
Solutions to exercises (week 3)

Exercise 5, Ref. [1] Sec. 2.2

Suppose u > r > 0 ≥ d. A non-standard European derivative with maturity time N has
pay-off Y = S(N) if S(0) < S(1) < · · · < S(N) and Y = S(0) otherwise. Find ΠY (0).

Solution

We have the general formula

ΠY (0) = e−rN
∑

x∈{u,d}N
(qu)Nu(x)(qd)

Nd(x)Y (x), (1)

where (qu, qd) is the risk neutral probability, Nu(x) is the number of “u” in the path x and
Nd(x) = N −Nu(x) is the number of “d” in the path x. Moreover Y (x) denotes the pay-off
as a function of the path of the stock price. The exercise tells us that

Y (x) = S(N, x), if x = x∗ = (u, u, . . . u), i.e., xi = u for all i = 1, . . . N,

while Y (x) = S(0) for x 6= x∗. Moreover, since S(N, x∗) = S(0)eNu, then

Y (x∗) = S(0)eNu.

Since in addition Nu(x∗) = N , we can rewrite the sum (1) as

ΠY (0) = e−rN(qu)Nu(x∗)(qd)
Nd(x∗)Y (x∗) + e−rN

∑
x 6=x∗

(qu)Nu(x)(qd)
Nd(x)Y (x)

= e−rN(qu)NS(0)eNu + e−rN
∑
x 6=x∗

(qu)Nu(x)(qd)
Nd(x)Y (x). (2)

Next we compute the sum on x 6= x∗. First replacing Nd(x) = N −Nu(x) and Y (x) = S(0)
we have ∑

x 6=x∗

(qu)Nu(x)(qd)
Nd(x)Y (x) = S(0)(qd)

N
∑
x 6=x∗

(
qu
qd

)Nu(x)

. (3)

Now, Nu(x) takes value in {0, 1, . . . , N−1}; it cannot be equal to N because the only element
in {u, d}N for which Nu(x) = N is x∗, but this element is not taken into account in the sum
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that we are computing. Using that the number of x ∈ {u, d}N for which Nu(x) = k is given
by the binomial coefficient

(
N
k

)
, we obtain

∑
x 6=x∗

(
qu
qd

)Nu(x)

=
N−1∑
k=0

(
N

k

)(
qu
qd

)k

.

Adding and subtracting the term k = N (where we use that
(
N
N

)
= 1), we find

∑
x 6=x∗

(
qu
qd

)Nu(x)

=
N−1∑
k=0

(
N

k

)(
qu
qd

)k

=
N∑
k=0

(
N

k

)(
qu
qd

)k

−
(
qu
qd

)N

=

(
1 +

qu
qd

)N

−
(
qu
qd

)N

,

where for the last equality we use the binomial theorem: (1+a)N =
∑N

k=0

(
N
k

)
ak. Substituting

into (3) and using that qu + qd = 1 we obtain∑
x 6=x∗

(qu)Nu(x)(qd)
Nd(x)Y (x) = S(0)

(
1− (qu)N

)
.

Finally, replacing in (2) we find

ΠY (0) = e−rNS(0)
[
(qu)NeNu + 1− (qu)N

]
.

Exercise 3.1 Ref. [1]

Let the price of a stock S(t) be given by the N -period binomial model with parameters u, d, p
and let B(t) = B0e

rt be the value of the risk-free asset, where d < r < u. Let C(t, S(t), K,N)
and P (t, S(t), K,N) be the binomial price of the European call and European put with strike
K and maturity N . Show that these functions satisfy the properties in Theorem 1.1, namely:

1 The put-call parity holds

S(t)− C(t, S(t), K,N) = Ke−r(N−t) − P (t, S(t), K,N). (4)

2 If r ≥ 0, then C(t, S(t), K,N) ≥ (S(t)−K)+; the strict inequality C(t, S(t), K,N) >
(S(t)−K)+ holds when r > 0.

3 If r ≥ 0, the map N → C(t, S(t), K,N) is non-decreasing.

4 The maps K → C(t, S(t), K,N) and K → P (t, S(t), K,N) are convex1.

1Recall that a real-valued function f on an interval I is convex if f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y),
for all x, y ∈ I and θ ∈ (0, 1).
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Solution

Recall that the binomial price of a European derivative with pay-off Y and maturity N is

ΠY (t) := e−r(N−t)
∑

(xt+1,...xN )∈{u,d}N−t

qxt+1 · · · qxN
Y (x), x = (x1, . . . , xN).

