthonormal if (e;)", is ortho-

normal for each non-negative integer n. In this case, for each f € L?(u),

S2o(fe® < F 112

and the series
Efio <f ) €i> €;
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converges since the sequence

(E?:O<fa ei>ei)§2°:o

of partial sums is a Cauchy sequence in L*(p). We say that (e;)2, is an

orthonormal basis in L?(y) if it is orthonormal and

f =20l f.eide; for all f € L2(p).

Theorem 4.3.1. An orthonormal sequence (e;)%, in L*(u) is a basis of
L2() if
((f,e;) =0alli e N)= f=0

Proof. Let f € L*(u) and set

g=1f- E?io<fa 6i>ei-

Then, for any j € N,
<gv €j> = <f - 2z0<f> ei>ei= €j>

= (frej) = XZo(f,ei){eir e) = (f,e5) = (f,e5) = 0.
Thus g =0 or
f=3Z0(f, e)es.

The theorem is proved.

As an example of an application of Theorem 4.3.1 we next construct an
orthonormal basis of L?()\), where ) is linear measure in the unit interval.
Set

1](t), teR

Moreover, define hgo(t) = 1,

o

<t<1l,andforeachn >1landj=1,..., 2",

hin(t) =27 H(2" 't —j4+1),0<t<1.
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Stated otherwise, we have for each n > 1 and j =1, ...,27}

( n—1

)

. .1
Jj—1 J—3
) gn—1 S t < oan—1)

l\.‘)\»—‘

hjn(t) =0 —2%7" 12 <t < i

l\')

[ 0, elsewhere in [0,1].

It is simple to show that the sequence hoo hjn,j = 1,..,2"" 1, n > 1, is
orthonormal in L?()\). We will prove that the same sequence constitute an
orthonormal basis of L?(\). Therefore, suppose f € L?*()) is orthogonal to
each of the functions ho hjn,j = 1,...,2""%, n > 1. Then for each n > 1 and

j=1,..2"1
2;—%1 2nj—1
|7 rir- / “ 7 jaa
and, hence, ‘
/*_ﬁm_ — 0
=
since
1 1
/ fd/\:/ fhoodA = 0.
0 0
Thus

_k
/5 FAN=0,1<j <k <2}
2 nj— 1

and we conclude that

1 b
/ l[a’b]fd)\ = / fdd=0,0<a<b< 1.
0 a

Accordingly from this, f = 0 and we are done.

The above basis (hk)zozo = (homhu, h12, h22, hlg, h23, h33, h43, ) of L2(A)
is called the Haar basis.

Let 0 <t <1 and define for fixed £k € N

ai(t) = /01 X[o.q (%) hi(z)dx = /Ot hydA
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so that
X[O,t] = Ezozoak(t)hk in L2(>\)

Then, if 0 < s,t <1,

1
min(s, {) = / Yo (2)X 0.0 (£) = (S22 a(5) e, Xo.)

= 25200k (8){Prs X[o.49) = Tz (8)ar(t).
Note that
t = 352 0ai(t).

If (Gr)2, is a sequence of N (0, 1) distributed random variables based on
a probability space (€2, F, P) the series

Yotk (t)Gi

converges in L?(P) and defines a Gaussian random variable which we denote
by W (t). From the above it follows that (W (¢))o<¢<1 is a real-valued centred
Gaussian stochastic process with the covariance

E W (s)W(t)] = min(s,t).

Such a process is called a real-valued Brownian motion in the time interval
[0,1].
Recall that

(hUO,h117 h127 h227 h137 h237 h337 h437 ) = (hk)zozo

We define
_ o0
(aoo,@u,a12,a22,a13,a23,a33,@43, ) = (@k)k:o

and

(GOO,GII7 G127 G227 G13) G237 G337 G437 ) - (Gk>z.;0

It is important to note that for fixed n,

t
aj(t) = /0 X(0.0(%)hjn(x)dx # 0 for at most one j.

Set
U()(t) = Qo (t)Goo
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and )
Un(t) = 22"—1 ajn(t)Gjn; n € N+.

J:
We know that
W(t) = 52,,Un(t) in LA(P)

for fixed t.
The space C'|0, 1] will from now on be equipped with the metric

d(z,y) = = =y |l

where || # ||oo= maxo<t<1 | z(t) | . Recall that every x € C'[0, 1] is uniformly
continuous. From this, remembering that R is separable, it follows that the
space C'|0, 1] is separable. Since R is complete it is also simple to show that
the metric space C'[0, 1] is complete. Finally, if 2, € C'[0,1], n €N, and

Yoo H Tn ||oo< 0
the series
YnsoTn

converges since the partial sums
Sp = 2p_oTk, K €N

forms a Cauchy sequence.
We now define

O={we;X2 || Uy, [[oo< 0} .

Here © € F since
H Un “oo: sup | Un<t) |
0<t<1
t€Q

for each n. Next we prove that 2\ © is a null set.
To this end let n > 1 and note that

P [H Un lloo> 2_%] <P . max (|| aju [loo| Gjn |) > 274

<j<an—t

But
1
| ajn lloo= —2=

272
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and, hence,
P[HUﬁ”w>27%]SQWJP[|Gm!>2%+%.
Since . d
r>1= P[| Go|> 2] < 2/ ye’yQ/Q Y < 422
x TV 2T
we get

and conclude that

1 _n
Uplloo>2"14
;;U|n> ]

From this and the Beppo Levi Theorem (or the first Borel-Cantelli Lemma)
PO]=1.

The trajectory t — W (t,w), 0 < t < 1, is continuous for every w € O.
Without loss of generality, from now on we can therefore assume that all
trajectories of Brownian motion are continuous (by eventually replacing (2
by O).

Suppose

E

=> Pl Usll>277] < 0.
n=0

and let Iy, ..., I,, be open subintervals of the real line. The set
S(ty, ..ot Iy, .. 1,) ={x € C0,1]; z(ty) € Iy, k=1,...,n}

is called an open n-cell in C'[0,1]. A set in C'[0,T7] is called an open cell if
there exists an n € N, such that it is an open n-cell. The o-algebra generated
by all open cells in C'[0,1] is denoted by C. The construction above shows
that the map

W:Q— C|0,1]

which maps w to the trajectory
t—W(tw), 0<t<1

is (F,C)-measurable. The image measure Py is called Wiener measure in
C'0,1].
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The Wiener measure is a Borel measure on the metric space C'[0,1]. We
leave it as an excersice to prove that

C = B(C[0,1]).

(k)
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CHAPTER 5
DECOMPOSITION OF MEASURES

Introduction

In this section a version of the fundamental theorem of calculus for Lebesgue
integrals will be proved. Moreover, the concept of differentiating a measure
with respect to another measure will be developped. A very important result
in this chapter is the so called Radon-Nikodym Theorem.

5.1. Complex Measures

Let (X, M) be a measurable space. Recall that if A, C X, n € N,, and
A;NA; =¢if i # j, the sequence (A4, )nen, is called a disjoint denumerable
collection. The collection is called a measurable partition of A if A =UX A,
and A, € M for every n € N,.

