MVE165/MMG630, Applied Optimization Lecture 11 Unconstrained nonlinear programming

Ann-Brith Strömberg

2009-04-21

An overview of nonlinear programming

General notation of nonlinear programs

minimize
$$\mathbf{x} \in \mathbb{R}^n$$
 $f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, m.$

Some special cases

- ▶ Unconstrained problems (m = 0): minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in \Re^n$
- ▶ Convex programming: f convex, g_i convex, i = 1, ..., m
- ▶ Linear constraints: $g_i(\mathbf{x}) = \mathbf{a}_i^T \mathbf{x} b_i, \quad i = 1, ..., m$
 - Quadratic programming: $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x}$
 - ▶ Linear programming: $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$

Areas of applications, examples

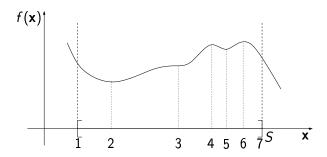
- STRUCTURAL OPTIMIZATION
 - Design of aircraft, ships, bridges, etc
 - Decide on the material and the thickness of a mechanical structure
 - Minimize weight, maximize stiffness, constraints on deformation at certain loads, strength, etc
- ► Analysis and design of traffic networks
 - Estimate traffic flows and discharges
 - Detect bottlenecks
 - Analyze effects of traffic signals, tolls, etc
- ► Least squares—adaptation of data
- ► ENGINE DEVELOPMENT, DESIGN OF ANTENNAS, ... for each function evaluation a simulation may be needed
- MAXIMIZE THE VOLUME OF A CYLINDER while keeping the surface area constant
- •

Properties of nonlinear programs

- ► The mathematical properties of nonlinear optimization problems can be very different
- No algorithm exists that solves all nonlinear optimization problems
- An optimal solution must not be located at an extreme point
- Nonlinear programs can be unconstrained (what if a linear program has no constraints?)
- ► In this course: We assume that f is differentiable (which is not always the case)
- ► For **convex** problems: Algorithms converge to an optimal solution
- Nonlinear problems can have local optima that are not global optima

Possible extremal points for

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in S$



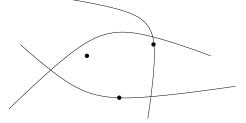
- \triangleright boundary points of S
- stationary points, where $f'(\mathbf{x}) = 0$
- discontinuities in f or f' DRAW!

Boundary and stationary points

ightharpoonup is a boundary point to the feasible set

$$S = {\mathbf{x} \in \Re^n \mid g_i(\mathbf{x}) \leq 0, i = 1, ..., m}$$

if $g_i(\overline{\mathbf{x}}) \leq 0$, $i = 1, \dots, m$, and $g_i(\overline{\mathbf{x}}) = 0$ for at least one index i



▶ $\overline{\mathbf{x}}$ is a stationary point to f if $\nabla f(\mathbf{x}) = \mathbf{0}$ (in one dimension: if f'(x) = 0)

Local and global minima (maxima)

minimize
$$f(\mathbf{x})$$
 subject to $\mathbf{x} \in S$

- ▶ $\overline{\mathbf{x}}$ is a local minimum if $\overline{\mathbf{x}} \in S$ and $f(\overline{\mathbf{x}}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in S$ sufficiently close to $\overline{\mathbf{x}}$
 - ▶ In words: A solution is a *local* minimum if it is *feasible* and no other feasible solution in a sufficiently *small neighbourhood* has a lower objective value
 - ► Formally: $\exists \varepsilon > 0$ such that $f(\overline{\mathbf{x}}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in S \cap {\mathbf{x} \in \Re^n : ||\mathbf{x} \overline{\mathbf{x}}|| \leq \varepsilon}$
 - ▶ Draw!!
- ▶ $\overline{\mathbf{x}}$ is a global minimum if $\overline{\mathbf{x}} \in S$ and $f(\overline{\mathbf{x}}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in S$
 - ▶ In words: A solution is a *global* minimum if it is *feasible* and no other feasible solution has a lower objective value

Unconstrained optimization

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in \Re^n$

- lacktriangle Assume that $f:\Re^n\mapsto\Re$ is continuously differentiable on \Re^n
- Necessary conditions for a local optimum: $\overline{\mathbf{x}}$ is a local minimum/maximum for $f \Rightarrow \nabla f(\overline{\mathbf{x}}) = \mathbf{0}$
- ▶ This is not sufficient, since $\nabla f(\tilde{\mathbf{x}}) = \mathbf{0}$ if $\tilde{\mathbf{x}}$ is a saddle point
- If f is twice continuously differentiable on \Re^n then the Hessian matrix exists: $H_f(\mathbf{x}) = \nabla^2 f(\mathbf{x})$
- ▶ Sufficient conditions for a local optimum:

$$egin{aligned}
abla f(\overline{\mathbf{x}}) &= \mathbf{0} \\ H_f(\overline{\mathbf{x}}) & \mathsf{pos/neg definite} \end{aligned} iggr\} \Rightarrow \overline{\mathbf{x}} ext{ is a local min/max for } f$$

When is a local optimum also a global optimum?

