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1 Introduction

In this first chapter we begin in Sect. 1.1 by introducing the partial differ-
ential equations and associated initial and boundary value problems that we
shall study in the following chapters. The equations are classified into ellip-
tic, parabolic, and hyperbolic equations, and we indicate the corresponding
type of problems in physics that they model. We discuss briefly the concept
of a well posed boundary value problem, and the various techniques used in
our subsequent presentation. In Sect. 1.2 we introduce some notation and
concepts that will be used throughout the text, and in Sect. 1.3 we include a
detailed derivation of the heat equation from physical principles explaining
the meaning of all terms that occur in the equation and the boundary con-
ditions. In the problem section, Sect. 1.4, we add some further illustrative
material.

1.1 Background

In this text we study boundary value and initial-boundary value problems for
partial differential equations, that are significant in applications, from both
a theoretical and a numerical point of view. As a typical example of such a
boundary value problem we consider first Dirichlet’s problem for Poisson’s
equation,

(1.1) —Au = f(z) in 12,
(1.2) u=g(xz) on I,

where x = (z1,...,24), A is the Laplacian defined by Au = 2?21 d*u/x3,
and 2 is a bounded domain in d-dimensional Euclidean space R¢ with bound-
ary I'. The given functions f = f(z) and g = g(x) are the data of the problem.
Instead of Dirichlet’s boundary condition (1.2) one can consider, for instance,
Neumann’s boundary condition

Oou
(1.3) = g(z) onlT,

where Ou/0n denotes the derivative in the direction of the exterior unit nor-
mal n to I'. Another choice is Robin’s boundary condition
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(1.4) % +B@)u=g(x) onT

More generally, a linear second order elliptic equation is of the form

9 A d du
L5)  Au=— 3 o (aij(x)a—xj) +y bi(#) g, + el = (@)

where A(z) = (a;j(x)) is a sufficiently smooth positive definite matrix, and
such an equation may also be considered in (2 together with various bound-
ary conditions. In our treatment below we shall often restrict ourselves, for
simplicity, to the isotropic case A(z) = a(x)I, where a(z) is a smooth positive
function and I the identity matrix.

Elliptic equations such as the above occur in a variety of applications,
modeling, for instance, various potential fields (gravitational, electrostatic,
magnetostatic, etc.), probability densities in random-walk problems, station-
ary heat flow, and biological phenomena. They are also related to important
areas within pure mathematics, such as the theory of functions of a com-
plex variable z = x + iy, conformal mapping, etc. In applications they often
describe stationary, or time independent, physical states.

We also consider time dependent problems, and our two model equations
are the heat equation,

Ou
1. — —Au=
(16) A= f(o,0)
and the wave equation,
0%u

These will be considered for positive time ¢, and for = varying either through-
out R? or in some bounded domain 2 C R¢, on the boundary of which
boundary conditions are prescribed as for Poisson’s equation above. For these
time dependent problems, the value of the solution u has to be given at the
initial time ¢ = 0, and in the case of the wave equation, also the value of
Ou /Ot at t = 0. In the case of the unrestricted space R? the respective prob-
lems are referred to as the pure initial value problem or Cauchy problem and,
in the case of a bounded domain 2, a mixed initial-boundary value problem.

Again, these equations, and their generalizations permitting more general
elliptic operators than the Laplacian A, appear in a variety of applied con-
texts, such as, in the case of the heat equation, in the conduction of heat in
solids, in mass transport by diffusion, in diffusion of vortices in viscous fluid
flow, in telegraphic transmission in cables, in the theory of electromagnetic
waves, in hydromagnetics, in stochastic and biological processes; and, in the
case of the wave equation, in vibration problems in solids, in sound waves in
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a tube, in the transmission of electricity along an insulated, low resistance
cable, in long water waves in a straight canal, etc.

Some characteristics of equations of type (1.7) are shared with certain
systems of first order partial differential equations. We shall therefore also
have reason to study scalar linear partial differential equations of the form

ou d Ou
ot ;aj(x,t)a—% +ao(z, thu = f(z,1),

and corresponding systems where the coeflicients are matrices. Such systems
appear, for instance, in fluid dynamics and electromagnetic field theory.

Applied problems often lead to partial differential equations which are
nonlinear. The treatment of such equations is beyond the scope of this pre-
sentation. In many cases, however, it is useful to study linearized versions of
these, and the theory of linear equations is therefore relevant also to nonlinear
problems.

In applications, the equations used in the models normally contain physi-
cal parameters. For instance, in the case of the heat conduction problem, the
temperature at a point of a homogeneous isotropic solid, extended over (2,
with the thermal conductivity k, density p, and specific heat capacity ¢, and
with a heat source f(z,t), satisfies

pc% =V - (kVu) + f(z,t) in £2.
If p,c, and k are constant, this equation may be written in the form (1.6)
after a simple transformation, but if they vary with x, a more general elliptic
operator is involved.

In Sect. 1.3 below we derive the heat equation from physical principles and
explain, in the context given, the physical meaning of all terms in the elliptic
operator (1.5) as well as the boundary conditions (1.2), (1.3), and (1.4).
A corresponding derivation or the wave equation is given in Problem 1.2.
Boundary value problems for elliptic equations, or stationary problems, may
appear as limiting cases of the evolution problems as t — oo.

One characteristic of mathematical modeling is that once the model is
established, in our case as an initial or initial-boundary value problem for a
partial differential equation, the analysis becomes purely mathematical and is
independent of any specific application that the model describes. The results
obtained are then valid for all the different examples of the model. We shall
therefore not use much terminology from physics or other applied fields in our
exposition, but invoke special applications in the exercises. It is often conve-
nient to keep such examples in mind to enhance the intuitive understanding
of a mathematical model.

The equations (1.1), (1.6), and (1.7) are said to be of elliptic, parabolic,
and hyperbolic type, respectively. We shall return to the classification of
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partial differential equations into different types in Chapt. 11 below, and
note here only that a differential equation in two variables z and ¢ of the
form
0%u o 0%u N 0%u
“orr T ozor T o2
is said to be elliptic, hyperbolic or parabolic depending on whether § = ac— b2
is positive, negative, or zero. Here ... stands for a linear combination of
derivatives of orders at most 1. In particular,

+...= f(z,1)

8%y  O%u
b + 2 f(z,1),
8%y O%u
R f(z,1),
and 5 52
u u
9 o f(z, 1),

are of these three types, respectively. Note that the conditions on the sign
of § are the same as those occurring in the classification of plane quadratic
curves into ellipses, hyperbolas, and parabolas.

Together with the partial differential equations we also study numerical
approximations by finite difference and finite element methods. For these
problems, the continuous and the discretized equations, we prove results of
the following types:

— existence of solutions,

— uniqueness of solutions,

— stability, or continuous dependence of solutions with respect to perturba-
tions of data,

— error estimates (for numerical methods).

A boundary value problem that satisfies the three first of these conditions
is said to be well posed. In order to prove such results we employ several
techniques:

— mazimum principles,

— Fourier methods; these are techniques that are based on the use of the
Fourier transform, Fourier series expansion, or eigenfunction expansion,

— energy estimates,

— representation of solution operators by means of Green’s functions.

