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An overview of nonlinear programming

General notation of nonlinear programs
minimize ycgpe f(x)
subject to  gi(x) <0, i=1,...,m.
Some special cases

» Unconstrained problems (m = 0):
minimize f(x) subject to x € R"

» Convex programming: f convex, gj convex,i =1,..., m
» Linear constraints: gi(x) =a/x—b;, i=1,...,m
» Quadratic programming: f(x) = c¢"x + 3x” Qx

» Linear programming: f(x) = c'x
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Areas of applications, examples

» STRUCTURAL OPTIMIZATION
» Design of aircraft, ships, bridges, etc
» Decide on the material and the thickness of a mechanical
structure
» Minimize weight, maximize stiffness, constraints on
deformation at certain loads, strength, etc
» ANALYSIS AND DESIGN OF TRAFFIC NETWORKS
» Estimate traffic flows and discharges
» Detect bottlenecks
» Analyze effects of traffic signals, tolls, etc

» LEAST SQUARES—ADAPTATION OF DATA

» ENGINE DEVELOPMENT, DESIGN OF ANTENNAS, ...
for each function evaluation a simulation may be needed

» MAXIMIZE THE VOLUME OF A CYLINDER
while keeping the surface area constant

> ...
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Properties of nonlinear programs

» The mathematical properties of nonlinear optimization
problems can be very different

» No algorithm exists that solves all nonlinear optimization
problems

» An optimal solution must not be located at an extreme point

» Nonlinear programs can be unconstrained (what if a linear
program has no constraints?)

» In this course: We assume that f is differentiable (which is not
always the case)

» For convex problems: Algorithms converge to an optimal
solution

» Nonlinear problems can have local optima that are not global
optima
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Possible extremal points for

minimize f(x) subject tox € S

f(x)

:F
[
1

» boundary points of S

]
]
2 3 4567

» stationary points, where f'(x) =0
» discontinuities in f or f’ DraAw!
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Boundary and stationary points

> X is a boundary point to the feasible set
S={xeR"|g(x)<0,i=1,...,m}

if gi(X) <0,i=1,...,m, and gi(x) = O for at least one index i

» X is a stationary point to f if Vf(x) =0
(in one dimension: if f'(x) = 0)
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Local and global minima (maxima)

minimize f(x) subject tox € S

» X is a local minimum if X € S and f(x) < f(x) for allx € S
sufficiently close to X

» In words: A solution is a local minimum if it is feasible and no
other feasible solution in a sufficiently small neighbourhood
has a lower objective value

» Formally: 3¢ > 0 such that f(X) < f(x) for all
xeSN{xeR":|x—%|| <e}

» Draw!!
» X is a global minimum if X € S and f(X) < f(x) for all x € S

» In words: A solution is a global minimum if it is feasible and no
other feasible solution has a lower objective value
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Unconstrained optimization

minimize f(x) subject to x € R"

v

Assume that f : R” — R is continuously differentiable on "

v

Necessary conditions for a local optimum:

X is a local minimum/maximum for f = V£(x) =0

v

This is not sufficient, since V£(X) = 0 if X is a saddle point

» If f is twice continuously differentiable on R” then the
Hessian matrix exists: Hr(x) = V2f(x)

v

Sufficient conditions for a local optimum:

V(%) =0

Hy (%) pos/neg definite } = X is a local min/max for f
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When is a local optimum also a global optimum?

» The concept of convexity is essential

» Functions: convex (minimization), concave (maximization)

» Sets: convex (minimization and maximization)

» The minimization (maximization) of a convex (concave)
function over a convex set is referred to as a convex

optimization problem

» How conclude whether sets and functions are convex,
concave, or neither?
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» A function f is convex on S if, for any x,y € S it holds that

flax+ (1 —a)y) <af(x)+ (1 —a)f(y) forall0<a <1

A CONVEX FUNCTION A NON-CONVEX FUNCTION
af(x) + (1 — a)f(y) "0
x axt(_a)y Yy X ax+(l-ay ¥y

» f is strictly convex on S if, for any x,y € S it holds that

flax+ (1 —a)y) < af(x) + (1 — a)f(y) forall 0 < a < 1
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Convex/concave functions

» f is (strictly) concave on S if —f is (strictly) convex on S
» f is convex < Hr is positive semi-definite

> Hy is positive definite = f is strictly convex

v

Example: Check convexity for f(x) = 2x? —2xy + y? +3x — y

_ 4x =2y +3 _ 4 -2
W(")_<—2x+2y—1) Hf(x)‘(-z 2)
Eigenvalues for He(x): det(Hr(x) — A1) =0 <

