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1.

Assume that the dominance principle holds and that there exists a risk-free asset with
constant interest rate r. Prove the following:
e the put-call parity (max. 2 points)

e if » > 0, the price of call options is non-decreasing with the time of maturity
(max. 1 point)

e the price of call options is convex in the strike price (max. 1 point)
Define and explain the concept of optimal exercise time of American put options (max.
1 point).

Solution: See Theorem 1.1 and Def. 1.1 in the lecture notes.

. Let the price S(t) of a stock be given by a N-period binomial model with parameters

u>0,d<0,0<r<u,pe(0,1) and let ﬁ(t) be the binomial price of an American
put on the stock with strike K > 0 and maturity 7" = N. Express ﬁ(N —1) as a
function of S(N —1) (max. 2 points). Show that it is optimal to exercise the American
put at time t = N — 1 if and only if the price of the stock at this time satisfies

1_ -7
S(N-1)< K¢

(max. 3 points).
1 — e "qqed

Solution: By definition of binomial price of American put options we have
T(N) = (K = S(N))y, T(N=1) = max[(K = S(N —1))4, e " (quI"(N) + qalT*(N))]
Using that

(V) = (K = S(N = 1)e")y, TUN) = (K — S(V = 1)e)s.



we obtain ﬁ(N —1)= f(S(N — 1)), where
F@) = max{(K — 2), e (que (Ke™ — 2); + qaet(Ke ™t — 1))

This concludes the fist part of the exercise (2 points). For the second part of the
exercise, we recall that it is optimal to exercise the derivative at time t = N — 1 if
and only if ﬁ(N —1) = (K —S(N — 1)), ie., if and only if the binomial price of
the American put equals its intrinsic value. To see when this happens, we compute
II(N — 1) when S(N — 1) lies in the intervals

S(N
S(N

—1)e[0,Ke "] : =1, S(N—-1) € [Ke ™ K] := I,
~ 1) €[K,Ke ¥ :=1I5, S(N—1) € [Ke™? +00) := I

Using the formula II(N—1) = f(S(N—1)) proved above, we see that, for S(N—1) € I,

(N —1) = max[K — S(N—1), e " (que“(Ke " — S(N — 1)) + que’(Ke ™4 — S(N —1)))].
Using ¢, + g4 = 1 and q,e* + gge? = € we obtain

[I(N—1)=max[K —S(N—1),Ke "= S(N—1)] = K-=S(N—1), for S(N—1) € I,.
Similarly, for S(N — 1) € I, we have

(N — 1) = max[K — S(N — 1), e "gae’(Ke™@ — S(N — 1))]

B K—-S(N-1) for S(N —1) < S,
T equed(Ke 4 — S(N —1)) for S(N —1) > S,
where . B
—e 'qq
y=K—m .
S 1 —eTgge?

Treating similarly the cases S(N — 1) € I3 and S(N — 1) € I, we find

R K—-S(N-1) for0 < S(N—-1) < S,
(N —1) =< e qeet(Ke = S(N —1)) for S, < S(N —1) < Ke™
0 for § > Ke™

We conclude that it is optimal to exercise the American put at time t = N — 1 if and
only if S(N — 1) < S,, which completes the solution of the second part of the exercise
(3 points).

. Let 0 < L < K. A European style derivative on a stock with maturity 7" > 0 pays
nothing to its owner when S(7T") > K, while for S(7') < K it lets the owner choose
between 1 share of the stock and the fixed amount L. Draw the pay-off function of the
derivative (max. 1 point). Compute the Black-Scholes price of the derivative (max.



2 points). Compute the number of shares of the stock in the hedging self-financing
portfolio (max. 2 points).

Solution: The pay-off function is

L, for0<z<L
g(z) = z, for L<z<K
0, for z > K,

which is depicted in the figure.
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The Black-Scholes price of the derivative is given by II(¢) = v(t, S(t)), where

-rT -2 2
¢ / g (me(T_T)Te”ﬁy> e"zdy, T=T—t,
2m Jr

Nir:

where o > 0 is the volatility of the stock and r is the interest rate of the risk-free asset.
Replacing the pay-off function above we find:

v(t,x) =

—rr  pdi(L) 2 —rr  pdi(K) 2 2
e e -
u(t,z) = / Le zdy + 2e" =TTV Ve T dy

\/% \/ﬁ di(L)
= Le T ®(dy (L)) + z[®(da(K)) — ®(d2(L))],

where ®(z) is the standard normal distribution, ds(a) = dy(a) — o+/7 and

- logf —(r—=%)T
= e
This concludes the second part of the exercise (2 points). The number of shares of the
stock in the hedging self-financing portfolio is hg(t) = d,v(t, S(t)). We use
¢(di(a))

ro\/T

dl(a)

0:[@(d1(a))] = ¢(di(a))s[di(a)] = —



0 [®(da(a))]

)
xo\/T
where ¢(z) = e\;;zﬂ

is the standard normal density function. Hence

O u(t,z) = _old(D)

dy(L)) — o(do( K
Le T +<I>(d2(K)) _ @(dg(L)) + ¢( 2( )) ¢( 2( ))
xo\/T
The result can be further simplified by noticing that

G

o(da(L)) — plds (L)) Ze = 0

T
(see also sec. 6.2 in the lecture notes). Hence we finally obtain

Duo(t, z) = B(dy(K)) — B(da(L)) — L)

oNT



