
Exam for the course “Options and Mathematics”
(CTH[MVE095], GU[MMA700]). June 4th, 2015

Simone Calogero (TEL: 0767082239)

REMARK: No aids permitted

1. Theorems

a) Assume that the dominance principle holds. Prove the put-call parity (max. 2
points)

b) Let {S(t)}t∈[0,T ] be a geometric Brownian motion. Derive the probability density
of S(t) (max. 1 point)

c) Derive the formula for the Black-Scholes price of a call option (max. 2 points)

Solution: See Lecture Notes.

2. Assume that the price S(t) of a stock follows a 2-period binomial model with parameters

eu =
7

4
, ed =

1

2
, S(0) = 1, p = 3/4.

Assume also that the interest rate of the risk-free asset is such that er = 9/8.

a) Compute the fair price at t = 0, 1, 2 of an American put with strike K = 3/4 and
maturity T = 2 (max. 1 point)

b) Compute the fair price at t = 0, 1, 2 of a European call with strike K = 3/4 and
maturity T = 2 (max. 1 point)

c) A derivative U gives to its owner the right to convert U at time t = 1 into either
the European call or the American put defined above. Compute the fair price of
U at time t = 0 (max. 1 point)

d) Describe the optimal strategy that the holder of U should follow (max. 1 point)

e) Compute the expected value at time t = 2 of a portfolio containing one share of
U at time t = 0 and assuming that the American put is not exercised at time
t = 1 (max. 1 point).
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Solution: Let Π̂put(t) denote the price of the American put and Πcall(t) denote the

price of the European call for t = 0, 1, 2. At maturity we have Π̂put(2) = (3/4−S(2))+,
Πcall(2) = (S(2)− 3/4)+, while for t = 0, 1 we use the recurrence formulas

Π̂put(t) = max[(3/4− S(t))+, e
−r(quΠ̂u

put(t + 1) + qdΠ̂
d
put(t + 1))],

Πcall(t) = e−r(quΠu
call(t + 1) + qdΠ

d
call(t + 1))

with qu = qd = 1/2. We obtain the following diagrams for the price of the two options:

Π̂put(2) = 0

Π̂put(1) = 0

u

77

d

''

Π̂put(0) = 1
9

u

77

d

''

Π̂put(2) = 0

Π̂put(1) = 1
4

u

77

d

''

Π̂put(2) = 1
2

Πcall(2) = 37
16

Πcall(1) = 13
12

u
66

d

((
Πcall(0) = 41

81

u
66

d

((

Πcall(2) = 1
8

Πcall(1) = 1
18

u
66

d

((
Πcall(2) = 0

This concludes part a)-b) of the exercise (1+1 points). As to the price of U , note that
the pay-off of U at time t = 1 is max(Π̂put(1),Πcall(1)). Therefore, denoting by ΠU(t),
t = 0, 1, the fair price of U , we have

Πu
U(1) = Πu

call(1) =
13

12
, Πd

U(1) = Π̂d
put(1) =

1

4

2



Hence

ΠU(0) = e−r(quΠu
U(1) + qdΠ

d
U(1)) =

16

27
This concludes the second part of the exercise (1 point). As to the optimal strategy, the
holder of U will convert U into the American put if the stock price goes down at time 1
and into the European call if the price goes up. In the first case the investor exercises
the American put, as its value equals the intrinsic value. This answers question c) (1
point). Finally, let V (t), t = 0, 1, 2, be the value a portfolio with one share of U . Using
p = 3/4 and 1− p = 1/4 we find

V (2) =



37
16

with probability
(
3
4

)2
,

1
8

with probability 3
4
1
4
,

0 with probability 3
4
1
4
,

1
2

with probability
(
1
4

)2
Hence

E[V (2)] =
37

16

9

16
+

1

8

3

16
+

1

2

1

16
=

347

256
.

This concludes the fourth part of the exercise (1 point).

3. Consider a 1+1 dimensional, arbitrage-free stock market, in which the stock price S(t)
follows a one-period binomial model and the risk-free asset has a constant interest
rate. Let ΠY (t), t = 0, 1, be the fair price of a European derivative with pay-off
Y = g(S(1)) ≥ 0. Let h = (hS, hY ) be a portfolio invested in hS shares of the stock
and hY shares of the derivative. Show that h is not an arbitrage (max. 5 points).

Solution: The argument is very similar to the one used for binomial markets. We
have

ΠY (0) = e−r(quΠu
Y (1) + qdΠ

d
Y (1)) = e−r(qug(S(0)eu) + qdg(S(0)ed))

= e−r(quf(u) + qdf(d)),

where f(u) = g(S(0)eu) ≥ 0 and f(d) = g(S(0)ed) ≥ 0. The value of the portfolio h
at time 0 is then given by

V (0) = hSS(0) + hY e
−r(quf(u) + qdf(d)),

while at time t = 1 we have

V u(1) = hSS(0)eu + hY f(u), V d(1) = hSS(0)ed + hY f(d).

The portfolio is an arbitrage if V (0) = 0, V u(1) ≥ 0, V d(1) ≥ 0 and at least one of
V u(1), V d(1) is strictly positive. Assume that h is an arbitrage. From V (0) = 0 we get

hSS(0) = −hY e
−r(quf(u) + qdf(d)).
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Inserting into the inequalities V u(1) ≥ 0 and V d(1) ≥ 0 we obtain

− hY e
−r(quf(u) + qdf(d))eu + hY f(u) ≥ 0

− hY e
−r(quf(u) + qdf(d))eu + hY f(d) ≥ 0

Hence

hY [(1− que
u−r)f(u)− eu−rqdf(d)] ≥ 0

hY [(1− qde
d−r)f(d)− ed−rquf(u)] ≥ 0

Since one of the two inequalities should be strict, then hY 6= 0. Assume hY > 0 (a
similar argument applies if hY < 0). Then we obtain

(1− que
u−r)f(u)− eu−rqdf(d) ≥ 0 (1)

(1− qde
d−r)f(d)− ed−rquf(u) ≥ 0 (2)

The purpose is now to show that if one of the above inequalities is strict, then the
other cannot be verified. Assume that (2) is strict. Then we have

f(d) >
ed−rquf(u)

1− qded−r
,

where we used that d < r and so 1− qde
d−r > 0. Replacing in (1) we obtain

(1− que
u−r)f(u)− eu−rqdf(d) <f(u)

[
1− que

u−r − eu−r
quqde

d−r

1− qded−r

]
= f(u)

1− qde
d−r − que

u−r

1− qded−r
.

Recalling the identity que
u + qde

d = er, we obtain

(1− que
u−r)f(u)− eu−rqdf(d) < 0

i.e., (1) is not satisfied. At the same fashion one proves that (2) is not satisfied when (1)
is strict.
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