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Introduction

In this lecture we first write partial derivatives in matrix form. This is very convenient if we have
many variables and when we compute partial derivatives in Matlab. The matrix form of the
formulas involving partial derivatives are also easier to remember.

We then formulate Newton’s method for systems of equations. The fixed point iteration (and
hence also Newton’s method) works equally well for systems of equations. For example,

x2
(
1− x21

)
= 0,

2− x1x2 = 0,

is a system of two equations in two unknowns. See Problem 1.6 below. If we define two functions

f1(x1, x2) = x2
(
1− x21

)
,

f2(x1, x2) = 2− x1x2,

then the equations may be written

f1(x1, x2) = 0,

f2(x1, x2) = 0.

With f = (f1, f2), x = (x1, x2), and 0 = (0, 0), we note that f : R2 → R2 and we can write the
equations in the compact form

f(x) = 0.

In this lecture we will see how Newton’s method can be applied to such systems of equations.
Note that the bisection algorithm can only be used for a single equation, but not for a system

of several equations. This is because it relies on the fact the the graph of a Lipschitz continuous
function f : R→ R must pass the value zero if it is positive in one point and negative in another
point. This has no counterpart for functions f : R2 → R2.

Before we discuss Newton’s method we need to define derivatives of such functions, namely,
two functions of two variables, and more generally several functions of several variables.

1.1 Function of one variable, f : R→ R

A function f : R→ R of one variable is differentiable at a if the following limit exists:

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

We write this in an equivalent form:

lim
x→a

f(x)− f(a)− f ′(a)(x− a)

x− a
= 0.

Therefore we can say that a function f : R→ R of one variable is differentiable at a if there is a
number m(a), such that

lim
x→a

f(x)− f(a)−m(a)(x− a)

x− a
= 0. (1)
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Of course, m(a) is the derivative of f at a:

m(a) = f ′(a) = Df(a) =
df

dx
(a).

This formulation will be useful when we define the derivative of a function of two variables later.
We also obtain the linearization formula

f(x) = f(a) + f ′(a)(x− a) + Ef (x, a), (2)

where the linearization error Ef is smaller than the second term on the right side when x is close
to a. (See Adams 4.7.)

It is convenient to use the abbreviation h = x− a, so that x = a+ h and (1) becomes

lim
h→0

f(a+ h)− f(a)− f ′(a)h

h
= 0, (3)

and (2) becomes
f(x) = f(a+ h) = f(a) + f ′(a)h+ Ef (x, a), (4)

where Ef (x, a)/h→ 0 as h→ 0 according to (3). Note that the first term on the right side, f(a),
is constant with respect to x. The second term,

f ′(a)h = f ′(a)(x− a), (5)

is a linear function of the increment h = x− a. These two terms form the linearization of f at a,

L(x) = f(a) + f ′(a)(x− a). (6)

(See Adams 4.7.) The straight line y = L(x) is the tangent to the curve y = f(x) at a.

Example 1. Let f(x) = x2. Then f ′(x) = 2x and the linearization at a = 3 is

L(x) = 9 + 6(x− 3).

Numerical computation of the derivative

In a previous lecture, BM 6.1. Numerisk beräkning av derivata, and a previous computer ex-
ercise, Numerisk derivata, we learnt how to compute the derivative numerically. We quickly
repeat it here. If we divide (4) by h, then we get

f(a+ h)− f(a)

h
= f ′(a) + Ef (x, a)/h. (7)

Here the remainder Ef (x, a)/h → 0 when h → 0. This suggests that we can approximate the
derivative by the difference quotient

f ′(a) ≈ f(a+ h)− f(a)

h
. (8)

A better approximation is obtained by the symmetric difference quotient:

f ′(a) ≈ f(a+ h)− f(a− h)

2h
. (9)

The difference quotients in (8) and (9) are of the form ”small number divided by small num-
ber”. If this is computed with round-off error on a computer, then the total error will be lar-
ge if the step h is very small. Therefore we must choose the step “moderately small” here, see
BM 6.1. Numerisk beräkning av derivata. It can be shown that in Matlab a good choice for

(8) is h = 10−8 and for (9) h = 10−5.
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1.2 Function of two variables, f : R2 → R

Let f(x1, x2) be a function of two variables, i.e., f : R2 → R. We want to imitate the formula in
(3). We write x = (x1, x2) and f(x) = f(x1, x2) and introduce the increment vector h = (h1, h2) =
(x1 − a1, x2 − a2) and its length |h| =

√
h21 + h22.