A complex function p on M is called a complex measure if

p(A) =372 u(An)

for every A € M and measurable partition (A,)22 ; of A. Note that p(¢) =0

if ;4 is a complex measure. A complex measure is said to be a real measure

if it is a real function. The reader should note that a positive measure need

not be a real measure since infinity is not a real number. If p is a complex

measure (i = [, + iy, , Where up, =Re p and pp,, =Im p are real measures.
If (X, M, p) is a positive measure and f € L'(u) it follows that

/\(A):/Afdu, Ae M

is a real measure and we write d\ = fdpu.
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A function p : M — [—00, 0] is called a signed measure measure if

(a) p: M —]—00,00] or pu: M — [—o0,00]
(b) u(¢) =0

(c) for every A € M and measurable partition (A,)3 ; of A,

p(A) = 5521 1(An)
where the latter sum converges absolutely if u(A) € R.

Here —00 — 00 = —o0 and —o0 + 2 = —o0 if x € R. The sum of a
positive measure and a real measure and the difference of a real measure and
a positive measure are examples of signed measures and it can be proved that
there are no other signed measures (see Folland [F]). Below we concentrate
on positive, real, and complex measures and will not say more about signed
measures here.

Suppose 4 is a complex measure on M and define for every A € M

[ 1| (A) = sup 222, [ p(An) |,

where the supremum is taken over all measurable partitions (A,)s, of A.
Note that | i | (¢) =0 and

| i| (A) > w(B) | if A, B Mand AD B.

The set function | p | is called the total variation of 1 or the total variation
measure of p. It turns out that | p | is a positive measure. In fact, as will
shortly be seen, | i | is a finite positive measure.

Theorem 5.1.1. The total variation | i1 | of a complex measure is a positive
measure.

PROOF. Let (A,)2, be a measurable partition of A.
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For each n, suppose a,, <| p | (Ay) and let (Fk,)52; be a measurable
partition of A, such that

an < 332 | p(Ekn) | -
Since (Egn)35,=; is a partition of A it follows that
Se1tn < Xy | 1(Ekn) [<[ 1| (A).
Thus

Yoty | (An) <[ | (A).

To prove the opposite inequality, let (Ej)?° ; be a measurable partition of
A. Then, since (A, N E}), is a measurable partition of Fy and (A, N EL)%,
a measurable partition of A,

Yo | u(Er) |= DDy | E;:O:lM(An N Ey) |

< o | p(An N E) [S 308 [ ] (An)
and we get
[ (A) <502 [ i (An).
Thus
| [ (A) =552 [ | (An).

Since | p | (¢) = 0, the theorem is proved.

Theorem 5.1.2. The total variation | | of a complex measure i is a finite
positive measure.

PROOF. Since
| 1 <] pge |+ | pg |

there is no loss of generality to assume that p is a real measure.
Suppose | | (E) = oo for some E € M. We first prove that there exist
disjoint sets A, B € M such that

AUuB=F
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and
| w(A) [>Tand | p|(B) = oo.

To this end let ¢ = 2(1+ | u(E) |) and let (Ej)2, be a measurable partition
of E such that
ot | n(ER) [> ¢

for some sufficiently large n. There exists a subset N of {1,...,n} such that

c
| Skenp(Er) |> 3
Set A =UgenyEr and B = E'\ A. Then | u(A) |[> £ > 1 and

<
2

>| u(A) | = | W(E) |> 5= | u(B) |= 1

Since co =| p | (E) =| p | (A)+ | i | (B) we have | pn | (A) = oo or
| w| (B) = o00. If | p| (B) < oo we interchange A and B and have
| p(A) [> Tand [ p | (B) = oo

Suppose | p | (X) = 00. Set Ey = X and choose disjoint sets Ay, By € M
such that
Ao U B() = EQ

and
| (Ag) [>T and | p | (By) = oo.

Set E1 = By and choose disjoint sets A, B; € M such that
Al U Bl == El

and
| (A1) [>T and | p| (Bi) = oo.

By induction, we find a measurable partition (A,)32, of the set A =4
Ux ,A, such that | u(A4,) |> 1 for every n. Now, since u is a complex

measure,
H(A) = B2 ou(A,).

But this series cannot converge, since the general term does not tend to zero

as n — o0o. This contradiction shows that | i | is a finite positive measure.
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If 1 is a real measure we define
L1
pr=gel+a)
and

poo= %(I | —p).

The measures p+ and p~ are finite positive measures and are called the
positive and negative variations of u, respectively . The representation

po=pt—p

is called the Jordan decomposition of .

Exercises

1. Suppose (X, M, pu) is a positive measure space and d\ = fdu, where
f € L'(u). Prove that d | X |=| f | du.

2. Suppose A, i, and v are real measures defined on the same o-algebra and
A < pand A < v. Prove that

A < min(p, v)

where

. 1
min(n,v) = S(u+v— | p—v )

3. Suppose i : M — C is a complex measure and f,g: X — R measurable
functions. Show that

| u(f € A)—pulge A) ISl (f#9)

for every A € R.
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5.2. The Lebesque Decomposition and the Radon-Nikodym Theo-
rem

Let p be a positive measure on M and A\ a positive or complex measure
on M. The measure ) is said to be absolutely continuous with respect to u
(abbreviated A << p) if A(A) = 0 for every A € M for which u(A) = 0. If

we define

2, = {A e M; \A) =0}

it follows that A << p if and only if
Z,C 2.

For example, v, << v, and v, <<,

The measure \ is said to be concentrated on E € M if A = \¥ | where
MNP(A) =gep ME N A) for every A € M. This is equivalent to the hypoth-
esis that A € Z, if A € M and ANFE = ¢. Thus if Ey, E; € M, where
E, C Es, and A is concentrated on £y, then A is concentrated on E5. More-
over, if Fi,Ey € M and ) is concentrated on both F; and FE,, then \ is
concentrated on E; N Es. Two measures A\; and A\, are said to be mutually
singular (abbreviated A; L Ag) if there exist disjoint measurable sets F; and
E5 such that \; is concentrated on E; and A5 is concentrated on E.

Theorem 5.2.1. Let pu be a positive measure and X\, Ay, and Ay complex
MEAsuTes.

(i) If M1 << p and Ay << p, then (aq A + aghg) << p for all complex
numbers oy and ao.

(i) If My L pand Ay L pu, then (canAy + aghy) L p for all complex
numbers oy and ao.

(iii) If A << p and X L p, then A =0.

(iv) If A << p, then | A |<< p.

PROOF. The properties (i) and (ii) are simple to prove and are left as exer-
cises.
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To prove (iii) suppose E € M is a p-null set and A = \*. If A € M, then
AMA) = AMANE)and AN E is a p-null set. Since A << p it follows that
ANE € Z, and, hence, A\(A) = A(AN E) = 0. This proves (iii)

To prove (iv) suppose A € M and pu(A) = 0. If (A,,)°; is measurable
partition of A, then pu(A,) = 0 for every n. Since A << pu, A\(A,) =0 for
every n and we conclude that | A | (A) = 0. This proves (vi).

Theorem 5.2.2. Let i be a positive measure on M and \ a complex measure
on M. Then the following conditions are equivalent:

(a) A << p.

