# MVE165/MMG630, Applied Optimization Lecture 11 Unconstrained nonlinear programming

Ann-Brith Strömberg

2009-04-21

#### An overview of nonlinear programming

#### General notation of nonlinear programs

minimize 
$$\mathbf{x} \in \mathbb{R}^n$$
  $f(\mathbf{x})$  subject to  $g_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, m.$ 

#### Some special cases

- ▶ Unconstrained problems (m = 0): minimize  $f(\mathbf{x})$  subject to  $\mathbf{x} \in \Re^n$
- ▶ Convex programming: f convex,  $g_i$  convex, i = 1, ..., m
- ▶ Linear constraints:  $g_i(\mathbf{x}) = \mathbf{a}_i^T \mathbf{x} b_i, \quad i = 1, ..., m$ 
  - Quadratic programming:  $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x}$
  - ▶ Linear programming:  $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$



### Areas of applications, examples

- STRUCTURAL OPTIMIZATION
  - Design of aircraft, ships, bridges, etc
  - Decide on the material and the thickness of a mechanical structure
  - Minimize weight, maximize stiffness, constraints on deformation at certain loads, strength, etc
- ► Analysis and design of traffic networks
  - Estimate traffic flows and discharges
  - Detect bottlenecks
  - Analyze effects of traffic signals, tolls, etc
- ► Least squares—adaptation of data
- ► ENGINE DEVELOPMENT, DESIGN OF ANTENNAS, ... for each function evaluation a simulation may be needed
- MAXIMIZE THE VOLUME OF A CYLINDER while keeping the surface area constant
- •

#### Properties of nonlinear programs

- ► The mathematical properties of nonlinear optimization problems can be very different
- No algorithm exists that solves all nonlinear optimization problems
- An optimal solution must not be located at an extreme point
- Nonlinear programs can be unconstrained (what if a linear program has no constraints?)
- ► In this course: We assume that f is differentiable (which is not always the case)
- ► For **convex** problems: Algorithms converge to an optimal solution
- Nonlinear problems can have local optima that are not global optima



#### Possible extremal points for

minimize  $f(\mathbf{x})$  subject to  $\mathbf{x} \in S$ 



- $\triangleright$  boundary points of S
- stationary points, where  $f'(\mathbf{x}) = 0$
- discontinuities in f or f' DRAW!

### **Boundary and stationary points**

ightharpoonup is a boundary point to the feasible set

$$S = {\mathbf{x} \in \Re^n \mid g_i(\mathbf{x}) \leq 0, i = 1, ..., m}$$

if  $g_i(\overline{\mathbf{x}}) \leq 0$ ,  $i = 1, \dots, m$ , and  $g_i(\overline{\mathbf{x}}) = 0$  for at least one index i



▶  $\overline{\mathbf{x}}$  is a stationary point to f if  $\nabla f(\mathbf{x}) = \mathbf{0}$  (in one dimension: if f'(x) = 0)



## Local and global minima (maxima)

minimize 
$$f(\mathbf{x})$$
 subject to  $\mathbf{x} \in S$ 

- ▶  $\overline{\mathbf{x}}$  is a local minimum if  $\overline{\mathbf{x}} \in S$  and  $f(\overline{\mathbf{x}}) \leq f(\mathbf{x})$  for all  $\mathbf{x} \in S$  sufficiently close to  $\overline{\mathbf{x}}$ 
  - ▶ In words: A solution is a *local* minimum if it is *feasible* and no other feasible solution in a sufficiently *small neighbourhood* has a lower objective value
  - ► Formally:  $\exists \varepsilon > 0$  such that  $f(\overline{\mathbf{x}}) \leq f(\mathbf{x})$  for all  $\mathbf{x} \in S \cap {\mathbf{x} \in \Re^n : ||\mathbf{x} \overline{\mathbf{x}}|| \leq \varepsilon}$
  - ▶ Draw!!
- ▶  $\overline{\mathbf{x}}$  is a global minimum if  $\overline{\mathbf{x}} \in S$  and  $f(\overline{\mathbf{x}}) \leq f(\mathbf{x})$  for all  $\mathbf{x} \in S$ 
  - ▶ In words: A solution is a *global* minimum if it is *feasible* and no other feasible solution has a lower objective value