1.2 Notation and Mathematical Preliminaries

In this section we briefly introduce some basic notation that will be used
throughout the book. For more details on function spaces and norms we refer
to App. A.
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By R and C we denote the sets of real and complex numbers, respectively,
and we write

R'={z=(21,...,24) :2; €R, i=1,...,d}, Ry={teR:t>0}.

A subset of R? is called a domain if it is open and connected. By 2 we
usually denote a bounded domain in R?, for i = 1,2, or 3 (if d = 1, then 2 is
a bounded open interval). Its boundary 92 is usually denoted I'. We assume
throughout that I' is either smooth or a polygon (if d = 2) or polyhedron (if
d = 3). By 2 we denote the closure of £2, i.e., 2 = 2UI". The (length, area, or)
volume of 2 is denoted by |{2|, the volume element in R? is dz = dz; - - - dzg,
and ds denotes the element of arclength (if d = 2) or surface area (if d = 3)
on I'. For vectors in R¢ we use the Euclidean inner product z-y = Z?:l TiY;
and norm |z| = /7 - .

Let u,v be scalar functions and w = (w1, ..., wq) a vector-valued function
of z € R%. We define the gradient, the divergence, and the Laplace operator
(Laplacian) by

ov ov
Vv =gradv = <8—a:1"”’6—md)’
V-w—divw—iawi
- _i:1 Ow;’
d o2
Av=V-Vp= %.
i1 9%

We recall the divergence theorem

/V-wdwz/w-nds,
Q2 r

where n = (ny,...,ng) is the outward unit normal to I". Applying this to the
product wv we obtain Green’s formula:

/w-Vvdmz/w-nvds—/V-wvdx.
2 r 2

When applied with w = Vu the formula becomes

/Vu-Vvda::/a—uvds—/Auvdm,
Q ron Q

where Ju/0n = n - Vu is the exterior normal derivative of w on I'.

A multi-indexr a = (a1,. .., aq) is a d-vector where the @; are non-negative
integers. The length |a| of a multi-index « is defined by |a| = Zle a;. Given
a function v : R — R we may write its partial derivatives of order |a| as
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dlely

1. D% = ———.
(18) A P T

A linear partial differential equation of order k in {2 can therefore be written

3 aa(@)Du = f(2),

lo|<k

where the coefficients a,(z) are functions of z in 2. We also use subscripts
to denote partial derivatives, e.g.,

ov

EJ

2
2 0°v
Vez =Dz’l)= @

Vg = Dt’l) =
For M C R? we denote by C(M) the linear space of continuous functions
on M, and for bounded continuous functions we define the maximum-norm

(1.9) lvlle(ary = sup [v(@)].
zEM

For example, this defines [[v||c(gre). When M is a bounded and closed set,
i.e., a compact set, the supremum in (1.9) is attained and we may write

lollecary = max o(z)].

For a not necessarily bounded domain (2 and k£ a non-negative integer we
denote by C*(12) the set of k times continuously differentiable functions in 2.
For a bounded domain 2 we write C*(£2) for the functions v € C*(£2) such
that D% € C(R2) for all |a| < k. For functions in C¥({2) we use the norm

lvller @y = max 1D%vlle(a),
and the seminorm, including only the derivatives of highest order,
[vler(2) = max I1D%v||¢(q)-

When we are working on a fixed domain (2 we often omit the set in the
notation and write simply ||v||¢, |v|ck, etc.

By Ck(£2) we denote the set of functions v € C*(£2) that vanish outside
some compact subset of (2, in particular, such functions satisfy D®v = 0 on
the boundary of 2 for |a| < k. Similarly, C$°(R?) is the set of functions that
have continuous derivatives of all orders and vanish outside some bounded
set.

We say that a function is smooth if, depending on the situation, it has
sufficiently many continuous derivatives.

We also frequently employ the space Lo (£2) of square integrable functions
with scalar product and norm
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R 1/2
(0,) = (0,0) () =/ owdz, |[ofl = ollzaga) = (/ o)
2 2

For (2 a domain we also employ the Sobolev space H*(2), k > 1, of functions
v such that D% € Ly(f2) for all |a| < k, equipped with the norm and

seminorm 12
lolle = ollaney = (D 1D%0]2) ™,
lee|<k

/
|’l)|k = |’U|Hk(_Q) = ( Z ||Da1)”2)1 2‘

|a|=k
Additional norms are defined and used locally when the need arises.

We use the letters ¢, C' to denote various positive constants that need not
be the same at each occurrence.

1.3 Physical Derivation of the Heat Equation

Many equations in physics are derived by combining a conservation law with
constitutive relations. A conservation law states that a physical quantity,
such as energy, mass, or momentum, is conserved as the physical process
develops in time. Constitutive relations express our assumptions about how
the material behaves when the state variables change.

In this section we we consider the conduction of heat in a body 2 C R?
with boundary I" and derive the heat equation using conservation of energy
together with linear constitutive relations.

Conservation of Energy

Consider the balance of heat in an arbitrary subset {29 C {2 with boundary
Iy. The energy principle says that the rate of change of the total energy in
{2y equals the inflow of heat through Iy plus the heat power produced by
heat sources inside (2y. To express this in mathematical terms we introduce
some physical quantities, each of which is followed, within brackets, by the
associated standard unit of measurement.

With e = e(z,t) [J/m3] the density of internal energy at the point z [m]
and time ¢ [s], the total amount of heat in (2 is | 0 € dz [J]. Further with
the vector field j = j(z,t) [J/ (m%s)] denoting the heat fluz and n the exterior
unit normal to I, the net outflow of heat through Ip is [ r,J-mds [3/s].
Introducing also the power density of heat sources p = p(x,t) [J/(m3s)], the
energy principle then states that

i/ edx:—/j-nds+/ pdz.
dt J g, Io 2
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Applying the divergence theorem we obtain

/<%—|—V-j—p>dx=0, for t > 0.
2, \ Ot

Since 2y C {2 is arbitrary this implies

(1.10) %%—V-j:p in 2, fort>0.

Constitutive Relations

The internal energy density e depends on the absolute temperature 7' [K]
and the spatial coordinates, and in our first constitutive relation we assume
that e depends linearly on 7T near a suitably chosen reference temperature
Tp, that is,

(1.11) e=e+0o(T-Ty) =ey+00¥, whered=T-Tp.

The coefficient o = o(x) [J/(m3K)] is called the specific heat capacity. (It is
usually expressed in the form o = p¢, where p [kg/m?®] is mass density and
¢ [J3/(xgK)] is the specific heat capacity per unit mass.)

According to Fourier’s law the heat flux due to conduction is proportional
to the temperature gradient, which gives a second constitutive relation,

j = —AVY.

The coefficient A\ = A(z) [J/(mKs)] is called the heat conductivity. In some
situations (e.g., gas in a porous medium, heat transport in a fluid) heat is
also transported by convection with heat flux v e, where v = v(z,t) [m/s] is
the convective velocity vector field. The constitutive relation then reads

(1.12) Jj=-AVd+uve.

Substituting (1.11) and (1.12) into (1.10) we obtain

(1.13) a%—V-(AVﬁ)+V-(aU19):q in 2, whereq=p—V - (veg),

which is the heat equation with convection.