(b) To every € > 0 there corresponds a 6 > 0 such that | \(E) |< € for
all E€ M with u(E) < 6.

If \ is a positive measure, the implication (a) = (b) in Theorem 5.2.2 is,
in general, wrong. To see this take yu = v, and A = v;. Then A\ << p and if
we choose A,, = [n,00[, n € N, then p(A,) — 0asn — oo but A(A4,) = 00
for each n.

PROOF. (a)=(b). If (b) is wrong there exist an ¢ > 0 and sets E, € M,
n € N, such that | A\(E,) |> € and p(E,) < 27" Set

A, =Up Eyand A=nN7" A,

Since A, 2 A,y 2 A and p(A4,) < 27"t it follows that u(A) = 0 and
using that | A | (A,) >| AM(E,) |, Theorem 1.1.2 (f) implies that

[ A1 (A) = Tim [ A](4,) > €.

This contradicts that | A |<< p.

(b)=(a). If £ € M and u(F) = 0 then to each ¢ > 0, | \(E) |< ¢, and we
conclude that A(F) = 0. The theorem is proved.
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Theorem 5.2.3. Let p be a o-finite positive measure and \ a real measure
on M.

(a) (The Lebesgue Decomposition of \) There exists a unique pair
of real measures \, and \s onM such that

A=A+ A5, Ag << p, and Ag L p.

If X\ is a finite positive measure, A, and \; are finite positive measures.
(b) (The Radon-Nikodym Theorem) There exits a unique g € L'(p)
such that
d\, = gdp.

If X is a finite positive measure, g > 0 a.e. [p].
The proof of Theorem 5.2.3 is based on the following

Lemma 5.2.1. Let (X, M, p) be a finite positive measure space and suppose
fe L (n).
(a) If a € R and

/ fdp < au(E), all E € M
E

then f < a a.e. [p].
(b) If b€ R and

[Efdu > bu(E), all E € M
then f > b a.e. [p].
PROOF. (a) Set g = f — a so that
/Egd;zSO, all E e M.

Now choose E = {g > 0} to obtain

Oz/gdu=/ngdu20
E X
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as Xpg > 0 a.e. [p]. But then Example 2.1.2 yields xpg = 0 a.e. [u] and we
get £ € Z,. Thus g <0 ae. [u|lor f <aae [u.

Part (b) follows in a similar way as Part (a) and the proof is omitted
here.

PROOF. Uniqueness: (a) Suppose A¥) and A% are real measures on M such
that
A= )\(k)—l—A )\ ) << p, and)\ L

for k =1,2. Then
AL @) — (@) _ @)

s

and

—

AW A <<y and A

Thus by applying Theorem 5.2.1, )\((11) — A
we conclude that )\gl) = /\L(f) .
(b) Suppose gr € L' (i), k = 1,2, and

Do\ |,

a

2 =0 and AV = \?_ From this

S

—~

S}

dAo = grdp = gadp.
Then hdp = 0 where h = g; — g». But then

/ hdp =0
{h>0}

and it follows that h < 0 a.e. [u]. In a similar way we prove that h > 0 a.e.
[4]. Thus h =0 in L'(u), that is g3 = go in L'(u).

Existence: The beautiful proof that follows is due to von Neumann.
First suppose that p and A are finite positive measures and set v = A+ p.
Clearly, L'(\) D L'(v) D L?*(v). Moreover, if f : X — R is measurable

/|f\d)\</ |f\du<m\/y—

and from this we conclude that the map

f—>/deA
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is a continuous linear functional on L?(v). Therefore, in view of Theorem
4.2.2, there exists a g € L?(v) such that

/ fdA :/ fgdv all f e L*(v).
X X

Suppose E € M and put f = xp to obtain
0<\E)= / gdv
E

and, since v > A,
0< / gdv < v(E).
E

But then Lemma 5.2.1 implies that 0 < g < 1 a.e. [v]. Therefore, without
loss of generality we can assume that 0 < g(z) < 1 for all x € X and, in
addition, as above

/de)\ = /ngdy all f € L*(v)

that is
/ f(l—g)dX = / fgdp all f € L*(v).
X X

Put A={0<g<1},S={g=1}, \s = \*, and )\, = \%. Note that
A =M+ )% The choice f = xg gives ;1(S) = 0 and hence A, L . Moreover,
the choice

f=0+. . +3g")xp
where £/ € M, gives

/E(l — g™ dX = /E(1 + o g gdp.

By letting n — oo and using monotone convergence

MEN A) = / hj.

E

where
h=lim(1+..4g¢")g.

n—oo
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Since h is non-negative and

AA) = /X hdp

it follows that h € L'(p). Moreover, the construction above shows that A =
Ao + As.

In the next step we assume that p is a o-finite positive measure and A
a finite positive measure. Let (X,,)?°, be a measurable partition of X such
that u(X,) < oo for every n. Let n be fixed and apply Part (a) to the pair

15 and A*" to obtain finite positive measures (A*"), and (A*"), such that

A= (W) + (), (W), << i, and (A7), L g

and
AN )y = hpdp™ (or (M) = hppu™™)

where 0 < h,, € L'(p*"). Without loss of generality we can assume that
h, = 0 off X,, and that ()\X")s is concentrated on A, C X,, where A, € Z,.
In particular, (A*"), = h,u. Now

A= D+ 252, (),

where
h =3 hy

and
/ hdp < A(X) < oo.
X

Thus h € L*(i). Moreover, A\, =45 252, (A*"), is concentrated on U | A, €
Z,. Hence Ay L p.

Finally if A is a real measure we apply what we have already proved to
the positive and negative variations of A and we are done.

Example 5.2.1. Let A be Lebesgue measure in the unit interval and p the
counting measure in the unit interval restricted to the class of all Lebesgue
measurable subsets of the unit interval. Clearly, A << p. Suppose there is an
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h € L*(u) such that d\ = hdu. We can assume that A > 0 and the Markov
inequality implies that the set {h > €} is finite for every ¢ > 0. But then

Ah€]0,1]) = lim A(h>2") =0

n—oo

and it follows that 1 = A\(h = 0) = |, (h=oy My = 0, which is a contradiction.

Corollary 5.2.1. Suppose p is a real measure. Then there exists
he L' nl)
such that | h(z) |=1 for all x € X and

dp=hd | .

PROOF. Since | pu(A) |<| 1 | (A) for every A € M, the Radon-Nikodym
Theorem implies that dy = hd | u | for an appropriate h € L(] u |). But
then d | u|=| h|d| u| (see Exercise 1 in Chapter 5.1). Thus

IMI(E)Z/!hIdIMI, all F € M
E

and Lemma 5.2.1 yields h = 1 a.e. [| £ |]. From this the theorem follows at
once.

Theorem 5.2.4. (Hahn’s Decomposition Theorem) Suppose 1 is a
real measure. There exists an A € M such that

pt=ptand pm = —pt.

PROOF. Let du = hd | p | where | h |= 1. Note that hdy = d | u | . Set
A ={h=1}. Then

1 1
dut = S(d | p| +dp) = 5(h + 1dp = xadp
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and
dp~ =dp" —dp = (x4 — 1)dp = —x scdp.

The theorem is proved.