4-X -2 _
‘ 5 2_)\‘_(4—)\)(2—)\)—4—0<:>

M —6A+4=0=>X1=3+vV5>00=3-v6>0=
Hg(x) is positive definite = f is strictly convex

v

v
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» Check (strict?) convexity of the function f(x,y) = x3 + y3 on
§R2

» Check whether (where) the function f(x,y) = Inx — y? 4+ cxy
is convex, concave, or neither (assume that the constant
c>0)
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Convex func

» A non-negative linear combination of convex functions is
convex:

m
=f= Za;f; is convex

i=1

ficonvex, i=1,...,m
a;j > 0, i=1,...,m

» The pointwise maximum of convex functions is convex:

fi(x), i=1,...,m, convex = f(x)=_ max fi(x) convex
i=1,...m

» Draw!!

Lecture 11 Applied Optimization



» If g : R +— R is convex and non-decreasing and h: R" — R is
convex, then the composite function f = g(h) : R" — R is

convex
» Example: g(y) = yIny, h(x) = x¥ +x3
» g'(y)=1+Iny > 0for y > e (= g nondecreasing),

> g"(y) =21 >0fory >0 (= g convex)

> Vh(x) = (2X1,2X2)T, Hh(X) — v2h(x) _ ( g g )
(= h convex)

= f(x) = g(h(x)) = (x2 + x3) In(x? + x3) is convex for x € R?
such that x2 + x3 > e
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Convex sets

> A set S is convex if, for any elements x,y € S it holds that
ax+(l—a)yeSforall0<a<l1

» Examples:

Convex sets Non-convex sets

-
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Convex sets

» Consider a set S defined by the intersection of m inequalities:
S={xeR"|gi(x)<0,i=1,....m}

where the functions g; : R" — R
» If all the functions gj(x) i = 1,...,m, are convex on R", then
S is a convex set
» Example: g1(x) = 7 +3x3 — 1, go(x) = x1 + x2,
g(x) = x7 — x
S = {xE?R2 lgi(x) <0, i=1,2,3 } =

Hg, (x) = ( (2) g ) = g1 strictly convex,

Hg,(x) = < 8 8 ) = g» convex (& concavel),

20
Hg,(x) = ( 00 ) = g3 convex
= The set S is convex Draw!!
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Global optima of convex programs

» If fand gj, i = 1,..., m, are convex functions, then
minimize f(x) subject to gi(x) <0, i=1,...,m
is said to be a convex optimization problem

> Let x* be a Jocal optimum for a convex optimization problem.
Then x* is also a global optimum

» If f is strictly convex and gj, i = 1,..., m, are convex, then
there exists at most one optimal solution (a unique global
optimum)

» Necessary and sufficient condition for optimality in
unconstrained minimization (maximization):
Suppose that f : " — R is convex (concave) and
continuously differentiable on R”. A point x* € R" is a global
minimum for f if and only if Vf(x*) =0
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Solution methods for unconstrained optimization

» General iterative search method:

1. Choose a starting solution, x° € ®". Let k =0
2. Determine a search direction d*

3. Determine a step length, tx, by solving:

minimize ;>0(t) := f(x* + t - d¥)

4. New iteration point, x¥*1 = x* 4+ ¢, . d¥

5. If a termination criterion is fulfilled = Stop!
Otherwise: let k := k 4+ 1 and return to step 2

» How choose search directions d, step lengths ty, and
termination criteria?

Lecture 11 Applied Optimization



Improving and feasible directions

> Goal: f(xk*1) < f(x¥) (minimization)
» How does f change locally in a direction d at x¥?
» Taylor expansion: f(xX + td*) = f(x¥) + tVF(x¥)Td* + O(t?)

» For sufficiently small ¢ > 0:
f(xk + td¥) < f(x¥) = VF(x)Tdk <0

= Definition:
If VF(x¥)Td* < 0 then d* is a descent direction for f at x*
If V£(x¥)Td* > 0 then d* is an ascent direction for f at x*

» We wish to minimize (maximize) f over R™:

= Choose d as a descent (an ascent) direction from x*

» A direction d¥ is feasible at x¥ if xk + td¥ is feasible for some
(sufficiently small) t > 0
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An improving step

Figur: At x*, the descent direction d* is generated. A step t is taken in
this direction, producing x¥*1. At this point, a new descent direction
d**+! is generated, and so on.
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