### **Unconstrained optimization**

minimize  $f(\mathbf{x})$  subject to  $\mathbf{x} \in \Re^n$ 

- lacktriangle Assume that  $f:\Re^n\mapsto\Re$  is continuously differentiable on  $\Re^n$
- Necessary conditions for a local optimum:  $\overline{\mathbf{x}}$  is a local minimum/maximum for  $f \Rightarrow \nabla f(\overline{\mathbf{x}}) = \mathbf{0}$
- ▶ This is not sufficient, since  $\nabla f(\tilde{\mathbf{x}}) = \mathbf{0}$  if  $\tilde{\mathbf{x}}$  is a saddle point
- If f is twice continuously differentiable on  $\Re^n$  then the Hessian matrix exists:  $H_f(\mathbf{x}) = \nabla^2 f(\mathbf{x})$
- ▶ Sufficient conditions for a local optimum:

$$egin{aligned} 
abla f(\overline{\mathbf{x}}) &= \mathbf{0} \\ H_f(\overline{\mathbf{x}}) & \mathsf{pos/neg definite} \end{aligned} iggr\} \Rightarrow \overline{\mathbf{x}} ext{ is a local min/max for } f$$



### When is a local optimum also a global optimum?

- ▶ The concept of **convexity** is essential
- Functions: convex (minimization), concave (maximization)
- Sets: convex (minimization and maximization)
- The minimization (maximization) of a convex (concave) function over a convex set is referred to as a convex optimization problem
- ► How conclude whether sets and functions are convex, concave, or neither?



▶ A function f is *convex* on S if, for any  $\mathbf{x}, \mathbf{y} \in S$  it holds that

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$
 for all  $0 \le \alpha \le 1$ 

A CONVEX FUNCTION

A NON-CONVEX FUNCTION





▶ f is strictly convex on S if, for any  $\mathbf{x}, \mathbf{y} \in S$  it holds that

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) < \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$
 for all  $0 < \alpha < 1$ 



### **Convex/concave functions**

- f is (strictly) concave on S if -f is (strictly) convex on S
- f is convex  $\Leftrightarrow H_f$  is positive semi-definite
- ▶  $H_f$  is positive definite  $\Rightarrow f$  is strictly convex
- ► Example: Check convexity for  $f(\mathbf{x}) = 2x^2 2xy + y^2 + 3x y$

► Eigenvalues for  $H_f(\mathbf{x})$ :  $\det(H_f(\mathbf{x}) - \lambda I) = 0 \Leftrightarrow$ 

$$\begin{vmatrix} 4-\lambda & -2 \\ -2 & 2-\lambda \end{vmatrix} = (4-\lambda)(2-\lambda)-4=0 \Leftrightarrow$$

$$\lambda^2 - 6\lambda + 4 = 0 \Rightarrow \lambda_1 = 3 + \sqrt{5} > 0, \ \lambda_2 = 3 - \sqrt{5} > 0 \Rightarrow H_f(\mathbf{x})$$
 is positive definite  $\Rightarrow f$  is strictly convex



► Check (strict?) convexity of the function  $f(x, y) = x^3 + y^3$  on  $\Re^2$ 

▶ Check whether (where) the function  $f(x,y) = \ln x - y^2 + cxy$  is convex, concave, or neither (assume that the constant c > 0)

► A non-negative linear combination of convex functions is convex:

$$\left. \begin{array}{ll} f_i \; \text{convex}, & i=1,\ldots,m \\ \alpha_i \geq 0, & i=1,\ldots,m \end{array} \right\} \Rightarrow f = \sum_{i=1}^m \alpha_i f_i \; \text{is convex}$$

▶ The pointwise maximum of convex functions is convex:

$$f_i(\mathbf{x}), \ i=1,\ldots,m, \ \mathsf{convex} \quad \Rightarrow \quad f(\mathbf{x}) = \max_{i=1,\ldots,m} f_i(\mathbf{x}) \ \mathsf{convex}$$

▶ Draw!!



- ▶ If  $g: \Re \mapsto \Re$  is convex and non-decreasing and  $h: \Re^n \mapsto \Re$  is convex, then the composite function  $f = g(h): \Re^n \mapsto \Re$  is convex
- Example:  $g(y) = y \ln y$ ,  $h(\mathbf{x}) = x_1^2 + x_2^2$ 
  - $g'(y) = 1 + \ln y > 0$  for y > e ( $\Rightarrow g$  nondecreasing),
  - $g''(y) = \frac{1}{y} > 0$  for y > 0 ( $\Rightarrow g$  convex)
  - $\nabla h(\mathbf{x}) = (2x_1, 2x_2)^{\mathrm{T}}, \ H_h(\mathbf{x}) = \nabla^2 h(\mathbf{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$   $(\Rightarrow h \text{ convex})$
  - ⇒  $f(\mathbf{x}) = g(h(\mathbf{x})) = (x_1^2 + x_2^2) \ln(x_1^2 + x_2^2)$  is convex for  $\mathbf{x} \in \Re^2$  such that  $x_1^2 + x_2^2 > e$



#### **Convex sets**

▶ A set S is convex if, for any elements  $\mathbf{x}, \mathbf{y} \in S$  it holds that

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in S$$
 for all  $0 \le \alpha \le 1$ 

► Examples:

Convex sets



#### Non-convex sets



#### Convex sets

Consider a set S defined by the intersection of m inequalities:

$$S = \{ \mathbf{x} \in \Re^n \mid g_i(\mathbf{x}) \le 0, \ i = 1, ..., m \}$$

where the functions  $g_i: \Re^n \mapsto \Re$ 

- ▶ If all the functions  $g_i(\mathbf{x})$  i = 1, ..., m, are convex on  $\Re^n$ , then S is a convex set
- Example:  $g_1(\mathbf{x}) = x_1^2 + 3x_2^2 1$ ,  $g_2(\mathbf{x}) = x_1 + x_2$ ,  $g_3(\mathbf{x}) = x_1^2 x_2$   $S = \left\{ \begin{array}{l} \mathbf{x} \in \Re^2 \mid g_i(\mathbf{x}) \leq 0, \ i = 1, 2, 3 \end{array} \right\} \Rightarrow$   $H_{g_1}(\mathbf{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix} \Rightarrow g_1 \text{ strictly convex,}$   $H_{g_2}(\mathbf{x}) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow g_2 \text{ convex (\& concave!),}$   $H_{g_3}(\mathbf{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow g_3 \text{ convex}$   $\Rightarrow \text{ The set } S \text{ is convex}$

### Global optima of convex programs

- ▶ If f and  $g_i$ , i = 1, ..., m, are convex functions, then minimize  $f(\mathbf{x})$  subject to  $g_i(\mathbf{x}) \leq 0$ , i = 1, ..., m is said to be a *convex* optimization problem
- ▶ Let x\* be a local optimum for a convex optimization problem. Then x\* is also a global optimum
- If f is strictly convex and  $g_i$ , i = 1, ..., m, are convex, then there exists at most one optimal solution (a unique global optimum)
- Necessary and sufficient condition for optimality in unconstrained minimization (maximization): Suppose that  $f: \Re^n \mapsto \Re$  is convex (concave) and continuously differentiable on  $\Re^n$ . A point  $\mathbf{x}^* \in \Re^n$  is a global minimum for f if and only if  $\nabla f(\mathbf{x}^*) = \mathbf{0}$

## Solution methods for unconstrained optimization

- ► General iterative search method:
  - 1. Choose a starting solution,  $\mathbf{x}^0 \in \mathbb{R}^n$ . Let k = 0
  - 2. Determine a search direction  $\mathbf{d}^k$
  - 3. Determine a step length,  $t_k$ , by solving:

minimize 
$$t \ge 0$$
  $\varphi(t) := f(\mathbf{x}^k + t \cdot \mathbf{d}^k)$ 

- 4. New iteration point,  $\mathbf{x}^{k+1} = \mathbf{x}^k + t_k \cdot \mathbf{d}^k$
- 5. If a termination criterion is fulfilled  $\Rightarrow$  Stop! Otherwise: let k := k + 1 and return to step 2
- ▶ How choose search directions  $\mathbf{d}^k$ , step lengths  $t_k$ , and termination criteria?



### Improving and feasible directions

- Goal:  $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$  (minimization)
- ▶ How does f change locally in a direction  $\mathbf{d}^k$  at  $\mathbf{x}^k$ ?
- ▶ Taylor expansion:  $f(\mathbf{x}^k + t\mathbf{d}^k) = f(\mathbf{x}^k) + t\nabla f(\mathbf{x}^k)^{\mathrm{T}}\mathbf{d}^k + \mathcal{O}(t^2)$
- For sufficiently small t > 0:  $f(\mathbf{x}^k + t\mathbf{d}^k) < f(\mathbf{x}^k) \Rightarrow \nabla f(\mathbf{x}^k)^{\mathrm{T}}\mathbf{d}^k < 0$
- ⇒ Definition:

If  $\nabla f(\mathbf{x}^k)^{\mathrm{T}} \mathbf{d}^k < 0$  then  $\mathbf{d}^k$  is a descent direction for f at  $\mathbf{x}^k$  If  $\nabla f(\mathbf{x}^k)^{\mathrm{T}} \mathbf{d}^k > 0$  then  $\mathbf{d}^k$  is an ascent direction for f at  $\mathbf{x}^k$ 

- ▶ We wish to minimize (maximize) f over  $\Re^n$ :
- $\Rightarrow$  Choose  $\mathbf{d}^k$  as a descent (an ascent) direction from  $\mathbf{x}^k$
- A direction  $\mathbf{d}^k$  is feasible at  $\mathbf{x}^k$  if  $\mathbf{x}^k + t\mathbf{d}^k$  is feasible for some (sufficiently small) t > 0



#### An improving step



Figur: At  $\mathbf{x}^k$ , the descent direction  $\mathbf{d}^k$  is generated. A step  $t_k$  is taken in this direction, producing  $\mathbf{x}^{k+1}$ . At this point, a new descent direction  $\mathbf{d}^{k+1}$  is generated, and so on.