If a real measure A is absolutely continuous with respect to a o-finite
positive measure pu, the Radon-Nikodym Theorem says that d\ = fdu for an
approprite f € L*(u). We sometimes write

A

I=a

and call f the Radon-Nikodym derivate of A\ with respect to pu.

Exercises

1. Suppose p and v,,n €N, are positive measures defined on the same
o-algebra and set 0 = ¥°° jv,,. Prove that

a) 0 L pifwv, Ly, allneN.

b) 0 << pifv, << p,alneN.

2. Suppose 4 is a real measure and u = A; — Ay, where \; and )\, are finite
positive measures. Prove that Ay > p* and Ay > ™.

3. Let A\; and Ay be mutually singular complex measures on the same o-
algebra. Show that | Ay | L] Az | .

4. Let (X, M, ) be a o-finite positive measure space and suppose A and 7
are two probability measures defined on the o-algebra M such that A << pu
and 7 << pu. Prove that

sup | AM(A) — (A :—/ — — — | dpu.
sup [ A(4) = (4) = 5 [ 152 =50 1du
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5.3. The Wiener Maximal Theorem and the Lebesgue Differentia-
tion Theorem

We say that a Lebesgue measurable function f in R" is locally Lebesgue in-
tegrable and belongs to the class L. .(m,) if fx; € L'(m,) for each compact

loc

subset K of R". In a similar way f € L] (v,) if f is a Borel function such

that fxx € L'(v,) for each compact subset K of R™ If f € L}, .(m,), we
define the average A, f(x) of f on the open ball B(z,r) as

1
Af(e) = s /B Ty

It follows from dominated convergence that the map (z,r) — A, f(x) of
R" x ]0, 00 into R is continuous. The Hardy-Littlewood maximal function
f* is, by definition, f* =sup,.oA, | f | or, stated more explicitly,

* = su —1
F) = B )

The function f*: (R™, B(R")) — (]0,00],Ro.«) is measurable since
fr=supA, | 1.

r>0
reQ

| i@y ce R
B(z,r)

Theorem 5.3.1. (Wiener’s Maximal Theorem) There exists a positive
constant C' = C,, < oo such that for all f € L*(m,),

mn(f*>a)§§||fﬂlifa>0.

The proof of the Wiener Maximal Theorem is based on the following
remarkable result.

Lemma 5.3.1. Let C be a collection of open balls in R™ and set V = UpgeeB.
If ¢ <m,(V) there exist pairwise disjoint By, ..., By € C such that

¥ ma(B;) >3 "c.



163

PROOF. Let K C V be compact with m,,(K) > ¢, and suppose A4y, ..., A, € C
cover K. Let By be the largest of the Als (that is, By has maximal radius),
let By be the largest of the Als which are disjoint from By, let Bz be the
largest of the A’s which are disjoint from B; U Bs, and so on until the process
stops after k steps. If B; = B(x;,r;) put Bf = B(x;,3r;). Then UF_ B D K
and

c < YF m,(B}) =3"SF m,(B)).

The lemma is proved.

PROOF OF THEOREM 5.3.1. Set
Eo={f">a}.

For each x € E, choose an r, > 0 such that A, | f | (z) > a. If c < my,(E,),
by Lemma 5.3.1 there exist 21, ...,z € E, such that the balls B; = B(x;,r,,),
1 =1, ..., k, are mutually disjoint and

YE m,(B;) > 3 "c.

But then

3n 3n
¢ < 3"EL m,(B;) < —Efl/ [ fW) | dy <= [ |f(y)|dy.
a Bz Oé Rn

The theorem is proved.

Theorem 5.3.2. If f € L} _(m,),

1
lim ————— dy = f(x) a.e. |m,].
/B Wy = 1) ae.

r—0 my(B(z,7))
PROOF. Clearly, there is no loss of generality to assume that f € L'(m,,).
Suppose g € C.(R™) =4 {f € C(R™); f(x) =01if | x| large enough}. Then

lim A,¢g(z) = g(z) all z € R™.

r—0
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Since A, f — f=A(f—9)—(f—9)+Ag—y,
lim [ A f —fI<(f=9)+|f—gl.
Now, for fixed a > 0, L
my(lim [ A, f = f > a)

<ma((f =9 > 5) +mall f =9[> 3)

and the Wiener Maximal Theorem and the Markov Inequality give
mo(m | A, — f > a)

2C 2
<+ gl

Remembering that C.(R™) is dense in L'(m,,), the theorem follows at once.

If f € L},.(m,) we define the so called Lebesgue set L; to be

loc

1
Ly=qz; lim ——— —f(x) ldu=0V\.
i { /B(mlf(y) f(x) | dy }

r—0 my(B(z,7))
Note that if ¢ is real and

B={oi by [ ) —a = o) -

then mn(ququ) - 0 If T € ﬂquEq,

— 1
s [ 1)~ 1) [y < 2] fle) ~ ]
r—0 mn(B(x, T)) B(z,r)
for all rational numbers ¢ and it follows that m,,(L$) = 0.
A family &, , = (E.,)r>0 of Borel sets in R™ is said to shrink nicely to a
point z in R™ if £, , C B(x,r) for each r and there is a positive constant «,
independent of r, such that m,(E,,) > am,(B(x,r)).
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Theorem 5.3.3. (The Lebesgue Differentiation Theorem) Suppose
f€Li.(my) and x € Ly. Then

loc

1
im —— — f(2) | dy =
/Ew|f<y> f(2) | dy =0

r—0 mn(Ex,r)

and
1

lim——— [ f(y)dy = f(2).

r—0 mn(Ew,r) By r

PROOF. The result follows from the inequality

1

i (Bor) | Fy) ~ f(a) | dy.

1
/Em,r | f(y) N f<x) ’ dy = ozmn(B(a:,r)) /B(w,r)

Theorem 5.3.4. Suppose A is a real or positive measure on R,, and suppose
A Lo, If Xis a positive measure it is assumed that \(K) < oo for every
compact subset of R™. Then

1 El
’"E% Un(Ez,T)

=0 a.e. [vy]

If E,, = B(x,r) and A is the counting measure cqn restricted to R,, then
A L v, but the limit in Theorem 5.3.4 equals plus infinity for all x € R". The
hypothesis " A\(K) < oo for every compact subset of R™” in Theorem 5.3.4 is
not superflous.

PROOF. Since | A(E) |[<| A | (E) if E € R, there is no restriction to assume
that A is a positive measure (cf. Theorem 3.1.4). Moreover, since

MEn) _ A(B(.r)
n(Eyy) — avy(B(x,r))

it can be assumed that E,, = B(z,r). Note that the function A(B(-,r))
is Borel measurable for fixed » > 0 and A(B(x,-)) left continuous for fixed
r € R™
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Suppose A € Zy and v, = (v,)4. Given § > 0, it is enough to prove that
F e Z, where
M (B, 1)
To this end let € > 0 and use Theorem 3.1.3 to get an open U O A such that
AU) < e. For each = € F there is an open ball B, C U such that
A By) > 0v,(By).