We now say that function f is differentiable at a = (a1, a2), if there are numbers m1(a), m2(a),
such that

lim
|h|→0

f(a+ h)− f(a)−m1(a)h1 −m2(a)h2
|h|

= 0. (10)

The corresponding linearization formula is

f(x) = f(a+ h) = f(a) +m1(a)h1 +m2(a)h2 + Ef (x, a), (11)

where the linearization error Ef is smaller than the second and third terms on the right side, more
precisely, Ef (x, a)/|h| → 0 as |h| → 0.

If we take h = (h1, 0), then we get

f(x1, a2) = f(a1 + h1, a2) = f(a) +m1(a)h1 + Ef (x, a).

By comparison with (4) we see that this means that m1(a) is the derivative of the one-variable

function f̂(x1) = f(x1, a2), obtained from f by keeping x2 = a2 fixed. By taking h = (0, h2) we
see in a similar way that m2(a) is the derivative of the one-variable function, which is obtained
from f by keeping x1 = a1 fixed. The numbers m1(a), m2(a) are called the partial derivatives of
f at a and we denote them by

m1(a) = f ′1(a) = f ′x1
(a) =

∂f

∂x1
(a), m2(a) = f ′2(a) = f ′x2

(a) =
∂f

∂x2
(a). (12)

Now (11) may be written

f(x) = f(a+ h) = f(a) + f ′x1
(a)h1 + f ′x2

(a)h2 + Ef (x, a), h = x− a. (13)

It is convenient to write this formula by means of matrix notation. Let

a =
[
a1, a2

]
, b =

[
b1
b2

]
.

We say that a is a row matrix of type 1 × 2 (one by two) and that b is a column matrix of type
2× 1 (two by one). Their product is defined by

ab =
[
a1, a2

] [b1
b2

]
= a1b1 + a2b2.

The result is a matrix of type 1×1 (one real number), according to the rule: (1×2)(2×1) = 1×1.
Going back to (13) we define

f ′(a) = Df(a) =
[
f ′x1

(a) f ′x2
(a)
]
, h =

[
h1
h2

]
.

The row matrix

f ′(a) = Df(a) =
[
f ′x1

(a) f ′x2
(a)
]

is called the derivative (or Jacobi matrix) of f at a. It is also called the gradient vector of f at a
and written ∇f(a). Then (13) may be written

f(x) = f(a+ h) = f(a) +
[
f ′x1

(a) f ′x2
(a)
] [h1
h2

]
+ Ef (x, a)

= f(a) + f ′(a)h+ Ef (x, a), h = x− a.
(14)
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Note that the first term on the right side, f(a), is constant with respect to x. The second term,

f ′(a)h = f ′(a)(x− a), (15)

is a linear function of the increment h = x− a. These terms are called the linearization of f at a,

L(x) = f(a) + f ′(a)(x− a). (16)

The plane x3 = L(x1, x2) is the tangent plane at (a1, a2, f(a1, a2)) to the surface x3 = f(x1, x2).

Example 2. Let f(x) = x21x
5
2. Then

∂f

∂x1
(x) =

∂f

∂x1

(
x21x

5
2

)
= 2x1x

5
2,

∂f

∂x2
(x) =

∂f

∂x2

(
x21x

5
2

)
= 5x21x

4
2,

so that f ′(x) =
[
2x1x

5
2 5x21x

4
2

]
and the linearization at a = (3, 1) is

L(x) = 9 +
[
6 45

] [x1 − 3
x2 − 1

]
.

The tangent plane at (3, 1, 9) to the surface x3 = x21x
5
2 is

x3 = 9 + 6(x1 − 3) + 45(x2 − 1).

1.3 Two functions of two variables, f : R2 → R2

Let f1(x1, x2), f2(x1, x2) be two functions of two variables. We write x = (x1, x2) and f(x) =
(f1(x1, x2), f2(x1, x2)), i.e., f : R2 → R2. The function f is differentiable at a = (a1, a2), if there
are numbers m11(a), m12(a), m21(a), m22(a) such that

f1(x) = f1(a+ h) = f1(a) +m11(a)h1 +m12(a)h2 + Ef1(x, a),

f2(x) = f2(a+ h) = f2(a) +m21(a)h1 +m22(a)h2 + Ef2(x, a),
(17)

where h = x−a and the linearization errors Efj satisfy Efj (x, a)/|h| → 0 when |h| → 0. As before

|h| =
√
h21 + h22 denotes the norm (length) of the increment vector h = (h1, h2) = (x1−a1, x2−a2).