For the European call we have Y (x) = (S(N, x)−K)+ = (S(t)ext+1+···+xN −K)+, hence

C(t, S(t), K,N) = e−r(N−t)
∑

(xt+1,...xN )∈{u,d}N−t

qxt+1 · · · qxN
(S(t)ext+1+···+xN −K)+.

Similarly for the European put we obtain

P (t, S(t), K,N) = e−r(N−t)
∑

(xt+1,...xN )∈{u,d}N−t

qxt+1 · · · qxN
(K − S(t)ext+1+···+xN )+.

Now let k be the number of u in (xt+1, . . . , xN) and N − t− k be the number of d. Then

ext+1+···+xN = eku+(N−t−k)d, qxt+1 · · · qxN
= qkuq

N−t−k
d .

Now, the number of paths (xt+1, . . . , xN) for which the number of u is k is given by the
binomial coefficient

(
N−t
k

)
. Hence we can rewrite the definition of C(t, S(t), K,N) and

P (t, S(t), K,N) as

C(t, S(t), K,N) = e−r(N−t)
N−t∑
k=0

(
N − t

k

)
qkuq

N−t−k
d (S(t)eku+(N−t−k)d −K)+

P (t, S(t), K,N) = e−r(N−t)
N−t∑
k=0

(
N − t

k

)
qkuq

N−t−k
d (K − S(t)eku+(N−t−k)d)+

We can now prove the properties 1-4.

1 We have

C(t, S(t), K,N)− P (t, S(t), K,N) =e−r(N−t)
N−t∑
k=0

(
N − t

k

)
qkuq

N−t−k
d

× [(S(t)eku+(N−t−k)d −K)+ − (K − S(t)eku+(N−t−k)d)+]

Now we use that (z −K)+ − (K − z)+ = z −K, for all z, hence

C − P = e−r(N−t)
N−t∑
k=0

(
N − t

k

)
qkuq

N−t−k
d (S(t)eku+(N−t−k)d −K)

= S(t)e−r(N−t)
N−t∑
k=0

(
N − t

k

)
qkuq

N−t−k
d eku+(N−t−k)d

−K

N−t∑
k=0

(
N − t

k

)
qkuq

N−t−k
d = S(t)I1 −KI2.
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Hence the put-call parity follows if we show that I2 = e−r(N−t) and I1 = 1. We have

I1 = e−r(N−t)
N−t∑
k=0

(
N − t

k

)
qkuq

N−t−k
d eku+(N−t−k)d

= e−r(N−t)(qde
d)N−t

N−t∑
k=0

(
N − t

k

)(queu
qded

)k
Using the binomial theorem (1 + a)N =

∑N
k=0

(
N
k

)
ak and the identity que

u + qde
d = er

we obtain

I1 = e−r(N−t)(qde
d)N−t

(
1 +

que
u

qded

)N−t
= e−r(N−t)(que

u + qde
d)N−t = 1.

The proof that I2 = e−r(N−t) is similar.

2 The proof follows by the put-call parity as in Theorem 1.1

3 We want to show that

C(t, S(t), K,N) ≤ C(t, S(t), K,N + 1)

Note that for r = 0 the claim is obvious. The case r > 0 is quite technical. Let us
prove it. In the definition of C(N + 1) = C(t, S(t), K,N + 1) we replace the Pascal
identity (

N + 1− t

k

)
=

(
N − t

k − 1

)
+

(
N − t

k

)
(with the convention

(
N
−1

)
= 0) and obtain

C(N + 1) =e−r(N+1−t)

{
N+1−t∑
k=1

(
N − t

k − 1

)
qkuq

N+1−t−k
d (S(t)eku+(N+1−t−k)d −K)+

+
N+1−t∑
k=0

(
N − t

k

)
qkuq

N+1−t−k
d (S(t)eku+(N+1−t−k)d −K)+

}
.