If V =UgerB, and ¢ < v,(V) we use Lemma 5.3.1 to obtain 1, ...,z such
that B,,, ..., By, are pairwise disjoint and

c<3"%F v, (B,,) < 3" 'S \B,,)

< 3"6A(U) < 30 e

Thus v, (V) < 3" 'e. Since VO F € R, and ¢ > 0 is arbitrary, v,(F) =0
and the theorem is proved.

Corollary 5.3.1. Suppose F' : R —R is an increasing function. Then F'(z)
exists for almost all x with respect to linear measure.

PROOF. Let D be the set of all points of discontinuity of F. Suppose —oco <
a<b<ooande>0.Ifa<z <..<uz, <b, where z1,...,x, € D and

F(zp+) — Flap—) > ¢, k=1,...,n
then
ne < Xp_, (F(xp+) — Fx—)) < F(b) — F(a).

Thus D N [a,b] is at most denumerable and it follows that D is at most
denumerable. Set H(x) = F(z+) — F(z), = € R, and let (z;)}y be an
enumeration of the members of the set { H > 0} . Moreover, for any a > 0,

> H(z) < Y (Flaj+) — Flaz;—))

lzj|<a lzj|<a

< F(a) — F(—a) < oo.
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Now, if we introduce
v(A) = EjlvH(xj)éxj(A), AeR

then v is a positive measure such that v(K) < oo for each compact subset
K of R. Furthermore, if h is a non-zero real number,

1
Afh]

(H(z+h) — H(z) |< %(H(x—i—h)%—H(m))Sél v(B(z,2 | k)

| 1

h

and Theorem 5.3.4 implies that H'(z) = 0 a.e. [v1]. Therefore, without loss
of generality it may be assumed that F' is right continuous and, in addition,

there is no restriction to assume that F'(+o00) — F'(—o0) < oo.
By Section 1.6 F' induces a finite positive Borel measure 1 such that

n(lz,yl) = Fly) — F(z) if z <y.
Now consider the Lebesgue decomposition
dp = fdvy + dX
where f € L*(v1) and A L vy. If z < g,

ﬂw—mmz/ﬁwﬁ+maw

and the previous two theorems imply that

. Fy) - F(z) _
lylgvly_—x = f(z) a.e. [vq]
Ify<ua,
F(a) = Fy) = | 7t)de+ My.z)
and we get
. Fy) - F(z) _
lylﬁ}y——x = f(x) a.e. [v1].

The theorem is proved.

Exercises
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1. Suppose F' : R — R is increasing and let f € L} (v;) be such that
F'(z) = f(x) a.e. [v1]. Prove that

/yf(t)dtSF(y)—F(a:) if —oco < <y<oo.

5.4. Absolutely Continuous Functions and Functions of Bounded
Variation

Throughout this section a and b are reals with a < b and to simplify notation
we set Mg = M. If f € L*(m,) we know from the previous section that
the function

(Lf) (%) =ges /z ft)dt, a<x<b

has the derivative f(z) a.e. [mgp], that is

& [ st = s ac. ma.

Our next main task will be to describe the range of the linear map I.
A function F' : [a,b] — R is said to be absolutely continuous if to every
e > 0 there exists a > 0 such that

Z?:l | bz — a; |< ) 1mphes E?:l | F(bz> — F(CLZ) |< £

whenever |ay, by[, ...,]a,, b,| are disjoint open subintervals of [a, b]. Tt is ob-
vious that an absolutely continuous function is continuous. It can be proved
that the Cantor function is not absolutely continuous.

Theorem 5.4.1. If f € L'(myy), then If is absolutely continuous.

PROOQOF. There is no restriction to assume f > 0. Set

A\ = fdmay.
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By Theorem 5.2.2, to every € > 0 there exists a 6 > 0 such that A\(4) < e
for each Lebesgue set A in [a, b] such that m,;(A) < . Now restricting A to
be a finite disjoint union of open intervals, the theorem follows.

Suppose —o00 < a < f < oo and F': |a, B[ — R. For every = € |a, 5] we
define
Tp(x) =supZi, | F(x;) — F(zi-1) |

where the supremum is taken over all positive integers n and all choices
(x;)™ o such that
A< < <..<x, =2.

The function Tr : o, 8] — [0, 00] is called the total variation of F. Note that
Tr is increasing. If T is a bounded function, F' is said to be of bounded varia-
tion. A bounded increasing function on R is of bounded variation. Therefore
the difference of two bounded increasing functions on R is of bounded vari-
ation. Interestingly enough, the converse is true. In the special case |a, f] =
R we write F' € BV if F' is of bounded variation.

Theorem 5.4.2. Suppose F' € BV.
(a) The functions Tp + F and Tr — F are increasing and

1 1

In particular, F is differentiable almost everywhere with respect to linear
measure.
(b) If F is right continuous, then so is Tp.

PROOF. (a) Let 2 < y and € > 0. Choose z¢ < 1 < ... < &, = x such that
Ny | Fx) = Fzia) |= Ty(x) —e.

Then
Tr(y) + F(y)
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> XLy | @) = Fzia) | + [ Fly) = Fz) | +(F(y) = F(2)) + F(x)
> Tp(z) —e+ F(x)

and, since € > 0 is arbitrary, Tr(y) + F(y) > Tr(z) + F(z). Hence Tr + F' is
increasing. Finally, replacing F' by —F' it follows that the function Tp — F
is increasing.

(b)If ce R and z > ¢,
Ty(x) = Tr(c) +sup Sy | Fl) — Fli ) |

where the supremum is taken over all positive integers n and all choices
(x;), such that
C=Tro< 1 <..<xTp =2

Suppose Tr(c+) > Tp(c) where ¢ € R. Then there is an € > 0 such that
TF($) — TF(C) > €

for all z > ¢. Now, since F' is right continuous at the point ¢, for fixed z > ¢
there exists a partition

< <...<ZT1p; =T

such that
2?212 ‘ F(.%’lz) — F(xli—l) ‘> E.

But
TF<I11) — TF(C) > ¢

and we get a partition
C < To1 < ... < Top, = T11

such that
2?222 ‘ F(.%'QZ) — F(l’gi_l) ‘> E.

Summing up we have got a partition of the interval [xg;, x] with

Y2y | Fwg) — Fwgia) | +52, | F(71;) — F(w1-1) [> 2.
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By repeating the process the total variation of F' becomes infinite, which is
a contradiction. The theorem is proved.

Theorem 5.4.3. Suppose F' : |a,b] — R is absolutely continuous. Then
there exists a unique f € L'(m,y) such that

F(x):F(a)+/xf(t)dt, a<xz<bh.

In particular, the range of the map I equals the set of all real-valued absolutely
continuous maps on |a,b] .

PROOF. Set F(x) = F(a) if < a and F(x) = F(b) if x > b. There exists a
d > 0 such that

X2, | by —a;|< 0 implies X1, | Fi(b;) — F(a;) |[< 1

whenever |aq,b1], ..., |an, b,[ are disjoint subintervals of [a,b]. Let p be the
least positive integer such that a + pd > b. Then Tr < p and F' € BV. Let
F =G — H, where G = 3(Tp + F) and H = (T — F). There exist finite
positive Borel measures A\g and Ay such that

Aa(lz,y]) = Gly) — G(z), v <y
and

Au(lz,y]) = H(y) — H(z), v < y.
If we define A = A\g — Ap,

Mz, yl) = Fly) = F(z), = <y.