From the previous subsection we recognize that the constants mij(a) are the partial derivatives of
the functions fi at a and we denote them by

m11(a) = f ′1,x1
(a) =

∂f1
∂x1

(a), m12(a) = f ′1,x2
(a) =

∂f1
∂x2

(a),

m21(a) = f ′2,x1
(a) =

∂f2
∂x1

(a), m22(a) = f ′2,x2
(a) =

∂f2
∂x2

(a).

It is convenient to use matrix notation. Let

A =

[
a11 a12
a21 a22

]
, b =

[
b1
b2

]
.

We say that A is a matrix of type 2× 2 (two by two) and that b is a column matrix of type 2× 1
(two by one). Their product is defined by

Ab =

[
a11 a12
a21 a22

] [
b1
b2

]
=

[
a11b1 + a12b2
a21b1 + a22b2

]
.

The result is a matrix of type 2× 1 (column matrix), according to the rule: (2× 2)(2× 1) = 2× 1.
Going back to (17) we define

f(x) =

[
f1(x)
f2(x)

]
, f ′(a) = Df(a) =


∂f1
∂x1

(a)
∂f1
∂x2

(a)

∂f2
∂x1

(a)
∂f2
∂x2

(a)

 , h =

[
h1
h2

]
. (18)
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The matrix f ′(a) = Df(a) is called the derivative (or Jacobi matrix) of f at a. Then (17) may be
written

f1(x)

f2(x)

 =

f1(a+ h)

f2(a+ h)

 =

f1(a)

f2(a)

+


∂f1
∂x1

(a)
∂f1
∂x2

(a)

∂f2
∂x1

(a)
∂f2
∂x2

(a)


h1
h2

+

Ef1(x, a)

Ef2(x, a)

 , (19)

or in more compact form

f(x) = f(a+ h) = f(a) + f ′(a)h+ Ef (x, a), h = x− a. (20)

Note that it is important that f, h are written as column vectors here. Note that x = (x1, x2),
a = (a1, a2) are points not vectors, and are therefore sometimes written with ordinary parentheses,
ignoring if they are rows or columns. On the other hand h is an ”arrow” that goes from the point
a to the point x and must be written as a column vector.

Note that the first term on the right side, f(a), is constant with respect to x. The second term,

f ′(a)h = f ′(a)(x− a), (21)

is a linear function of the increment h = x− a. These terms are called the linearization of f at a,

L(x) = f(a) + f ′(a)(x− a). (22)

Example 3. Let f(x) =

[
x21x

5
2

x32

]
. Then

f ′(x) = Df(x) =


∂f1
∂x1

(x)
∂f1
∂x2

(x)

∂f2
∂x1

(x)
∂f2
∂x2

(x)

 =

[
2x1x

5
2 5x21x

4
2

0 3x22

]

and the linearization at a = (3, 1) is

L(x) =

[
9
1

]
+

[
6 45
0 3

] [
x1 − 3
x2 − 1

]
.

1.4 Several functions of several variables, f : Rn → Rm

It is now easy to generalize to any number of functions in any number of variables. Let fi be m
functions of n variables xj , i.e., f : Rn → Rm. As in (18) we define

x =

x1...
xn

 , h =

h1...
hn

 =

x1 − a1...
xn − an

 ,

f(x) =

 f1(x1, . . . , xn)
...

fm(x1, . . . , xn)

 , f ′(a) = Df(a) =


∂f1
∂x1

(a) . . .
∂f1
∂xn

(a)

...
...

∂fm
∂x1

(a) . . .
∂fm
∂xn

(a)

 .

The m×n matrix f ′(a) = Df(a) is called the derivative (or Jacobi matrix) of f at a. In a similar
way to (20) we get

f(x) = f(a+ h) = f(a) + f ′(a)h+ Ef (x, a), h = x− a. (23)
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The linearization of f at a is
L(x) = f(a) + f ′(a)(x− a). (24)

Numerical computation of the derivative. In order to compute the j-th column
∂f

∂xj
(a) of

the Jacobi matrix, we choose the increment h such that hj = δ and hi = 0 for i 6= j, i.e.,

h =



0
...
0
δ
0
...
0


= δ



0
...
0
1
0
...
0


= δej , ej =



0
...
0
1
0
...
0


← row number j.