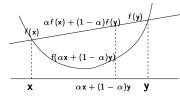
- ▶ The concept of **convexity** is essential
- Functions: convex (minimization), concave (maximization)
- Sets: convex (minimization and maximization)
- The minimization (maximization) of a convex (concave) function over a convex set is referred to as a convex optimization problem
- ► How conclude whether sets and functions are convex, concave, or neither?

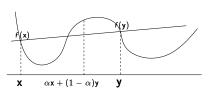
▶ A function f is *convex* on S if, for any $\mathbf{x}, \mathbf{y} \in S$ it holds that

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$
 for all $0 \le \alpha \le 1$

A CONVEX FUNCTION

A NON-CONVEX FUNCTION





▶ f is strictly convex on S if, for any $\mathbf{x}, \mathbf{y} \in S$ it holds that

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) < \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$
 for all $0 < \alpha < 1$

Convex/concave functions

- f is (strictly) concave on S if -f is (strictly) convex on S
- f is convex $\Leftrightarrow H_f$ is positive semi-definite
- ▶ H_f is positive definite $\Rightarrow f$ is strictly convex
- ► Example: Check convexity for $f(\mathbf{x}) = 2x^2 2xy + y^2 + 3x y$

► Eigenvalues for $H_f(\mathbf{x})$: $\det(H_f(\mathbf{x}) - \lambda I) = 0 \Leftrightarrow$

$$\begin{vmatrix} 4-\lambda & -2 \\ -2 & 2-\lambda \end{vmatrix} = (4-\lambda)(2-\lambda)-4=0 \Leftrightarrow$$

$$\lambda^2 - 6\lambda + 4 = 0 \Rightarrow \lambda_1 = 3 + \sqrt{5} > 0, \ \lambda_2 = 3 - \sqrt{5} > 0 \Rightarrow H_f(\mathbf{x})$$
 is positive definite $\Rightarrow f$ is strictly convex

► Check (strict?) convexity of the function $f(x, y) = x^3 + y^3$ on \Re^2

▶ Check whether (where) the function $f(x,y) = \ln x - y^2 + cxy$ is convex, concave, or neither (assume that the constant c > 0)

► A non-negative linear combination of convex functions is convex:

$$\left. \begin{array}{ll} f_i \; \text{convex}, & i=1,\ldots,m \\ \alpha_i \geq 0, & i=1,\ldots,m \end{array} \right\} \Rightarrow f = \sum_{i=1}^m \alpha_i f_i \; \text{is convex}$$

▶ The pointwise maximum of convex functions is convex:

$$f_i(\mathbf{x}), \ i=1,\ldots,m, \ \mathsf{convex} \quad \Rightarrow \quad f(\mathbf{x}) = \max_{i=1,\ldots,m} f_i(\mathbf{x}) \ \mathsf{convex}$$

▶ Draw!!

- ▶ If $g: \Re \mapsto \Re$ is convex and non-decreasing and $h: \Re^n \mapsto \Re$ is convex, then the composite function $f = g(h): \Re^n \mapsto \Re$ is convex
- Example: $g(y) = y \ln y$, $h(\mathbf{x}) = x_1^2 + x_2^2$
 - $g'(y) = 1 + \ln y > 0$ for y > e ($\Rightarrow g$ nondecreasing),
 - $g''(y) = \frac{1}{y} > 0$ for y > 0 ($\Rightarrow g$ convex)
 - $\nabla h(\mathbf{x}) = (2x_1, 2x_2)^{\mathrm{T}}, \ H_h(\mathbf{x}) = \nabla^2 h(\mathbf{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ $(\Rightarrow h \text{ convex})$
 - ⇒ $f(\mathbf{x}) = g(h(\mathbf{x})) = (x_1^2 + x_2^2) \ln(x_1^2 + x_2^2)$ is convex for $\mathbf{x} \in \Re^2$ such that $x_1^2 + x_2^2 > e$

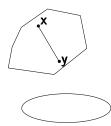
Convex sets

▶ A set S is convex if, for any elements $\mathbf{x}, \mathbf{y} \in S$ it holds that

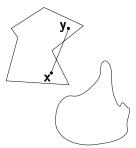
$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in S$$
 for all $0 \le \alpha \le 1$

► Examples:

Convex sets



Non-convex sets



Convex sets

Consider a set S defined by the intersection of m inequalities:

$$S = \{ \mathbf{x} \in \Re^n \mid g_i(\mathbf{x}) \le 0, \ i = 1, ..., m \}$$

where the functions $g_i: \Re^n \mapsto \Re$

- ▶ If all the functions $g_i(\mathbf{x})$ i = 1, ..., m, are convex on \Re^n , then S is a convex set
- Example: $g_1(\mathbf{x}) = x_1^2 + 3x_2^2 1$, $g_2(\mathbf{x}) = x_1 + x_2$, $g_3(\mathbf{x}) = x_1^2 x_2$ $S = \left\{ \begin{array}{l} \mathbf{x} \in \Re^2 \mid g_i(\mathbf{x}) \leq 0, \ i = 1, 2, 3 \end{array} \right\} \Rightarrow$ $H_{g_1}(\mathbf{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix} \Rightarrow g_1 \text{ strictly convex,}$ $H_{g_2}(\mathbf{x}) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow g_2 \text{ convex (\& concave!),}$ $H_{g_3}(\mathbf{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow g_3 \text{ convex}$ $\Rightarrow \text{ The set } S \text{ is convex}$

Global optima of convex programs

- ▶ If f and g_i , i = 1, ..., m, are convex functions, then minimize $f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \leq 0$, i = 1, ..., m is said to be a *convex* optimization problem
- ▶ Let x* be a local optimum for a convex optimization problem. Then x* is also a global optimum
- If f is strictly convex and g_i , i = 1, ..., m, are convex, then there exists at most one optimal solution (a unique global optimum)
- Necessary and sufficient condition for optimality in unconstrained minimization (maximization): Suppose that $f: \Re^n \mapsto \Re$ is convex (concave) and continuously differentiable on \Re^n . A point $\mathbf{x}^* \in \Re^n$ is a global minimum for f if and only if $\nabla f(\mathbf{x}^*) = \mathbf{0}$

Solution methods for unconstrained optimization

- ► General iterative search method:
 - 1. Choose a starting solution, $\mathbf{x}^0 \in \mathbb{R}^n$. Let k = 0
 - 2. Determine a search direction \mathbf{d}^k
 - 3. Determine a step length, t_k , by solving:

minimize
$$t \ge 0$$
 $\varphi(t) := f(\mathbf{x}^k + t \cdot \mathbf{d}^k)$

- 4. New iteration point, $\mathbf{x}^{k+1} = \mathbf{x}^k + t_k \cdot \mathbf{d}^k$
- 5. If a termination criterion is fulfilled \Rightarrow Stop! Otherwise: let k := k + 1 and return to step 2
- ▶ How choose search directions \mathbf{d}^k , step lengths t_k , and termination criteria?

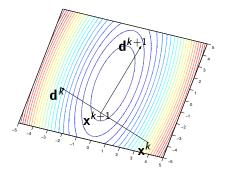
Improving and feasible directions

- Goal: $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$ (minimization)
- ▶ How does f change locally in a direction \mathbf{d}^k at \mathbf{x}^k ?
- ▶ Taylor expansion: $f(\mathbf{x}^k + t\mathbf{d}^k) = f(\mathbf{x}^k) + t\nabla f(\mathbf{x}^k)^{\mathrm{T}}\mathbf{d}^k + \mathcal{O}(t^2)$
- For sufficiently small t > 0: $f(\mathbf{x}^k + t\mathbf{d}^k) < f(\mathbf{x}^k) \Rightarrow \nabla f(\mathbf{x}^k)^{\mathrm{T}}\mathbf{d}^k < 0$
- ⇒ Definition:

If $\nabla f(\mathbf{x}^k)^{\mathrm{T}} \mathbf{d}^k < 0$ then \mathbf{d}^k is a descent direction for f at \mathbf{x}^k If $\nabla f(\mathbf{x}^k)^{\mathrm{T}} \mathbf{d}^k > 0$ then \mathbf{d}^k is an ascent direction for f at \mathbf{x}^k

- ▶ We wish to minimize (maximize) f over \Re^n :
- \Rightarrow Choose \mathbf{d}^k as a descent (an ascent) direction from \mathbf{x}^k
- A direction \mathbf{d}^k is feasible at \mathbf{x}^k if $\mathbf{x}^k + t\mathbf{d}^k$ is feasible for some (sufficiently small) t > 0

An improving step



Figur: At \mathbf{x}^k , the descent direction \mathbf{d}^k is generated. A step t_k is taken in this direction, producing \mathbf{x}^{k+1} . At this point, a new descent direction \mathbf{d}^{k+1} is generated, and so on.