Clearly,
Mz, y) = Fly) = F(z), = <y

since F' is continuous.

Our next task will be to prove that A << v;. To this end, suppose A € R
and v1(A) = 0. Now choose ¢ > 0 and let § > 0 be as in the definition of the
absolute continuity of F' on [a,b] . For each k € N there exists an open set
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Vi O A such that v;(V}) < § and limy_ A(Vx) = A(A). But each fixed V} is
a disjoint union of open intervals (]a;, b;[)22, and hence

Xy bi—a|<o
for every n and, accordingly from this,
YZ | F(bi) = Flai) [< e
and
| AV 1< X320 | Aas, bi]) [< e

Thus | A(A) |< € and since € > 0 is arbitrary, A(A) = 0. From this A << v,
and the theorem follows at once.

Suppose (X, M, 1) is a positive measure space. From now on we write
f € L' (u) if there exist a g € £'(u) and an A € M such that A° € Z,, and
f(z) = g(x) for all z € A. Furthermore, we define

/deuz/xgdu

(cf the discussion in Section 2). Note that f(x) need not be defined for every
r e X.

Corollary 5.4.1. A function f : [a,b] — R is absolutely continuous if and
only if the following conditions are true:

(1) f'(x) exists for mgp-almost all x € [a, b]

(i3) € L'(may)

(ii) f(x) = f(a)+ [ f'(t)dt, all z € [a,b].

Exercises

1. Suppose f :[0,1] — R satisfies f(0) = 0 and

1
f(z) :xQSin—2 it 0<z <1,
x
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Prove that f is differentiable everywhere but f is not absolutely continuous.

2. Suppose « is a positive real number and f a function on [0, 1] such that
f(0) = 0 and f(z) = 2*sini, 0 < < 1. Prove that f is absolutely
continuous if and only if a > 1.

3. Suppose f(z) = wcos(r/x) if 0 < z < 2 and f(z) = 0if z € R\ ]0,2].
Prove that f is not of bounded variation on R.

4 A function f : [a,b] — R is a Lipschitz function, that is there exists a
positive real number C' such that

| flx) = fy) ISC |z —y]

for all x,y € [a,b]. Show that f is absolutely continuous and | f'(z) |< C
a.e. [Mgp) .

5. Suppose f : [a,b] — R is absolutely continuous. Prove that

Tg(x):/x|f'(t)|dt, a<z<b

if ¢ is the restriction of f to the open interval |a, b].

6. Suppose f and g are real-valued absolutely continuous functions on the
compact interval [a,b]. Show that the function h = max(f, g) is absolutely
continuous and h’' < max(f’, ¢') a.e. [map)-

L

5.5. Conditional Expectation
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Let (Q,F,P) be a probability space and suppose ¢ € L'(P). Moreover,
suppose G C F is a o-algebra and set

WA =P[A], Acg

and

—/gdp, Aecg.
A

It is trivial that Z, = ZpNG C Z, and the Radon-Nikodym Theorem shows
there exists a unique n € L'(p) such that

A(A) :/ndu al Aeg
A

or, what amounts to the same thing,

/fdP:/ndPallAEQ.
A A

Note that 1 is (G, R)-measurable. The random variable 7 is called the con-
ditional expectation of ¢ given G and it is standard to write n = E'[¢ | G].
A sequence of g-algebras (F,,)2, is called a filtration if

fngfnJrlgf

If ()22, is a filtration and (¢,,)32, is a sequence of real valued random
variables such that for each n,

(a)
(b)
()

e L'(P)
is (Fn, R)- measurable
[ n+1 | ‘,/tn]

I
s

Dj

then (§,,F,)%, is called a martingale. There are very nice connections
between martingales and the theory of differentiation (see e.g Billingsley [B]
and Malliavin [M]).

(k)
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CHAPTER 6
COMPLEX INTEGRATION

Introduction

In this section, in order to illustrate the power of Lebesgue integration, we
collect a few results, which often appear with uncomplete proofs at the un-
dergraduate level.

6.1. Complex Integrand

So far we have only treated integration of functions with their values in R or
[0, 00] and it is the purpose of this section to discuss integration of complex
valued functions.

Suppose (X, M, p) is a positive measure. Let f,g € L'(1). We define

[ +igan= [ san+i [ oin

If @ and (3 are real numbers,

[t ins +igdn = [ ((@f = Bo)+ itag+ 51)d

X

:/X(af—/é’g)du%—i/(ag—l-ﬁf)d#

X

:a/deu—ﬁ/nguHa/nguHﬁ/deu

G+ i) [ fau+i [ gdn)

— (a+if) /X (f +ig)dn.
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We write f € L'(u; C) if Re f, Im f € L'(u) and have, for every f € L'(u; C)

and complex «,
/ ozfdu:oz/ fdu.
X b'e

Clearly, if f,g € L'(u; C), then

/}((erg)du:/deuﬂL/ngu-

Now suppose p is a complex measure on M. If

f € L' C) =40 s L (pre; ©) N LY (fig; C)

/X fp = /X Fdpig +1 /X Fin,

It follows for every f,g € L'(u; C) and o € C that

/Xafdu:a/xfdu.
/X(f+9)du=/deu+/ngu-

W

we define

and

6.2. The Fourier Transform

Below, if © = (x4, ...,x,) and y = (Y1, ..., yn) € R", we let

<ZE, y> = ZZZkayk-

and
|z [= v {,y).
If v is a complex measure on R,, (or R, ) the Fourier transform f of 4 is
defined by

i) = [ e du(a), y e R
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Note that
f1(0) = u(R").
The Fourier transform of a function f € L(m,; C) is defined by

~

f(y) = i(y) where dp = fdm,,.

Theorem 6.2.1. The canonical Gaussian measure vy, in R" has the Fourier

transform
ly|?
2

~

Yuly) =€

PROOF. Since
Vo =71 ® ... @7, (n factors)

it is enough to consider the special case n = 1. Set

~ —

1
9(y) =Ny = E /Re

Note that ¢g(0) = 1. Since

z2
2 cos zydx.

| cosz(y + h) — coszy
h

the Lebesgue Dominated Convergence Theorem yields

1 22
J(y) = T /R —xe” 7 sinxydw

(Exercise: Prove this by using Example 2.2.1). Now, by partial integration,

<l |

2

J(y) = 1 [e_%sina:yr:oo L
V2T r=—00 /27 JR

12
2 cosxydr

that is
J(y) +yg(y) =0

and we get
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If £ = (&,...,&,) is an R"-valued random variable with &, € L'(P),
k =1,...,n, the characteristic function ¢, of { is defined by

ce(y) = E [¢“V] = P(—y), y e R™
For example, if £ € N(0,0), then £ = oG, where G € N(0, 1), and we get

ce(y) = E [V = 4, (—oy)

Choosing y = 1 results in
E "] = e 2207 if € € N(0,0).

Thus if (§,)7_; is a centred real-valued Gaussian process

. 1
E [ezzkzlykgk} = eXp(—ﬁE [(Zzzl?/kgk)ﬂ

1
= exp(—5 X (6] — Drgiancayimn B [§6]).