Here the steplength δ is a small positive number and ej is the j-th standard basis vector. If we
use this increment in a symmetric difference quotient, see (9), we get

∂f

∂xj
(a) ≈ f(a+ δej)− f(a− δej)

2δ
. (25)

Note that f is a column so the result is a column: the jth column of the matrix f ′(a). Remember
that the steplength δ should be small, but not too small.

1.5 The chain rule

(Adams 12.5) It is now very easy to write down the chain rule in its general form. Assume that

1. g : Rn → Rm, f : Rm → Rp,

2. b = g(a),

3. the derivatives g′(a) and f ′(b) exist.

Then the composite function u = f ◦ g : Rn → Rp, defined by u(x) = f(g(x)), is differentiable at
a with the derivative

u′(a) = f ′(b)g′(a), where b = g(a).

This is a product of Jacobi matrices of the type

p× n = (p×m)(m× n),

more precisely,
∂u1
∂x1

(a) . . .
∂u1
∂xn

(a)

...
...

∂up
∂x1

(a) . . .
∂up
∂xn

(a)

 =


∂f1
∂x1

(b) . . .
∂f1
∂xm

(b)

...
...

∂fp
∂x1

(b) . . .
∂fp
∂xm

(b)



∂g1
∂x1

(a) . . .
∂g1
∂xn

(a)

...
...

∂gm
∂x1

(a) . . .
∂gm
∂xn

(a)

 .

1.6 Newton’s method for f(x) = 0

Consider a system of n equations with n unknowns:

f1(x1, . . . , xn) = 0,

...

fn(x1, . . . , xn) = 0.
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If we define

x =

x1...
xn

 , f =

f1...
fn

 , 0 =

0
...
0

 ,
then f : Rn → Rn, and we can write our system of equations in the compact form

f(x) = 0. (26)

Suppose that we have found an approximate solution a. We want to find a better approximation
x = a + h. Instead of solving (26) directly, which is usually impossible, we solve the linearized
equation at a:

L(a+ h) = f(a) + f ′(a)h = 0. (27)

We must solve for the increment h. Rearranging the terms we get

f ′(a)h = −f(a). (28)

Remember that the Jacobi matrix f ′(a) is of type n × n and the increment h is of type n × 1.
Therefore we have to solve a linear system of n equations with n unknowns to get the increment
h. It is of the form Ah = b with A = f ′(a) and b = −f(a). Then we set x = a+ h.

In algorithmic form Newton’s method can be formulated:

while |h|>tol

evaluate the residual b=-f(x)

evaluate the Jacobian A=f’(x)

solve the linear system Ah=b

update x=x+h

end

You will implement this algorithm in the studio exercises. You will use the Matlab command

h=A\b

to solve the system.

Problems

Problem 1.1. Let

a =
[
1 2

]
, b =

[
1
2

]
, A =

[
1 2
3 4

]
.

Compute the products ab, Ab, Aa.

Problem 1.2. Compute the Jacobi matrix f ′(x) (also denoted Df(x)). Compute the linearization
of f at x̄.

(a) f(x) =

[
sin(x1) + cos(x2)
cos(x1) + sin(x2)

]
, x̄ = 0; (b) f(x) =

 1
1 + x1

1 + x1e
x2

 , x̄ =

[
1
1

]
.

Problem 1.3. Compute the gradient vector ∇f(x) (also denoted f ′(x) = Df(x)). Compute the
linearization of f at x̄.

(a) f(x) = e−x1 sin(x2), x̄ = 0; (b) f(x) = |x|2 = x21 + x22 + x23, x ∈ R3, x̄ =

1
1
1

 .
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Problem 1.4. Here f : R→ R2. Compute f ′(t). Compute the linearization of f at t̄.

(a) f(t) =

[
cos(t)
sin(t)

]
, t̄ = π/2; (b) f(t) =

[
t

1 + t2

]
, t̄ = 0.

Problem 1.5. Compute the linearization of f at x̄:

f(x) =

[
x1 − x1x2
−x2 + x1x2

]
, x̄ =

[
1
1

]
.

