
Solutions to selected exercises (week 6)

Exercise 5.6, Ref. [1]

Show that when X, Y are independent random variables, then the only events which are
resolved by both variables are ∅ and Ω. Show that two deterministic constants are always
independent. Finally assume Y = g(X) and show that in this case the two random variables
are independent if and only if Y is a deterministic constant.

Solution

Let A be an event that is resolved by both variables X, Y . This means that there exist
I, J ⊆ R such that A = {X ∈ I} = {Y ∈ J}. Hence, using the independence of X, Y ,

P(A) = P(A ∩ A) = P(X ∈ I, Y ∈ J) = P(X ∈ I)P(Y ∈ J) = P(A)P(A) = P(A)2.

Therefore P(A) = 0 or P(A) = 1. In a finite probability space this implies A = ∅ or A = Ω,
respectively.

Now let a, b be two deterministic constants. Note that, for all I ⊂ R,

P(a ∈ I) =

{
1 if a ∈ I
0 otherwise

and similarly for b. Hence

P(a ∈ I, b ∈ J) =

{
1 if a ∈ I and b ∈ J
0 otherwise

= P(a ∈ I)P(b ∈ J).

Finally we show that X and Y = g(X) are independent if and only if Y is a deterministic
constant. For the “if” part we use that

P(a ∈ I,X ∈ J) =

{
P(X ∈ J) if a ∈ I
0 otherwise

= P(a ∈ I)P(X ∈ J).

For the “only if” part, let z ∈ R and I = {g(X) ≤ z} = {X ∈ g−1(−∞, z]}. Then, using
the independence of X and Y = g(X),

P(g(X) ≤ z) = P(g(X) ≤ z, g(X) ≤ z) = P(X ∈ g−1(−∞, z], g(X) ≤ z)

= P(X ∈ g−1(−∞, z])P(g(X) ≤ z) = P(g(X) ≤ z)P(g(X) ≤ z).

Hence P(Y ≤ z) is either 0 or 1, which implies that Y is a deterministic constant.
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Exercise 5.7, Ref. [1]

The exercise asks to prove the following:
Let X1, X2 be independent random variables, g : R → R, and f : R → R. Then the

random variables
Y = g(X1), Z = f(X2)

are independent. Moreover

Var[X1 +X2] = Var[X1] + Var[X2]

Solution

Given I, J ⊆ R we have {Y ∈ I} = {X1 ∈ {g ∈ I}} and {Z ∈ J} = {X2 ∈ {f ∈ J}}.
Hence, using the independence of X1, X2,

P(Y ∈ I, Z ∈ J) = P(X1 ∈ {g ∈ I}, X2 ∈ {f ∈ J})
= P(X1 ∈ {g ∈ I})P(X2 ∈ {f ∈ J}) = P(Y ∈ I)P(Z ∈ J).

As to the second statement we write

Var[X1+X2] = E[(X1+X2)
2]−E[(X1+X2)]

2 = Var[X1]+Var[X2]+2(E[X1X2]−E[X1]E[X2]),

hence the claim follows if we show that E[X1X2] = E[X1]E[X2], i.e., the two random variables
are uncorrelated. This is shown in Exercise 5.8 below.

Exercise 5.8, Ref. [6]

Let (Ω,P) be a finite probability space and X, Y : Ω → R be two random variables. Prove
that X, Y independent⇒ X, Y uncorrelated. Show with a counterexample that the opposite
implication is not true. Prove the inequality

−
√

Var[X]Var[Y ] ≤ Cov(X, Y ) ≤
√

Var[X]Var[Y ]. (1)

Now assume that X, Y have positive variance (i.e., they are not deterministic constants1).
Show that the left (resp. right) inequality becomes an equality if and only if there exists a
negative (resp. positive) constant a0 and a real constant b0 such that Y = a0X + b0.

Solution

The statement holds for random variables on general probability spaces, but here we are
only concerned with finite probability spaces. In particular, X can only take a finite number
of values x1, . . . xN and Y a finite number of values y1, . . . yM . Letting Ai = {X = xi},

1This information is missing in the text of the exercise in Ref. [1]
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Bj = {Y = yj}, i = 1, . . . N , j = 1, . . .M , and denoting IA the indicator function of the set
A, we have

X =
N∑
i=1

xiIAi
, Y =

M∑
j=1

yjIBj
.

Hence

XY =
N∑
i=1

M∑
j=1

xiyjIAi
IBj

=
N∑
i=1

M∑
j=1

xiyjIAi∩Bj

Hence, by the linearity of the expectation, and the assumed independence of X, Y ,

E[XY ] =
N∑
i=1

M∑
j=1

xiyjE[IAi∩Bj
]

=
N∑
i=1

M∑
j=1

xiyjP(Ai ∩Bj)

=
N∑
i=1

M∑
j=1

xiyjP(Ai)P(Bj)

=
N∑
i=1

xiP(Ai)
M∑
j=1

P(Bj) = E[X]E[Y ].