In particular, if

E 6] =0, j#k

we see that ,
o3 B[e]

E [eizzzlykgk} — HZ

or
E [eiEZ:kaﬁk} — HZ:1E [eiykfk] ]

Stated otherwise, the Fourier tranforms of the measures P . ¢
agree. Below we will show that complex measures in R" with the same
Fourier transforms are equal and we get the following

Theorem 6.2.2. Let (£,)7_; be a centred real-valued Gaussian process with
uncorrelated components, that is

Elg&] =0, j £k
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Then the random variables &4, ..., &, are independent.

6.3 Fourier Inversion

Theorem 6.3.1.  Suppose f € L'(m,). If f € L'(my,) and f is bounded
and continuous

dy

fla) = [ o fly) s e R

PROOQOF. Choose € > 0. We have

ilya) — Sy f dy gy 22 dY
/ i) =5l f(y)wz/ f(u){/ Gilva—u) 1y (ZW)”}du

where the right side equals

/ f(w) {/ i) =3 Il dv } dlﬁl _ f(u)efﬁhkx‘z du
" n Vo V2w en R \/ﬁen

1 d
= flz+ 62)6’5|Z|2—Z.
R" 2
Thus J J
. 2 A 1

R @2m)r  Jre Vor'
By letting ¢ — 0 and using the Lebesgue Dominated Convergence Theorem,
Theorem 6.3.1 follows at once.

Recall that C°(R"™) denotes the class of all functions f : R" — R
with compact support which are infinitely many times differentiable. If f €
C>*(R"™) then fe LY(m,). To see this, suppose yx # 0 and use partial
integration to obtain

fo = [ e an = — [ g @y

and

f) = o [ e e, 1N
R
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Thus
Ly '] f(y) < / | fD(z) | da, 1 €N
Rﬂ,

and we conclude that

sup (14 | y )" | f(y) |< oo
yeR”

and, hence, f € L'(m,,).

Corollary 6.3.1. If f € C®(R"), then f € L*(m,) and

dy

fla) = [ @ fl) gt e R

Corollary 6.3.2 If pu is a complex Borel measure in R"™ and fi = 0, then
w=0.

PROOF. Choose f € C*(R"™). We multiply the equation fi(—y) = 0 by (’;(Ty))n
and integrate over R" with respect to Lebesgue measure to obtain

- f(@)dp(x) = 0.

Since f € C°(R") is arbitrary it follows that ;1 = 0. The theorem is proved.
6.4. Non-Differentiability of Brownian Paths

Let ND denote the set of all real-valued continuous function defined on the
unit interval which are not differentiable at any point. It is well known that
ND is non-empty. In fact, if v is Wiener measure on C'[0,1], = € ND
a.e. [v]. The purpose of this section is to prove this important property of
Brownian motion.
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Let W = (W(t))o<t<1 be a real-valued Brownian motion in the time
interval [0, 1] such that every path ¢ — W (t), 0 <t <1 is continuous. Recall
that

EW(®)] =0

and
E W (s)W(t)] = min(s,t).

If
0<ty<..<t,<1

and 1 <j<k<n
E{W(te) = W(te-1))(W(t;) — W(tj-1)]
= E[(W(t)W (t;)]=E [W (te)W (tj—1)]|—E [W (Lo )W (t;)|+E [W (te—1)W (t;-1)]
- tj - tj,1 - tj + tj,1 - O
From the previous section we now infer that the random variables
W(t1) = W(to), ... W(tn) = W(tn—1)
are independent.

Theorem 7. The function t — W(t), 0 <t <1 is not differentiable at
any point t € [0,1] a.s. [P].

PROOF. Without loss of generality we assume the underlying probability
space is complete. Let ¢,e > 0 and denote by B(c,¢) the set of all w € Q
such that

|W(t)—W(s)|<c|t—sl|ifte[s—e s+ N]0,1]
for some s € [0,1]. It is enough to prove that the set
j=1k=1

is of probability zero. From now on let c¢,e > 0 be fixed. It is enough to
prove P[B(c,e)] =0 .
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Set ,
X = max | W(E—=)-w(2)]

k<j<k+3 | n

for each integer n > 3 and k € {0,...,n — 3} .
Let n > 3 be so large that

We claim that

If w € B(c,¢e) there exists an s € [0, 1] such that
| W) —W(s)|<c|t—s|ifte][s—es+e]N]0,1].

Now choose k € {0, ...,n — 3} such that

{k k 3]
sE€|——+—1.
nmn n
Iftk<j<k+3,
Jj+1 J J+1 j
_ 2y < CAL —W(L
(W2 = W) W) = W(s) |+ | W(s) = (L)
6c
S_
n

and, hence, X, ; < %. Now

6
B(e,e) C [ min X, < —C}
0<k<n—3 n

and it is enough to prove that

lim P [ min X, < @} = 0.

n— 00 0<k<n—3 n

But
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where the right side converges to zero as n — oo. The theorem is proved.

Recall that a function of bounded variation possesses a derivative a.e.
with respect to Lebesgue measure. Therefore, with probability one, a Brown-
ian path is not of bounded variation. In view of this an integral of the type

/0 F(HAW (1)

cannot be interpreted as an ordinary Stieltjes integral. Nevertheless, such
an integral can be defined by completely different means and is basic in, for
example, financial mathematics.

[k
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CHAPTER 6
COMPLEX INTEGRATION

Introduction

In this section, in order to illustrate the power of Lebesgue integration, we
collect a few results, which often appear with uncomplete proofs at the un-
dergraduate level.

6.1. Complex Integrand

So far we have only treated integration of functions with their values in R or
[0, 0] and it is the purpose of this section to discuss integration of complex
valued functions.

Suppose (X, M, 1) is a positive measure. Let f,g € L'(1). We define

[+ igau= [ san+i [ oin

If @ and (8 are real numbers,

[ s idns +igdn = [ ((af = Bo)+itag+ A1)

X

:/X(af_ﬁg)du+z‘/(ag+ﬁf)du

X

:@/deu—B/nguﬂa/xgdwriﬁ/xfdu

G+ i) [ fau+i [ gin)

— (a+if) /X (f + ig)dn.
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We write f € L'(u; C) if Re f, Im f € L'(u) and have, for every f € L*(u; C)

and complex «,
/ ozfd,u:oz/ fdu.
X b's

Clearly, if f,g € L'(u; C), then

/X(f+g)d#=/xfdﬂ+/ngu-

Now suppose p is a complex measure on M. If

f € LYp; C) =4 L' (tige; C) N L (pigy; C)

/deuz/xfduReJri/demm-

It follows for every f,g € L'(u; C) and a € C that

/Xafd,u:a/xfd,u.
/X(f+g)du=/xfdﬂ+/ngu-

HH

we define

and

6.2. The Fourier Transform

Below, if © = (x4, ...,2,) and y = (Y1, ..., yn) € R", we let

<.I', y> = ZZzlxkyk-

and
|z |=V{z,y).

If 1 is a complex measure on R,, (or R, ) the Fourier transform f of 4 is
defined by

o) = [ e duta), y e R,
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Note that
f1(0) = u(R").
The Fourier transform of a function f € L'(m,; C) is defined by

A

f(y) = i(y) where dp = fdm,,.