Problem 1.6. (a) Write the system

u2
(
1− u21

)
= 0,

2− u1u2 = 0

in the form f(u) = 0. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix Df(u).
(c) Perform the first step of Newton’s method for the equation f(u) = 0 with initial vector

u(0) =

[
1
1

]
.

(d) Solve the equation f(u) with your Matlab program newton.m.

Problem 1.7. (a) Write the system

u1
(
1− u2

)
= 0,

u2
(
1− u1

)
= 0,

in the form f(u) = 0. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix Df(u).
(c) Perform the first step of Newton’s method for the equation f(u) = 0 with initial vector

u(0) =

[
2
2

]
.

(d) Solve the equation f(u) with your Matlab program newton.m.
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Answers and solutions

1.1. Use Matlab to check your answers.

ab = 5, Ab =

[
5
11

]
, Aa = not defined.

1.2.

(a)

f ′(x) =

[
cos(x1) − sin(x2)
− sin(x1) cos(x2)

]
, L(x) = f(x̄) + f ′(x̄)(x− x̄) =

[
1
1

]
+

[
1 0
0 1

] [
x1
x2

]
.

(b)

f ′(x) =

 0 0
1 0
ex2 x1e

x2

 , L(x) = f(x̄) + f ′(x̄)(x− x̄) =

 1
2

1 + e

+

0 0
1 0
e e

[x1 − 1
x2 − 1

]
.

1.3.

(a)

∇f(x) =
[
−e−x1 sin(x2), e−x1 cos(x2)

]
,

L(x) = f(x̄) + f ′(x̄)(x− x̄) = 0 +
[
0 1

] [x1
x2

]
= x2.

(b)

∇f(x) =
[
2x1 2x3 2x3

]
,

L(x) = f(x̄) + f ′(x̄)(x− x̄) = 3 +
[
2 2 2

] x1 − 1
x2 − 1
x3 − 1

 = −3 + 2x1 + 2x2 + 2x3.

1.4.

(a)

f ′(t) =

[
− sin(t)
cos(t)

]
,

L(t) = f(t̄) + f ′(t̄)(t− t̄) =

[
0
1

]
+

[
−1
0

]
(t− π/2).

(b)

f ′(t) =

[
1
2t

]
,

L(t) = f(t̄) + f ′(t̄)(t− t̄) =

[
0
1

]
+

[
1
0

]
t =

[
t
1

]
.
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1.5.

f ′(x) =

[
1− x2 −x1
x2 −1 + x2

]
,

L(x) = f(x̄) + f ′(x̄)(x− x̄) =

[
0
0

]
+

[
0 −1
1 0

] [
x1 − 1
x2 − 1

]
1.6. (a) The solutions are given by

f(u) =

[
u2(1− u21)
2− u1u2

]
=

[
0
0

]
.

We find two solutions ū =

[
1
2

]
and ū =

[
−1
−2

]
.

(b) The Jacobian is

Df(u) =

[
−2u1u2 1− u21
−u2 −u1

]
.

(c) The first step of Newton’s method:

evaluate A = Df(1, 1) =

[
−2 0
−1 −1

]
and b = −f(1, 1) =

[
0
−1

]
solve Ah = b,

[
−2 0
−1 −1

] [
h1
h2

]
=

[
0
−1

]
{
− 2h1 = 0,

− h1 − h2 = −1,
h =

[
0
1

]
update u(1) = u(0) + h =

[
1
1

]
+

[
0
1

]
=

[
1
2

]
= ū

Bingo! We found one of the solutions.

1.7. (a) The solutions are given by

f(u) =

[
u1(1− u2)
u2(1− u1)

]
=

[
0
0

]
.

We find two solutions ū =

[
0
0

]
and ū =

[
1
1

]
.

(b) The Jacobian is

Df(u) =

[
1− u2 −u1
−u2 1− u1

]
.

(c) The first step of Newton’s method:

evaluate A = Df(2, 2) =

[
−1 −2
−2 −1

]
and b = −f(2, 2) =

[
2
2

]
solve Ah = b,

[
−1 −2
−2 −1

] [
h1
h2

]
=

[
2
2

]
,{

− h1 − 2h2 = 2,

− 2h1 − h2 = 2,
h =

[
−2/3
−2/3

]
update u(1) = u(0) + h =

[
2
2

]
+

[
−2/3
−2/3

]
=

[
4/3
4/3

]
Getting closer to one of the solutions ū!

/stig
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