Boundary Conditions

In the modelling of heat conduction, the differential equation (1.13) is com-
bined with an initial condition at time t = 0,

(1.14) Hz,0) = %(z),
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and a boundary condition, expressing that the heat flux through the boundary
is proportional to the difference between the surface temperature and the
ambient temperature, j - n = k(¥ — ¥,), where k = k(z,t) [J/(@?sK)] is a
heat transfer coefficient. Assuming that the material flow does not penetrate
the boundary, i.e., v-n = 0, we obtain from (1.12)
oY
j-n=-=-AVd-n=-A— onl,
on
where 09/0n = V¥ -n denotes the exterior normal derivative of 9. Therefore
the boundary condition is Robin’s boundary condition
09
(1.15) A—+ kW —9Y,)=0 onl.
on
The limit case k = 0 means that the boundary surface is perfectly insulated,
so that we have Neumann’s boundary condition,

o

-0

on
At the other extreme, dividing by & in (1.15) and letting k — oo, we obtain
Dirichlet’s boundary condition

(1.16) 9 = ",.

The limit case kK = oo thus means that the body is in perfect thermal contact
with the surroundings, i.e., heat flows freely through the surface, so that the
surface temperature of the body is equal to the ambient temperature.

Dimensionless Form

It is often useful to write the above equations in dimensionless form. Choosing
reference constants L [m], 7 [s], ¢ [K], or [J/@3K)], vr [m/s], etc., we
define dimensionless variables

t=t/r, ¥==x/L, wu(&,t)=9FL,tr)/V.

In order to make the heat equation (1.13) dimensionless we divide it by
Ard¢/L2. Using the chain rule,

e B(). s v (2)

ot ZTQ Jf i
we get
ou = - - o
(1.17) dﬁ -V (aVu)+ V- (bu) = f in (2,

where
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Lot o A b_vfafLa v L2

- T/\f U'f’ @= Af’ - /\f Ufo’ - Af’l9fq.
It is natural to choose ™ = L2Uf/ A, so that d = 1 if o = of is constant. The
dimensionless number Pe = wv¢orL/As that appears in the definition of b is
called Peclet’s number and measures the relative strengths of convection and
conduction. Skipping the tilde from now on, we write (1.17) as

(1.18) d%—V-(aVu)-ﬁ-b-Vu-i—cu:f in 2, wherec=V-b.
The boundary condition (1.15) and the initial condition (1.14) transform
in a similar way to

(1.19) GZ_Z +h(u—uy) =0 on I,
and
(1.20) u(z,0) = ui(x).

Here h = Bik/ks, where Bi = Lk¢/ )¢ is called the Biot number.

The partial differential equation (1.18) together with the initial condition
(1.20) and the boundary condition (1.19) is called an initial-boundary value
problem. The term —V - (aVu) is written in divergence form. This form arises
naturally in the derivation of the equation, and it is convenient in much of
the mathematical analysis, as we shall see below. However, we sometimes
expand the derivative and write the equation in non-divergence form:

du

(1.21) do.

—aAu+b-Vu+cu=f, whereb=>b-Va.

Some Simplified Problems

It is useful to study various simplifications of the above equations, because
it may then be possible to carry the mathematical analysis further than in
the general case. If we assume that the coefficients are constant, with b = 0,
¢ =0, then (1.18) reduces to (recall that d =1 if ¢ is constant)

(1.22) 5 alu = f.

For a = 1 this is equation (1.6). If f and the boundary condition are indepen-
dent of ¢, then u could be expected to approach a stationary state as ¢ grows,
ie., u(z,t) = v(z) as t — oo, and since we should then have du/0t — 0, we
find that v satisfies Poisson’s equation (1.1). If in addition f = 0, we have

Laplace’s equation
—Au=0.
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Solutions of Laplace’s equation are called harmonic functions.

Another important kind of simplification is obtained by reduction of di-
mension. For example, consider stationary (time-independent) heat conduc-
tion in a (not necessarily circular) cylinder oriented along the z;-axis with
insulated mantle surface. If the coefficients a, b, ¢, f in (1.18) are independent
of zo and z3, then it is reasonable to assume that the solution » also depends
only on one variable z1, which we then denote by z, i.e., u = u(z). The heat
equation (1.18) then reduces to an ordinary differential equation

—(au) +bu' +cu=f in 2=(0,1).
The boundary condition (1.19) becomes
(1.23)  —a(0)u'(0) + ho(u(0) —ug) =0, a(l)u'(1) + hr(u(l) —u1) = 0.

We call this a two-point boundary value problem. Similar simplifications are
obtained under cylindrical and spherical symmetry by writing the equations
in cylindrical respectively spherical coordinates. If the coefficients are con-
stant, then we can readily express the solution in terms of well-known special
functions, see Problem 1.6.

Nonlinear Equations, Linearization

The coefficients in the heat equation (1.18) and in the boundary conditions
often depend on the temperature u, which makes the equations nonlinear.
Although the study of nonlinear equations is outside the scope of this book,
we mention that the study of nonlinear equations often proceeds by lineariza-
tion, i.e., by reduction to the study of related linear equations. We illustrate
this in the case of the equation

F(u) := % - V- (a(w)Vu) = f(u) =0 in 2, fort>0,

which is of the form (1.18), and which is to be solved together with suitable
initial and boundary conditions. One approach to such a problem is to use
Newton’s method, which produces a sequence of approximate solutions u*
from a starting guess u® in the following way: Given u* we want to find an
increment v* such that u**! = u¥ 40 is a better approximation of the exact
solution than u*. Approximating F(u**') = 0 by F(u*) + F'(u*)v* = 0, we
obtain a linearized equation

ok .

% — V- (a(uF)VoF) — V- (@' (u*)VuFo?) — f'(uF)oF = —F(@*) in 2,
which is solved together with an initial condition and linearized boundary
conditions. This equation is a linear equation in v* of the form (1.18), where
the new coefficients a(u*(z,t)), etc., depend on z and t.
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1.4 Problems

Problem 1.1. (Derivation of the convection-diffusion equation.) Let ¢ =
c(z,t) [mol/m®] denote the concentration at the point z [m] and time ¢
[s] of a substance that is being transported through a domain z € 2 C R3
by convection and diffusion. The flux due to convection is

je=ve, [mol/(m%s)]

where v = v(z) [m/s] is the convective velocity field. The flux due to diffusion
is (Fick’s law)
ja =—DVe, [mol/(m?s)]

where D = D(z) [m?/s] is the diffusion coefficient. Let r [mol/ (m®s)] denote
the rate of creation/annihilation of material, e.g., by chemical reaction. The
total mass of the substance within an arbitrary subdomain is |, o, ¢dz. Use
the conservation of mass and the divergence theorem to derive the convection-
diffusion equation

0

5~ V- (DVO)+V-(vc) =7, [mol/(n's)]

which is of the same mathematical form as (1.13). Derive a boundary con-
dition of the form (1.15). Show that these equations can be written in the
same dimensionless form as (1.18) and (1.19).