Theorem 6.2.1. The canonical Gaussian measure v, in R"™ has the Fourier
transform

<

~ — g

PROOF. Since
Yo =71 ® ... @7 (n factors)

it is enough to consider the special case n = 1. Set

2
2

~ —

1
9(y) =1 (y) = E/Re

Note that ¢g(0) = 1. Since

cos rydzx.

| cosz(y + h) — coszy
h

the Lebesgue Dominated Convergence Theorem yields

J(y) = \/%/R—xe_

(Exercise: Prove this by using Example 2.2.1). Now, by partial integration,

<l |

12
2 sinxydx

=00 2

1 fL‘2 x
9'(y) = [6_7 sin xy} ~ Y| e % cos xydx
V2T T=—00 V2T JRr

that is
g (y) +yg(y) =0

and we get
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If &£ = (&,...,&,) is an R"-valued random variable with &, € L'(P),
k =1,...,n, the characteristic function ¢, of { is defined by

ce(y) = E [¢“V] = Pe(~y), y € R".
For example, if £ € N(0,0), then £ = oG, where G € N(0, 1), and we get

ce(y) = E [V = 4, (—0y)

Choosing y = 1 results in
E[e*] = e~ 22[¢%] if ¢ € N(0,0).

Thus if (§,)7_; is a centred real-valued Gaussian process

. 1
E [ezzkzlykfk} — eXp(_iE [(Zzz1yk€k)2]

1
= exp(—QEzzly,%E [&i] — Yi<jek<n¥iUr [5j£k])-

In particular, if
we see that

o B[]

E [eixzzlykfk} — HZ

or
E [eizzzlykfk] — HZ:1E [6iyk£k} ]

Stated otherwise, the Fourier tranforms of the measures P | ¢
agree. Below we will show that complex measures in R" with the same
Fourier transforms are equal and we get the following

Theorem 6.2.2. Let (£,)7_; be a centred real-valued Gaussian process with
uncorrelated components, that is

Elg&] =0, j £k
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Then the random variables &, ..., &, are independent.

6.3 Fourier Inversion

Theorem 6.3.1. Suppose f € L'(m,). If f € L'(m,) and f is bounded
and continuous

- - d
fla) = [ o fly) s r e R

PROOF. Choose € > 0. We have

ily,z) Syl f dy itva—wy — 212 Ay
/ i) o=l f(y>(27r)”:/ f(u){/ o) 1yl (2W)n}du

where the right side equals

w1 dv du 1 2 du
i(v, 22— vl? _ — 5oz lu—z|
U e = e 2 — = u)e 2 -
/nf( ){/n v 2T }\/27r en Rnf( ) V2 en

d
= f(:v—l—az)e’%'Z‘Q—z.
R» 27
Thus p p

2
i(yx) ,—5lyl? f vy _ o Cld
e e 2 f(y) = flz+ez)e 2 .

R" (2m)" R” V2T

By letting ¢ — 0 and using the Lebesgue Dominated Convergence Theorem,
Theorem 6.3.1 follows at once.

Recall that C°(R"™) denotes the class of all functions f : R" — R
with compact support which are infinitely many times differentiable. If f €
C>*(R™) then fe L*(m,). To see this, suppose y, # 0 and use partial
integration to obtain

£ —i{x 1 —i(z /
fon = [ e e = — [ g, @yt
and )
W) = Gy /R e f (), 1 € N.
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Thus
Ly ' f(y) IS/ | f9(2) | dz, 1 €N
R'n,

and we conclude that

sup (14 [y )" | f(y) |< oo.
yeRn

and, hence, f € L'(m,,).

Corollary 6.3.1. If f € C®(R"), then f € L*(m,) and

dy

fla) = [ @ fl) gt e R

Corollary 6.3.2 If p is a complex Borel measure in R"™ and fi = 0, then
w=0.

fw)
2m)n

PROOF. Choose f € C*(R"™). We multiply the equation [i(—y) = 0 by )

(
and integrate over R" with respect to Lebesgue measure to obtain

- f(@)dp(z) = 0.

Since f € C°(R") is arbitrary it follows that p = 0. The theorem is proved.
6.4. Non-Differentiability of Brownian Paths

Let ND denote the set of all real-valued continuous function defined on the
unit interval which are not differentiable at any point. It is well known that
ND is non-empty. In fact, if v is Wiener measure on C'[0,1], = € ND
a.e. [v]. The purpose of this section is to prove this important property of
Brownian motion.
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Let W = (W(t))o<t<1 be a real-valued Brownian motion in the time
interval [0, 1] such that every path ¢t — W (t), 0 <t < 1 is continuous. Recall
that

EW(t)] =0

and
E W (s)W(t)] = min(s,t).

If
0<ty<..<t,<1

and1<j<k<n
E{W(te) = W(te-1))(W(t;) = W(tj-1)]
= E[(W(ti)W ()] —E W (t)W(tj—1)]|—E [W(te_)W (t;)|+E [W (tr_1)W(t;-1)]
- tj - tj,1 - tj + tj,1 - O
From the previous section we now infer that the random variables
W(t1) = W(to), ... W(tn) = W(tn—1)
are independent.

Theorem 7. The function t — W(t), 0 <t <1 is not differentiable at
any point t € [0,1] a.s. [P].

PROOF. Without loss of generality we assume the underlying probability
space is complete. Let ¢,e > 0 and denote by B(c,¢) the set of all w € Q
such that

| W(t)—W(s)|<c|t—slifte[s—e,s+e]N]0,1]
for some s € [0,1]. It is enough to prove that the set
j=1k=1

is of probability zero. From now on let c,e > 0 be fixed. It is enough to
prove P [B(c,e)] =0.



Set

X = max [ W(E——=) = W(2)|

E<j<k-+3 n

for each integer n > 3 and k € {0,...,n — 3}.
Let n > 3 be so large that

We claim that

If w € B(c,€) there exists an s € [0, 1] such that

| W(t)—W(s)|<cl|t—s]|ifte[s—e,s+e]N]0,1].

Now choose k € {0, ...,n — 3} such that

[k k 3}
sE€ ==+ 1.
nn n
Ifk<j<k+3,
Jj+1 J J+1
—W(D) I
(W) W) 1= W
6¢
S_
n

and, hence, X, ; < %. Now

6
B(c,e) C [ min X, < —C}
0<k<n—3 n

and it is enough to prove that

lim P [ min X, < @} =0.

n— o0 0<k<n-—3 n

But

-3
6¢c 6¢

P in X,,.<—|< E Pl X, < —
{ min k< ] < 2 { & n]

0<k<n—3 n

191
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where the right side converges to zero as n — oco. The theorem is proved.

Recall that a function of bounded variation possesses a derivative a.e.
with respect to Lebesgue measure. Therefore, with probability one, a Brown-
ian path is not of bounded variation. In view of this an integral of the type

/0 F(HAW (1)

cannot be interpreted as an ordinary Stieltjes integral. Nevertheless, such
an integral can be defined by completely different means and is basic in, for
example, financial mathematics.

(k)
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