In the first sum we make the change of index j = k − 1, while for the second sum we
use that it is greater than the sum extended only up to N − t (i.e., we neglect the last
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term k = N + 1− t). So doing we obtain

C(N + 1) ≥e−r(N+1−t)

{
N−t∑
j=0

(
N − t

j

)
qj+1
u qN−t−jd (S(t)e(j+1)u+(N−t−j)d −K)+

+
N−t∑
k=0

(
N − t

k

)
qkuq

N+1−t−k
d (S(t)eku+(N+1−t−k)d −K)+

}

= e−r(N+1−t)

{
N−t∑
j=0

(
N − t

j

)
qjuq

N−t−j
d qu(S(t)eju+(N−t−j)deu −K)+

+
N−t∑
k=0

(
N − t

k

)
qkuq

N−t−k
d qd(S(t)eku+(N−t−k)ded −K)+

}

= e−r(N+1−t)
N−t∑
k=0

(
N − t

k

)
qkuq

N−t−k
d

× [(S(t)eku+(N−t−k)dque
u −Kqu)+ + (S(t)eku+(N−t−k)dqde

d −Kqd)+

Using the simple inequality (y)+ + (z)+ ≥ (y + z)+, we obtain

C(N + 1) ≥ e−r(N+1−t)
N−t∑
k=0

(
N − t

k

)
qkuq

N−t−k
d

× [(S(t)eku+(N−t−k)d(que
u + qde

d)−K(qu + qd))+

As que
u + qde

d = er, qu + qd = 1 and r ≥ 0 we find

C(N + 1) ≥ e−r(N+1−t)
N−t∑
k=0

(
N − t

k

)
qkuq

N−t−k
d (S(t)eku+(N−t−k)der −K)+

= e−r(N−t)
N−t∑
k=0

(
N − t

k

)
qkuq

N−t−k
d (S(t)eku+(N−t−k)d −Ke−r)+

≥ C(N).

4 The only dependence on K of the functions C(t, S(t), K,N), P (t, S(t), K,N) is through
the terms (z−K)+, (K−z)+. As both these functions are convex in K (draw a picture),
the result follows.

Exercise 3.2 Ref. [1]

Consider a 3-period binomial asset pricing model with the following parameters:

eu =
5

4
, ed =

1

2
, er = 1 p =

1

2
.
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Assume S(0) = 64
25

. Consider a European derivative expiring at time T = 2 and with pay-off

Y = S(3)H(S(3)− 1),

where H is the Heaviside function: H(x) = 0, if x < 0, H(x) = 1 if x ≥ 0 (this is an
example of a so called digital option). Compute the possible paths of the derivative price
and for each of them give the number of shares of the underlying stock in the hedging
portfolio process. Compute the probability that the return of a constant portfolio with a
short position in the derivative be positive.

Solution

We start by writing down the diagram of the stock price and the value of the derivative at
time of maturity T = 3 (which is equal to the pay-off)

S(3) = 5⇒ ΠY (3) = 5

S(2) = 4

u
55

d

))
S(1) = 16

5

u
88

d

&&

S(3) = 2⇒ ΠY (3) = 2

S(0) = 64
25

u
77

d

''

S(2) = 8
5

u

55

d

))
S(1) = 32

25

u
88

d

&&

S(3) = 4
5
⇒ ΠY (3) = 0

S(2) = 16
25

u
55

d

))
S(3) = 8

25
⇒ ΠY (3) = 0

The parameters of the binomial model are such that

qu =
2

3
, qd =

1

3
, r = 0.

To compute the price of the derivative at the times t ∈ {0, 1, 2} we use the recurrence formula

ΠY (t) = e−r(quΠu
Y (t + 1) + qdΠ

d
Y (t + 1)) =

2

3
Πu

Y (t + 1) +
1

3
Πd

Y (t + 1), t ∈ {0, 1, 2}.
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Hence at time t = 2 we have

S(2) = 4⇒ ΠY (2) =
2

3
· 5 +

1

3
· 2 = 4

S(2) =
8

5
⇒ ΠY (2) =

2

3
· 2 +

1

3
· 0 =

4

3

S(2) =
16

25
⇒ ΠY (2) =

2

3
· 0 +

1

3
· 0 = 0.