Problem 1.2. (Derivation of the wave equation.) Consider the longitudinal
motion of an elastic bar of length L [m]and of constant cross-sectional area A
[m?] and with density p [kg/m®]. Let u = u(x,t) [m]denote the displacement
at time ¢ [s] of a cross-section originally located at = € [0, L]. Newton’s law
of motion states that

d

b
%/ pAdz = (o(b) —o(a))A, NI

where f; pAdx [kgm/s] is the total momentum of an arbitrary segment
(a,b) and o [N/m?] is the stress (force per unit cross-sectional area). This

leads to

dp Oo

at oz’
For small displacements we have a linear relationship between the stress o
and the strain e = Qu/dz, namely Hooke’s law,

o = Fe,

where E [N/m?] is the modulus of elasticity, and the momentum density is
given by p = pdu/0t. Show that u satisfies the wave equation
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Fu_ 0 (224)

Por = as\"8z)
Discuss various possible boundary conditions at the ends of the bar. For
example, at x = L:

— fixed end, u(L) =0,
— free end, (L) = 0, which leads to u;(L) =0,
— elastic support, 6(L) = —ku(L), which leads to Eu,(L) + ku(L) = 0.

Note that these are of the form (1.23).

Problem 1.3. (Elastic beam.) Consider the bending of an elastic beam that
extends along the interval 0 < x < L. At an arbitrary cross-section at a
distance z from the left end we introduce the bending moment (torque) M =
M(x) [Nm], the transversal force T = T'(z) [N], and the external applied
force ¢ = ¢(x) per unit length [N/m]. It can be shown that equilibrium
of forces requires M’ = T and T = —q. Let v = u(z) [m] be the small
transversal deflection of the beam. The bending angle is then approximately
u'. The constitutive law is M = —FEIu", where E [N/m?] the modulus of
elasticity and I [m*] is a moment of inertia of the cross-section of the beam.
Show that this leads to the fourth order equation

(EIu")" = q.

Discuss various possible boundary conditions at the ends of the beam. For
example, at x = L:

— clamped end, u(L) = 0, «'(L) =
— free end, M (L) = —(EIu")(L) = 0 T(L) =—-(EIu")(L) =0,
— hinge, /(L) = 0, M(L) = —(EIv")(L) = 0.

Problem 1.4. (The Laplace operator in spherical symmetry.) Introduce

spherical coordinates (r, 6, ¢) defined by x; = rsinfcos @, x2 = rsinfsin ¢,
23 = rcosf. Assume that the function u does not depend on € and ¢, i.e.,

u = u(r). Show that
1dy/,du
Au = r2 dr ( dr)

Problem 1.5. (The Laplace operator in cylindrical symmetry.) Introduce
cylindrical coordinates (p, ¢, z) defined by 21 = pcosy, ©2 = psing, x3 = 2.
Assume that the function u does not depend on ¢ and z, i.e., u = u(p). Show

that 1d /s du
Au = pdp( d_p)

Problem 1.6. Let 2 = {z € R?: |z| < 1}. Determine an explicit solution
of the boundary value problem

—Au+cu=f inf, withu=g onT,
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assuming spherical symmetry and that ¢, f, g are constants. That is, solve
—(r*u' (1)) + r2u(r) =r%f forr € (0,1), with u(1) =g, u(0) finite.

Hint: Set v(r) = ru(r).



2 A Two-Point Boundary Value Problem

For the purpose of preparing for the treatment of boundary value problems
for elliptic partial differential equations we consider here a simple two-point
boundary value problem for a second order linear ordinary differential equa-
tion. In the first section we derive a maximum principle for this problem, and
use it to show uniqueness and continuous dependence on data. In the second
section we construct a Green’s function in a special case and show how this
implies the existence of a solution. In the third section we write the problem
in variational form, and use this together with simple tools from functional
analysis to prove existence, uniqueness, and continuous dependence on data.

2.1 The Maximum Principle

We consider the boundary value problem

Au = — (au')' +bu' +cu= f inf2= (0, 1)5

@1) u(0) = uo, u(l) = u,

where the coefficients a = a(z), b = b(z), and ¢ = ¢(x) are smooth functions
with

(2.2) a(z) > ap >0, c(x)>0, forxe 2=1]0,1],

and where the function f = f(z) and the numbers wg,u; are given, cf.
Sect. 1.3.
In the particular case that a = 1, b = ¢ = 0, this reduces to

(2.3) —u"=f in £, withu(0)=uo, u(l)=us.

By integrating this differential equation twice we find that a solution must
have the form

(2.4) u(x):—/ow/oyf(s)dsdy-i-am+ﬂ,

with the constants a, f to be determined. Setting z = 0 and z = 1 we find
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1 ry
a:ul—uo+/ / f(s)dsdy, B = wug.
o Jo

Reversing the steps we find that (2.4), with these «, 3, is the unique solution
of (2.3).

In the special case f = 0 the solution of (2.3) is the linear function
u(x) = ug(1 — z) + urz. In particular, the values of this function lie between
those at £ = 0 and x = 1, and its maximum and minimum are thus located
at the endpoints of the interval (2. More generally, we have the following
maximum (minimum) principle for (2.1).

Theorem 2.1. Consider the differential operator A in (2.1), and assume
that u € C? = C?(2) and

(2.5) Au <0 (Au > 0) in 0.

(i) If ¢ =0, then

(2.6) Max y = max {u(0),u(1)} (m(%nu = min {u(O),u(l)})

(i) If ¢ > 0 in £2, then

(2.7) max u < max {u(0),u(1),0} (m{_;nu > min {u(O),u(l),O}).

In case (i) we conclude that the maximum of u is attained at the bound-
ary, i.e., at one of the endpoints of the interval 2. In case (ii) we draw the
same conclusion if the maximum is nonnegative. This does not exclude the
possibility that the maximum is attained also in the interior of (2. However,
there is also a stronger form of the maximum principle, which in case (i)
asserts that if (2.5) holds and » has a maximum at an interior point of 2 (in
case (ii) a nonnegative interior maximum), then u is constant in 2. We shall
not prove this here, but we refer to Sect. 3.3 below for the corresponding
result for harmonic functions. The variants within parentheses, with Au > 0,
may be described as a minimum principle; it is reduced to the maximum
principle by looking at —u.

Proof. (i) Assume first, instead of (2.5), that Au < 0 in £2. If u has a maxi-
mum at an interior point xg € (2, then at this point we have u'(z¢) = 0 and
u"(xg) <0, so that Au(zg) > 0, which contradicts our assumption. Hence u
cannot have an interior maximum point and (2.6) follows.

Assume now that we only know that Au < 0 in (2. Let ¢ be a function
such that ¢ > 0in 2 and A¢ < 0 in £2. For example, we may use the function
#(z) = e’* with X so large that A¢ = (—aX2+ (b—a')\)¢ < 0 in 2. Assume
now that v attains its maximum at an interior point ¢ but not at x = 0 or
x = 1. Then for € > 0 sufficiently small this is true also for v = u + €¢. But
Av = Au + eA¢ < 0 in 2, which contradicts the first part of the proof.
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(ii) If w < 0 in {2, then (2.7) holds trivially. Otherwise assume that
maxgu = u(xg) > 0 and zg # 0,1. Let (a, ) be the largest subinterval
of £ containing zo in which u > 0. We now have Au := Au —cu < 0 in
(o, B). Part (i), applied with the operator A in the interval (e, 3), therefore
implies u(zo) = max{u(a),u(B)}. But then a and S could not both be in-
terior points of (2, for then either u(a) or u(8) would be positive, and the
interval (a,3) would not be as large as possible with u > 0. This implies
u(zo) = max{u(0),u(1)} and hence (2.7). O

As a consequence of this theorem we have the following stability estimate
with respect to the maximum-norm, ||v|l¢ = maxg |v|, defined in Sect. 1.2.

