
Solutions to selected exercises (week 6)

Exercise 6.5, Ref. [1]

Compute the Black-Scholes price of a physically settled binary options.

Solution

The pay-off of a physically settled binary option is Y = S(T )H(S(T ) − K), where H is
the Heaviside function. Hence, if S(T ) > K, the buyer of the option receives S(T ) (i.e.,
the buyer receives the stock), while if S(T ) ≤ K the buyer receives nothing. The pay-off
function is

g(x) = xH(x−K) =

{
x if x > K
0 if x ≤ K.

The Black-Scholes price is ΠY (t) = v(t, S(t)), where
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see Definition 6.1. Here τ = T − t is the time left to maturity, r the interest rate of the
risk-free asset (i.e., B(t) = B0e

rt, t ∈ [0, T ]), and σ is the volatility of the stock. In the
integral we use
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Hence

v(t, x) =
e−rτ√

2π

∫ ∞
−d2

xe(r−
σ2

2
)τeσ

√
τye−

y2

2 dy =
x√
2π

∫ ∞
−d2

e−
1
2
(y−σ

√
τ)2 dy

=
x√
2π

∫ ∞
−d2−σ

√
τ

e−
1
2
z2 dz =

x√
2π

∫ d2+σ
√
τ

−∞
e−

1
2
z2 dz = xΦ(d1)

where d1 = d2 + σ
√
τ .

1 Exercise 6.6, Ref. [1]

Consider a European derivative with maturity T and pay-off Y given by

Y = k + S(T ) logS(T ),

where k > 0 is a constant. Find the Black-Scholes price of the derivative at time t < T and
the hedging self-financing portfolio. Find the probability that the derivative expires in the
money.

Solution

The pay-off function is g(z) = k + z log z. Hence the Black-Scholes price of the derivative is
ΠY (t) = v(t, S(t)), where

v(t, s) = e−rτ
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we obtain

v(t, s) = ke−rτ + s log s+ s(r +
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Hence
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This completes the first part of the exercise. The number of shares of the stock in the hedging
portfolio is given by

hS(t) = ∆(t, S(t)),

where ∆(t, s) = ∂v
∂s

= log s+ 1 + (r + σ2

2
)τ . Hence

hS(t) = 1 + (r +
σ2

2
)τ + logS(t).

The number of shares of the risk-free asset is obtained by using that

ΠY (t) = hS(t)S(t) +B(t)hB(t),

hence

hB(t) =
1

B(t)
(ΠY (t)− hS(t)S(t))

= e−rt(ke−rτ + S(t) logS(t) + S(t)(r +
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2
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= ke−rT − S(t)e−rt.

This completes the second part of the exercise. To compute the probability that Y > 0,
we first observe that the pay-off function g(z) has a minimum at z = e−1 and we have
g(e−1) = k − e−1. Hence if k ≥ e−1, the derivative has probability 1 to expire in the money.
If k < e−1, there exist a < b such that

g(z) > 0 if and only if 0 < z < a or z > b.

Hence for k < e−1 we have

P(Y > 0) = P(S(T ) < a) + P(S(T ) > b).

Since S(T ) = S(0)eαT−σ
√
TG, with G ∈ N(0, 1), then
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Thus

P(Y > 0) = P(G > A) + P(G < B) =
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= 1− Φ(A) + Φ(B).

This completes the solution of the third part of the exercise.
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