Solutions to selected exercises (week 6)

Exercise 6.5, Ref. [1]

Compute the Black-Scholes price of a physically settled binary options.

Solution

The pay-off of a physically settled binary option is Y = S(T)H(S(T) — K), where H is
the Heaviside function. Hence, if S(T") > K, the buyer of the option receives S(T') (i.e.,
the buyer receives the stock), while if S(T') < K the buyer receives nothing. The pay-off

function is
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The Black-Scholes price is Iy () = v(t, S(t)), where
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see Definition 6.1. Here 7 = T — ¢t is the time left to maturity, r the interest rate of the
risk-free asset (i.e., B(t) = Bye™, t € [0,7]), and o is the volatility of the stock. In the
integral we use
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where d; = dy + 04/T.

D=
N =

1 Exercise 6.6, Ref. [1]

Consider a European derivative with maturity 7" and pay-off Y given by
Y =k+S(T)logS(T),

where k£ > 0 is a constant. Find the Black-Scholes price of the derivative at time ¢ < T" and
the hedging self-financing portfolio. Find the probability that the derivative expires in the
money.

Solution

The pay-off function is g(z) = k + zlog z. Hence the Black-Scholes price of the derivative is
Iy (t) = v(t, S(t)), where
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Using that
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Iy (t) = ke + S(t) log S(t) + S(t)(r + %)T.



This completes the first part of the exercise. The number of shares of the stock in the hedging
portfolio is given by
hs(t) = A(t, 5(1)),

where A(t,s) = 2 =logs+1+ (r+ %2)7' Hence

hs(t) =14 (r+ %2)7' +log S(t).

The number of shares of the risk-free asset is obtained by using that

My (t) = hs()S(t) + B(t)hs(t),

hs(t) = ﬁ(nﬂw — hs(H)S(1))
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This completes the second part of the exercise. To compute the probability that ¥ > 0,
we first observe that the pay-off function g(z) has a minimum at z = e~! and we have
gle™!) =k —e~!. Hence if k > e, the derivative has probability 1 to expire in the money.
If k < e !, there exist a < b such that

g(z) >0 ifandonlyif 0 <z<aorz>b.
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Hence for k < e we have

P(Y > 0) = P(S(T) < a) + P(S(T) > b).

Since S(T) = 5(0)e*T—oVTG with G € N(0,1), then
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This completes the solution of the third part of the exercise.