Theorem 2.2. Let A be as in (2.1) and (2.2). If u € C2, then
lulle < max {[u(0)], [u(1)]} + C||Aullc.
The constant C depends on the coefficients of A but not on u.

Proof. Since ||ullc = max { maxg(—u), maxg(u)}, we shall bound the max-
ima of +u. We set ¢(x) = e — e*® and define two functions

vt (7) = Fu(z) — [[Aullc ¢(z)-

Since Ap = ce* + (aX? + (a' — b)A —c)e*® > 1in 2, if A > 0 is chosen
sufficiently large, we have, with such a choice of A,

Avy = £ Au — || AullcAp < £ Au — ||Aullc <0 in 2.
Theorem 2.1 therefore yields
mgx(vi) < max {v4+(0),v+(1),0}
< max { +u(0), 2u(1),0} < max {[u(0)], [u(1)|},
since ¢ > 0, so that vy < u < |u|. Hence,
max(u) = ma (v + [ Aullc §) < max(va) + | Aulelglc
< max {u(0)|, [u(1)[} + CllAulle, with C = [|¢]lc,
which completes the proof. O

From Theorem 2.2 we immediately conclude the uniqueness of a solution
of (2.1). In fact, if u and v were two solutions, then their difference w = u—wv
would satisfy Aw =0, w(0) = w(1) = 0, and hence ||w||¢c =0, so that u = v.

More generally, if 4 and v are two solutions of (2.1) with right hand sides
f and g and boundary values ug,u; and vg, v, respectively, then

llu — vlle < max {|ug — vol,|ur —v1|} + C||f — glle.
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Thus the problem (2.1) is stable, i.e., a small change in data does not cause
a big change in the solution.

As another application of the maximum principle we note that if all the
data of the boundary value problem (2.1) are nonpositive, then the solution
is nonpositive. That is, if f < 0 and ug,u; < 0, then u < 0. By means of the
stronger variant of the maximum principle mentioned after Theorem 2.1, we
may even conclude that v < 0 in (2 unless u(z) = 0. More generally, we have
the following monotonicity property: If

Au = [ in 02 with U(O) = Uug, u(]-) =u,
Av=g in 2,  with v(0) = vo, v(1) = vy,
and if f < g, ug < vo, and uy < w1, then u < v.

2.2 Green’s Function

We now consider the problem (2.1) with b = 0 and with boundary values
ug = u; = 0. We shall derive a representation of a solution in terms of a
so-called Green’s function G(z,y). For this purpose, let Uy and U; be two
solutions of the homogeneous equation such that

AUp =0 in 02, with Up(0) =1, Up(1) = 0,

AU =0 in 02, with U;(0) =0, U1(1) = 1.
To see that such solutions exist, we note that by the standard theory of
ordinary differential equations the initial value problem for Au = 0 with
u(0) = 0, »/(0) = 1 has a unique solution, and that u(1) # 0 for this
solution, since otherwise u(xz) = 0 in {2 by Theorem 2.2. By multiplication of
this solution by an appropriate constant we obtain the desired function Uj.
The function Uy is constructed similarly, starting at = 1. By Theorem 2.1
Up and Uy are nonnegative. We refer to Problem 2.5 for the case when b # 0.

Theorem 2.3. Letb = 0 and let Uy, Uy be as described above. Then a solution
of (2.1) with ug = uy = 0 is given by

1
(2.8) u@) = [ Gl ).
0
where 1
EUo(m)Ul(y), for0<y<z<1,
G(m,y) =
LU@0),  fr0<z<y<l,
and

(2.9) k = a(z) (Up(z)Ui (z) — Uy(x)Ur(2)) = constant > 0.
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Proof. We begin by showing that « is constant: Since (aUj;)" = cUj, we have
k' =Up(alU;) = Ur(aU}) =UycUy — UrcUy = 0.

Setting ¢ = 0 we find k = a(0) U;(0) # 0, because otherwise U (0) = U7 (0) =

0 and hence U, (z) = 0. Since U is nonnegative we have U] (0) nonnegative
and hence it follows that x > 0.

Clearly u as defined in (2.8) satisfies the homogeneous boundary condi-
tions. To show that it is a solution of the differential equation we write

=/0zG(x,y)f(y)dy+/ G(z,y)f(y) dy

= 10 [0 + 200G [ Do) r)

Hence, by differentiation,
W(@) = (Vhta /01 ) dy + Uo(a)U7 (2) ()
Lot [ 01w - ni@t@ ),

where the terms involving f(x) cancel. Multiplying by —a(z) and differenti-
ating we thus obtain, using (aUJ)" = cUj and (2.9),

(e @) =~ @) [ ) f ) dy
- %( (@)U} (z))' : Uo(y)f(y) dy
- ~a(@) (V)0 (=) - V()0 (2) ) £(2)
_ —%c(w)Ug(w) Ow Ui(y)f(y) dy
_ %C( 0 (2) 1Uo(y)f(y) dy + f(a)
/ G(z,9)f(y) dy + f(z) = —c(z)u(z) + f(2),
which completes the proof. =

In particular, this theorem shows the existence of a solution of the problem
considered. We already know from Sect. 2.1 that the solution is unique. The
representation of the solution as an integral in terms of the Green’s function
can also be used to obtain additional information about the solution. As a
simple example we have the maximum-norm estimate
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1
210) [l < Cliflle, with € =max [ Glay)dy,
zE 0

which gives a more precise value of the constant in Theorem 2.2. Here we have
used the fact that Uy and Uy, and hence G, are nonnegative by Theorem 2.1.
Theorem 2.3 may also be used to show the existence of a solution for
general boundary values ug and ;. In fact, if @(z) = wo(1 — ) + u1z, and if
v is a solution of
Av=g:=f—Aa in 2, with v(0) =v(1l) =0,

then v = v + @ satisfies Au = f and u(0) = ug, u(1l) = u;.

2.3 Variational Formulation

We shall now treat our two-point boundary value problem within the frame-
work of the Hilbert space Ly = Lo(f2), and derive a so-called variational
formulation. We refer to App. A for the functional analytic concepts used.

We consider the boundary value problem (2.1) with homogeneous bound-
ary conditions, i.e.,

(2.11) Au:= —(au')' +bu'+cu=f in2=(0,1), withu(0)=u(l)=0.

We assume that the coefficients a, b, and ¢ are smooth and, instead of (2.2),
that

(2.12) a(z) > ao >0, c(z)—V(z)/2>0, forzel.

Multiplying the differential equation by a function ¢ € C} = C}(£2), and
integrating over the interval {2, we obtain

1 1
(2.13) / (= (au') +bu' + cu)pdz = / fpdz,
0 0
or, after integration by parts, using ¢(0) = ¢(1) =0,
1 1
(2.14) / (au'¢' + bu'p + cup) dz = / fodz, Ve Cy,
0 0

which we refer to as the variational or weak formulation of (2.11).
Introducing the bilinear form

1
(2.15) a(v,w) = / (av'w' + bv'w + cow) dz,
0

and the linear functional
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L(w) = (f,w) = / fuwds,

and using the fact that C} is dense in H} = H{ ({2), we may write the equation
(2.14) as

(2.16) a(u,p) = L(p), Vo€ H}.