As an example of uncorrelated, but not independent, random variables X, Y , consider

X =


−1 with prob. 1/3
0 with prob. 1/3
1 with prob. 1/3

Y = X2.

The random variables X, Y are not independent, since Y is not a deterministic constant (see
Exercise 5.6 above). Moreover XY = X3 = X and thus E[XY ] = E[X3] = E[X] = 0. Since
E[X]E[Y ] = 0, then Cov(X, Y ) = 0, i.e., the two random variables are uncorrelated.

To prove the inequality we first we notice that

Var[αX] = E[α2X2]− E[αX]2 = α2E[X2]− α2E[X]2 = α2Var[X],

Cov(αX, Y ) = E[αXY ]− E[αX]E[Y ] = αCov(X, Y )

and

Var[X + Y ] = E[(X + Y )2]− E[X + Y ]2 = E[X2] + E[Y 2] + 2E[XY ]

− E[X]2 − E[Y ]2 − 2E[X]E[Y ] = Var[X] + Var[Y ] + 2Cov(X, Y ).

Hence letting a ∈ R we have

Var[Y − aX] = a2Var[X] + Var[Y ]− 2aCov(X, Y ).
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Since the variance of a random variable is always non-negative, the parabola

y(a) = a2Var[X] + Var[Y ]− 2aCov(X, Y )

must always lie above the a-axis, or touch it at one single point a = a0. Hence

Cov(X, Y )2 − Var[X]Var[Y ] ≤ 0,

which proves (1). Moreover Cov(X, Y )2 = Var[X]Var[Y ] if and only if there exists a0 such
that Var[−a0X + Y ] = 0, i.e., Y = a0X + b0, for some constant b0. Note that a0 6= 0,
otherwise Y is a deterministic constant. Substituting in the definition of covariance, we see
that Cov(X, a0X + b0) = a0Var[X]. Hence if the right inequality in (1) is an equality we
have

a0Var[X] =
√

Var[X]Var[a0X + b0]), i.e., a0Var[X] = |a0|Var[X],

and thus a0 > 0. Similarly one shows that if the left inequality becomes an equality then
a0 < 0.

Exercise 5.15, Ref. [1]

Let T > 0 and n ∈ N be given. Define the stochastic process

{Wn(t)}t∈[0,T ], Wn(t) =
1√
n
M[nt], (2)

where [z] denotes the greatest integer smaller than or equal to z and Mk = X1 + X2 +
· · · + Xk, k = 1, . . . , N , is a symmetric random walk. It is assumed that the stochas-
tic process (X1, . . . , XN) is defined for N > [nT ], so that Wn(t) is defined for all t ∈
[0, T ]. Compute E[Wn(t)], Var[Wn(t)], Cov[Wn(t),Wn(s)]. Show that Var(Wn(t)) → t and
Cov(Wn(t),Wn(s))→ min(s, t) as n→ +∞.

Solution

By linearity of the expectation,

E[Wn(t)] =
1√
n
E[M[nt]] = 0,

where we used the fact that E[Xk] = E[Mk] = 0. Since Var[Mk] = k, we obtain

Var[Wn(t)] =
[nt]

n
.

Since nt ∼ [nt], as n→∞, then limn→∞Var[Wn(t)] = t. As to the covariance of Wn(t) and
Wn(s) for s 6= t, we compute

Cov[Wn(t),Wn(s)] = E[Wn(t)Wn(s)]− E[Wn(t)]E[Wn(s)] = E[Wn(t)Wn(s)]

= E
[

1√
n
M[nt]

1√
n
M[ns]

]
=

1

n
E[M[nt]M[ns]]. (3)
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Assume t > s (a similar argument applies to the case t < s). If [nt] = [ns] we have
E[M[nt]M[ns]] = Var[M[ns]] = [ns]. If [nt] ≥ 1 + [ns] we have

E[M[nt]M[ns]] = E[(M[nt]−M[ns])M[ns]]+E[M2
[ns]] = E[M[nt]−M[ns]]E[M[ns]]+Var[M[ns]] = [ns],

where we used that the increment M[nt] −M[ns] is independent of M[ns]. Replacing into (3)
we obtain

Cov[Wn(t),Wn(s)] =
[ns]

n
.

It follows that limn→∞Cov[Wn(t),Wn(s)] = s.

Exercise 5.25, Ref. [1]

Let {W (t)}t∈[0,T ] be a Brownian motion. Show that Cov[W (s),W (t)] = min(s, t), for all
s, t ∈ [0, T ]. (Compare this with Exercise 5.15)

Solution

As E[W (t)] = 0 for all t ≥ 0,

Cov[W (s),W (t)] = E[W (s)W (t)].

Assume t > s (for t < s the argument is identical). Using that the increments W (t)−W (s)
and W (s) = W (s)−W (0) are independent we have

E[W (s)W (t)] = E[W (s)(W (t)−W (s))] + E[W (s)2]

= E[W (s)]E[W (t)−W (s)] + Var[W (s)] = Var[W (s)] = s.
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