At time t = 1 we have

S(1) =
16

5
⇒ ΠY (1) =

2

3
· 4 +

1

3
· 4

3
=

28

9

S(1) =
32

25
⇒ ΠY (1) =

2

3
· 4

3
+

1

3
· 0 =

8

9

and at time t = 0 we have

ΠY (0) =
2

3
· 28

9
+

1

3
· 8

9
=

64

27

Hence we obtain the following diagram for the derivative price

ΠY (3) = 5

ΠY (2) = 4

u
77

d

''
ΠY (1) = 28

9

u
77

d

''

ΠY (3) = 2

ΠY (0) = 64
27

u
77

d

''

ΠY (2) = 4
3

u

77

d

''
ΠY (1) = 8

9

u
77

d

''

ΠY (3) = 0

ΠY (2) = 0

u
77

d

''
ΠY (3) = 0

This concludes the first part of the exercise. To compute the number of shares of the
underlying asset in the hedging portfolio we use the formula

hS(t + 1) =
1

S(t)

Πu
Y (t + 1)− Πd

Y (t + 1)

eu − ed
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for t = 1, 2 and hS(0) = hS(1), where we recall that hS(t + 1) is the position in the interval
(t, t + 1]. Letting t = 2 we obtain

hS(3) =
4

3

Πu
Y (3)− Πd

Y (3)

S(2)
,

whence

S(2) = 4⇒ hS(3) =
4

3
· 5− 2

4
= 1

S(2) =
8

5
⇒ hS(3) =

4

3
· 2− 0

8/5
=

5

3

S(2) =
16

25
⇒ hS(3) = 0.

Likewise

hS(2) =
4

3

Πu
Y (2)− Πd

Y (2)

S(1)
.

Hence

S(1) =
16

25
⇒ hS(2) =

4

3
· 4− 4/3

16/5
=

10

9

S(1) =
32

25
⇒ hS(2) =

4

3
· 4/3− 0

32/25
=

25

18

and finally

hS(0) = hS(1) =
4

3

Πu
Y (1)− Πd

Y (1)

S(0)
=

4

3
· 28/9− 8/9

64/25
=

125

108
.

This concludes the second part of the exercise. Consider now a constant portfolio with -1
shares of the derivative. The return of this portfolio is positive if the value of the derivative
at the expiration date is smaller than the initial value. This happens along all paths except
x = (u, u, u), hence the probability that the return of this portfolio be positive is 1− (pu)3 =
1− 1/8 = 7/8 = 87.5%.

Exercise 3.3, Ref. [1]

Consider a standard European derivative with pay-off Y = g(S(2)) at the time of maturity
2. Assume that the price of the underlying stock follows the 2-period arbitrage-free binomial
model

S(t) =

{
S(t− 1)eu with probability p,
S(t− 1)ed with probability (1− p)

t = 1, 2

and that the interest rate of the risk-free asset is a constant r > 0. Let

∆ = g(S0e
2d)− ed−ug(S0e

2d)− g(S0e
u+d) + g(S0e

2u)ed−u.

Show that a constant predictable hedging portfolio (hS, hB) exists if and only if ∆ = 0 and
find such portfolio.
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Solution

The hedging condition reads

hSS(2) + hBB0e
2r = g(S(2)).

Since the portfolio is constant and is required to be predictable, then it can only depend
on S0 = S(0) and not on S(1), S(2). Hence we have to express S(2) in terms of S0 in the
previous equation. Since S(2) ∈ {S(0)e2u, S0e

u+d, S0e
2d}, we obtain the system

hSS0e
2u + hBB0e

2r = g(S0e
2u)

hSS0e
u+d + hBB0e

2r = g(S0e
u+d)

hSS0e
2d + hBB0e

2r = g(S0e
2d).

It is straightforward to show that the previous system has a (unique) solution (hS, hB) if
and only if ∆ = 0 and in this case the solution is given by

hB =
eug(S0e

u+d)− g(S0e
2u)ed

B0e2r(ed − eu)
, hS =

g(S0e
2u)(2ed − eu)− eug(S0e

u+d)

S0e2u(ed − eu)
.
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