We say that u is a weak solution of (2.11) if u € H} and (2.16) holds.
Thus we do not require a weak solution to be twice differentiable. However, if
a weak solution belongs to C2, then it is actually a classical solution of (2.11).
In fact, by integration by parts in (2.14) we conclude that (2.13) holds, i.e.,

1
/ (Au— f)odz =0, Vo€ H;.
0

This immediately implies Au = f in {2, and since v € H} we also have
4(0) = u(1) = 0. This calculation can also be performed if u € H? N H{, in
which case we say that v is a strong solution of (2.11).

We note that, with the notation of Sect. 1.2,

(2.17) loll < [I/ll, i (0) = (1) =0.

In fact, by the Cauchy-Schwarz inequality we have for all = € (2,

x 2 T z 1
)l =| [vea] < [u [ ora<e [(wra

from which (2.17) follows by integration. This is a special case of Poincaré’s
inequality, which has a counterpart also for functions of several variables, see
Theorem A.6. It follows at once that

(2.18) ol = (o]l + I0']12) " < v2ll'll, Vo e HE,

which shows that ||v||; and |v|; = ||[v'|| are equivalent norms.
Using our assumption (2.12), we find that

1 1 1
/ (bv'v + cv?) dz = [%bvz]o +/ (c— 30 v?dz >0, forwve Hj.
0 0

Hence, from (2.12) and (2.18) it follows that the bilinear form a(v,w) has the

property

(2.19) a(v,v) > mina(z) ||v'||> > a|lv|3, Vv € H}, with a=ae/2>0.
€N

The inequality (2.19) expresses that the bilinear form a(-, -) is coercive in Hg,
see (A.12). Setting ¢ = u in (2.16) and using (2.19) and (2.17), we find
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allull} < a(u,u) = (f,u) <[IFl lull < (1] llull,
so that
(2.20) [[ully < C|fll, with C = 2/ae.
The bilinear form a(v, w) is also bounded on H} in the sense that (cf. (A.9))
(2.21) la(v,w)| < Cllollsllwls, Vo,w e H.
For, estimating the coefficients in (2.15) by their maxima and using the
Cauchy-Schwarz inequality, we have
1
la(v,w)| < C/ ('w'| + [v'w| + |vw]) dz < C||v||1||w||1-
0
We now turn to the question of existence of a solution of the variational
equation (2.16).

Theorem 2.4. Assume that (2.12) holds and let f € Lo. Then there exists
a unique solution u € H} of (2.16). This solution satisfies (2.20).

Proof. The proof is based on the Lax-Milgram lemma, Theorem A.3. We al-
ready checked that a(-,-) is coercive and bounded in H{. The linear functional
L(-) is also bounded in H}, because

1L = (£, )l < If I llell < fIHHlells, Ve € Hy.

Hence the assumptions of the Lax-Milgram lemma are satisfied and it follows
that there exists a unique u € H} satisfying (2.16). Together with (2.20) this
completes the proof. O

We remark that when b = 0 the bilinear form a(-, -) is symmetric positive
definite and thus an inner product, with the associated norm equivalent to
[||l1- The existence of a unique solution then follows from the more elementary
Riesz representation theorem, Theorem A.1.

In the symmetric case when b = 0, the solution of (2.16) may also be
characterized as the minimizer of a certain quadratic functional, see Theorem
A.2. This is a special case of the famous Dirichlet principle.

Theorem 2.5. Assume that (2.2) holds and that b = 0. Let f € Ly and
u € H} be the solution of (2.16), and set

F(p) = %/0 (a(¢")? + cp?) dx—/0 fodz.

Then F(u) < F(p) for all p € H}, with equality only for ¢ = u.
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The weak solution u of (2.16) obtained in Theorem 2.4 is actually more
regular than stated there. Using our definitions one may, in fact, show that u"
exists as a weak derivative (cf. (A.21)), and that au” = —f+(b—a')u'+cu €
L,. It follows that v € H? and that

aollu"[] < llaw”|| < 11+ 11(b = a')o'l| + [lewll < IfIl + Cllulls < CIIfII-
Together with (2.20) this implies the regularity estimate
(2.22) l[ull < CIIFIl-

We conclude that the weak solution of (2.1) found in Theorem 2.4 is actually
a strong solution. The proof of H2-regularity uses the assumption that a is
smooth and f € Ly. With a less smooth, or with f only in H~!, see (A.30),
we still obtain a weak solution in Hg, but then it may not belong to H?, see
Problem 2.8.

2.4 Problems

Problem 2.1. Determine explicit solutions of the boundary value problem
—u"+ecu=f in(-1,1), withu(-1)=u(l) =g,

where ¢, f, g are constants. Use this to illustrate the maximum principle.

Problem 2.2. Determine Green’s functions for the following problems:

(a) —u'=f in 2=(0,1), with 4(0) = u(1) =0,

(b) —u" +eu=f in 2=(0,1), with u(0) = u(1) =0,

where c is a positive constant.

Problem 2.3. Consider the nonlinear boundary value problem
—u" +u=e" in 2=(0,1), withu(0)=u(l)=0.

Use the maximum principle to show that all solutions are nonnegative, i.e.,
u(z) > 0 for all z € £2. Use the strong version of the maximum principle to
show that all solutions are positive, i.e., u(z) > 0 for all z € 0.

Problem 2.4. Assume that b = 0 as in Theorem 2.3 and let G(z,y) be the
Green’s function defined there.

(a) Prove that G is symmetric, G(z,y) = G(y, z).
(b) Prove that
a(v,G(z,-)) = v(z), Yve€ Hy, z € .

This means that AG(z,-) = d,, where §, is Dirac’s delta at z, defined as
the linear functional d,(¢) = é(z) for all ¢ € C§, see Problem A.9.
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Problem 2.5. In the unsymmetric case when b # 0, Green’s function is
defined in a similar way as in Theorem 2.3:

0(@)U1(y) for0<y<z<1
() b — —_— —_— )
1(@)Uo(y) for0<z<y<1
() 7 - -_— f— -

The main difference is that k is no longer constant. The functions Uy and
U; are linearly independent, and hence it follows from the theory of ordinary
differential equations that their Wronski determinant UpgU; — U[U; does not
vanish. As before we may then conclude that x(z) > 0 in 2. Repeat the steps
of the proof Theorem 2.3 in this case.

Problem 2.6. Give variational formulations and prove existence of solutions
of
—u" = f in2=(0,1),

with the following boundary conditions

(a)  u(0)=u(1) =0,
(b)  w(0) =u/(1) =0,
(©) —u'(0)+u(0) = /(1) =0.

Problem 2.7. Consider the “beam equation” from Problem 1.3,

d*u .
ot =f in2=(0,1),

together with the boundary conditions

a)  u(0) =u'(0) = u(l) =u'(1) =0,

b)  u(0) = u"(0) = u(1) =u"(1) =0,

) w(0)=v'(0) =v'(1) =u"(1) =0,

d)  w(0) =u'(0) =w"(1) =u"(1) =0,

(e) u(0)=4'(0) =u(l) =u""(1) =0.

Give variational formulations and investigate existence and uniqueness of

solutions of these problems. Give mechanical interpretations of the boundary
conditions.

(
(
(

Problem 2.8. Find an explicit solution of (2.11) witha=1,b=c¢ =0, and
f(z) = 1/z. Recall from Problem A.11 that f € H~! but f ¢ La. Check that
u € Hy but u ¢ H?. Hint: u(z) = —zlog .



3 Elliptic Equations

In this chapter we study boundary value problems for elliptic partial differen-
tial equations. As we have seen in Chapt. 1 such equations are central in both
theory and application of partial differential equations; they describe a large
number of physical phenomena, particularly modelling stationary situations,
and are stationary limits of evolution equations. After some preliminaries in
Sect. 3.1 we begin by showing a maximum principle in Sect. 3.2. In the same
way as for the two-point boundary value problem in Chapt. 2 this may be used
to show uniqueness and continuous dependence on data for boundary value
problems. In the following Sect. 3.3 we show the existence of a solution of
Dirichlet’s problem for Poisson’s equation in a disc with homogeneous bound-
ary conditions, using an integral representation in terms of Poisson’s kernel.
In Sect. 3.4 similar ideas are employed to introduce fundamental solutions
of elliptic equations, and we illustrate their use by constructing a Green’s
function. Another important approach, presented in Sect. 3.5, is based on a
variational formulation of the boundary value problem and simple functional
analytic tools. In Sect. 3.6 we discuss briefly the Neumann problem, and in
Sect. 3.7 we describe some regularity results.

3.1 Preliminaries

Rather than considering a general second order elliptic equation of the form
(1.5) we shall restrict ourselves, for the sake of simplicity, to the special case
when the matrix A = (a;;) in (1.5) reduces to a scalar multiple a I of the
identity matrix, where a is a smooth function.

We consider first the Dirichlet problem

(31) Au:=-V-(aVu)+b-Vu+cu=f inf2, withu=g onl,

where 2 C R? is a domain with appropriately smooth boundary I', where
the coefficients a = a(z), b = b(z), ¢ = ¢(x) are smooth and such that

(3.2) a(x) > ap >0, c(z)>0, Vrel,

and where f and g are given functions on {2 and I', respectively. This is the
stationary case of the heat equation (1.18).
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The particular case a = 1, b =0, ¢ = 0 is Poisson’s equation, i.e.,
(3.3) —Ay = — — = f.

When f = 0 this equation is referred to as Laplace’s equation and its solutions
are called harmonic functions.
We note that if v and w are solutions of the two problems

Av=0 in £, withv =g on I,
Aw = f in (2, withw =0 on I,

then u = v + w is a solution of (3.1). It is therefore sometimes convenient to
consider separately the homogeneous equation with given boundary values
and the inhomogeneous equation with vanishing boundary values.

One may also study the partial differential equation in (3.1) together with
Robin’s boundary condition

ou

3.4 a—+h(u—g)=0 on /[,
(3-4) 5, Thu—9) :
where the coefficient h = h(x) is positive and n is the outward unit normal to
I'. The Dirichlet boundary condition used in (3.1) may be formally obtained
as the extreme case h = 0o of (3.4). At the other extreme, h = 0, we obtain
Neumann’s boundary condition

Ou

— =0 onl.

on
Sometimes one considers mixed boundary conditions in which, e.g., Dirichlet
boundary conditions are given on one part of the boundary and Neumann
conditions on the remaining part. A function u € C%({2) that satisfies the
differential equation and the boundary condition in (3.1) is called a classical
solution of this boundary value problem.

3.2 A Maximum Principle

We begin our study of the Dirichlet problem (3.1) by showing a maximum
principle analogous to that of Theorem 2.1.

Theorem 3.1. Consider the differential operator A in (3.1), and assume
that u € C2 = C%(2) and

(3.5) Au<0 (.Au > 0) in Q.

(i) If ¢ =0, then
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(3.6) maxu = maxu (m_inu = min u)
9] r 0 r
(i) If ¢ > 0 in 02, then
(3.7 maxu < max { maxu,0} (m_inu > min{minu,O}).
? r (9] r

Proof. (i) Let ¢ be a function such that ¢ > 0 in 2 and A¢ < 0 in £2.
Such a function is, e.g., ¢(z) = e*** for X so large that Ap = (—aA? +
(by — 0a/dx1)N)e?*t < 0 in 2. Assume now that u attains its maximum at
an interior point zg in {2 but not on I'. Then for e sufficiently small this
is true also for v = u + €¢. But Av = Au + eAp < 0 in 2. On the other
hand, if the maximum of v is v(Z), then Vv(Z) = 0 and hence Av(Zo) =
—a(Zo)Av(Zo) > 0, which is a contradiction, and thus shows our claim.

(ii) If w < 0 in {2, then (3.7) holds trivially. Otherwise assume that
maxgu = u(zg) > 0 and zo € (2. Let {2 be the largest open connected
subset of {2 containing zy in which u > 0. We now have Au := Au — cu < 0
in 2. Part (i), applied with the operator A in 2y, therefore implies u(z) =
maxr, u, where Iy is the boundary of (2y. But then Iy could not lie com-
pletely in the open set (2, for then there would be a point on I'y where u were
positive, and {2y would not be as large as possible with u > 0. This shows
(3.7). O

Theorem 3.1 implies stability with respect to the maximum-norm.
Theorem 3.2. Let u € C2({2). Then there is a constant C such that
lullec@y < llullecry + CllAulle(q)-

Proof. Let ¢ be a function such that ¢ > 0 and 4¢ < —1in 2, e.g., a suitable
multiple of the function ¢ in the proof of Theorem 3.1. We now define two
functions vy (z) = £u(z) + || Aull¢(@)¢(x). Then

Avy = £ Au + || Aull¢(p)Ad <0, in 0.
Therefore both functions v take their maxima on I', so that
vg () < max (vg) < mgx(iu) + | Aullellllecr)
< Mullecry + CllAulle(my,  with C = |[|9lle(r)-
Since tu(z) < vi(z) this proves the theorem. O

In the same way as for the two-point boundary value problem it follows
that there is at most one solution of our Dirichlet problem (3.1), and that, if
uj, j = 1,2, are solutions of (3.1) with f = f;, g =g;, j = 1,2, then

lur —w2lleay < llgr — g2llery + Cllfr — falleay-
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3.3 Dirichlet’s Problem for a Disc. Poisson’s Integral

In this section we study the Dirichlet problem to find a harmonic function in
a disc 2 = {z € R?: |z| < R} with given boundary values, i.e.,
— Au =0, for |z| < R,

3.8
(38) u(Rcos g, Rsiny) = g(y), for 0 < ¢ < 27.

In the following theorem a solution of (3.8) is given as an integral over the
boundary of the disc.

Theorem 3.3. (Poisson’s integral formula.) Let Pgr(r,¢) denote the Poisson

kernel
R2 _ T2

T RZy2 —2rRcosy’

Then, using polar coordinates © = (r cos @, rsin @), the function defined by

PR(ra (P)

1 27

(3.9) u(z) Pr(r,o —¢)g(¥) dv,

= % ;
is a solution of (3.8) for g appropriately smooth,

Proof. We first note that, for each n > 0, v(z) = r"e*"¢ is a harmonic
function. In fact, we have

o o0 10
C0r2 r Or 120y’

1 1 .
= (n(’I’L _ 1)T‘n_2 + = nrn—l _ _n2,,.n)e:t1n<p =0.
r T

Av

It follows, for ¢, bounded, say, that the series

(3.10) u(z) = f: cn(%)'"‘eiw

n=—oo

is harmonic in 2. We assume now that g(¢) has a Fourier series

o0
g(p) = Y cne™.

n=—oo

which is absolutely convergent. The function u(z) in (3.10) with the coef-
ficients ¢, is a then solution of (3.8), and u is continuous in (2. The latter
means that u(rel¥) — g(e!¥) when r — R, ¢ — . To see that this holds,
we choose N so large that >, -y |cn| < €/3 and write

r\Inl . .
( ) emz[) — eln?®

u(re) — g(e?)| < Y feal & +2 > eal-

[n[<N |n[>N
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Here obviously the first term on the right tends to 0 when r — R, ¢ — ¢,
and hence becomes smaller than €/3, which shows our claim.
Recall that the Fourier coefficients of g are given by

1 27

e g(¢) dy.

Cp = —
"271'0

Formally we thus have

o0

1 2 rylnl
- Lz n(p—7)
which is of the form (3.9) with
- r In| ing
Pg(r, @) = Z (E) e'?.
n=-—oo0
Setting z = (r/R)e!¥ we have
- T\" in
Pr(r,p) =1+2Re Y (}—2) ein?
n=1
> 1+2
— n_ 1= — 1=
—2ReZz 1 Rel—z 1 Rel—z
n=0
_ReR+rei"_ R? — 2
" T R—re¥ R2+72—-2rRcosy’
which completes the proof. O

One consequence of the theorem is that if u is a harmonic function in (2,
Z is any point in {2, and if the disc {z : |z — Z| < R} is contained in 2, then

1

(3.11) u(@) = o

27
/ u(Z1 + Rcos, T2 + Rsine)) dy,
0

since Pr(0,p) = 1. Hence u(Z) is the average of the values of u(x) with
|z — Z| = R. Thus the value of u at the center of a disc equals the average
of its boundary values. We say that u satisfies the meanvalue property. This
proves a special case of the strong maximum principle we have mentioned
earlier: If a harmonic function u takes its maximum value at an interior point
of (2, then it is constant. In fact, if Z is an interior point of {2 where u attains
its maximum, then by (3.11) u(z) = u(z) for all z with {z : |[z—Z| = R} C 12,
and since R is arbitrary and {2 connected it follows easily that u takes the
constant value u(Z) in £2. In particular, the maximum is also attained on I.
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3.4 Fundamental Solutions. Green’s Function
Let u be a solution of the inhomogeneous equation

(3.12) Au=f in RY,

where A is as in (3.1), with b = 0. Multiplying by ¢ € C§°(R?), integrating
over R?, and integrating by parts twice, we obtain

61 (wA)= ()= [ @)@ voecr®Y.

We say that U is a fundamental solution of (3.12) if U is smooth for z # 0, has
a singularity at x = 0 such that U € L;(B), where B = {z € R : |z| < 1},
and

(3.14) |DOU ()| < Culz|>~47121 for |a] # 0,
and if
(3.15) (U, Ap) = ¢(0), Vo € CF(R?),

This means that, in the sense of weak derivative (see (A.21)),
AU =9,

where § is Dirac’s delta, defined in Problem A.9.
We now use the fundamental solution to construct a solution to (3.12).

Theorem 3.4. If U is a fundamental solution of (3.12) and if f € C}(R?),
then

u(@) = Uxf)x) = [ Ulx—y)fly)dy

R4
is a solution of (3.12).

Proof. We have, by (3.15),
- Uz — y)Ap(z) dz = - U(2)Ap(z +y)dz = (U, Ap(- +y)) = ¢(y)-

Hence, if u = U * f, then, by changing the order of integration,
wAp) = [ [ UG- )f)dyAp(z)da
R¢ JR
(3.16) =[] UG-y e() dz ) dy
R¢ JR

- / o(y) (@) dy = (f,0).
Rd
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Since f € C} it follows that u € C? because with D; = 8/0x; we have
D;Dju(z) = (D;U x D; f)(z) (cf. App. A.3) and D;U € L1(R%) and D, f €
Co(R%). Thus we may integrate by parts in (3.16) to obtain (cf. (3.13))

(Au—f,9) =0, VpeCFRY,
from which we conclude that Au = f. O

In the next theorem we determine fundamental solutions for Poisson’s
equation in two and three dimensions.

Theorem 3.5. Let

1
——log|z|, when d = 2,
2w
U(z) =
1
—, when d = 3.
47 |z|

Then U is a fundamental solution for Poisson’s equation (3.3).

Proof. We carry out the proof for d = 2; the proof for d = 3 is similar. By
differentiation we find, for = # 0,

oUu _ 1 Z 62 |.’L'|2—2.CL'?

Cdx; 2w |z 83:? o |zt

so that, in particular, —AU = 0 for z # 0. Similarly, (3.14) holds.
Let ¢ € C§°(R?). We have by Green’s formula, with n = z/|z|,

oUu Oy
U(—Acp)da::/ (—AU)goda:—/ — — —U)ds.
/|z|>e |z >e |m|zf( on On )

Note that n points inwards here. The first term on the right side vanishes.
Further, since

U _mdU @dU _ 11 _ 1 . o
_—— Ze 7Y - - = —
on ~ |z|dzy || Oz2 27 fa|  2m€’ ’
we have
oU 1
ds = — d _
/w—e([)an 27{'6 |w|:€<p S_)SO(O)7 as €0
Also,
Op
| Ud ‘_‘_lo ) %dS‘SGHOg(GNHV(p”C—)O, as € — 0.
|Z|_€ |z|=e¢
Hence

(U, (=A)¢) = lim U(z)(=4)p(z) dz = ¢(0).

e—0 ‘$|>6
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We may now construct a Green’s function for the boundary value problem
(3.17) —Au=f in {2, withu=0 onlI,

namely a function G(z,y) defined for z,y € 2 such that the solution of (3.17)
may be represented as

(3.18) u(z) = /Q Gz, f(y) dy.
Let
(3.19) G(z,y) = Uz — y) — vy (a),

where U is the fundamental solution for —A from Theorem 3.5 and, for fixed
y € {2, let vy be the solution of

—Azvy(x) =0 in 2, withvy(z)=U(x—y) onl.

In the next section we shall show that this problem has a solution. The
Green’s function thus has the singularity of the fundamental solution and
vanishes for € I', and it is easily seen that the function defined by (3.18)
is therefore a solution of (3.17). It is also the only solution, because we have
already proved uniqueness in Sect. 3.2. Note that G(z,y) consists of a singular
part, U(z — y) with a singularity at = y, and a smooth part, v, (z).

3.5 Variational Formulation of the Dirichlet Problem

We first consider the Dirichlet problem with homogeneous boundary condi-
tions

(3.20) Au:=-V-(aVu)+b-Vu+cu=f inf2, withu=0 onl,
where the coefficients a, b, and ¢ are smooth functions in {2 which satisfy
(3.21) a(z) > a9 >0, c(z)—3V-b(z) >0, forze 2,

and where f is a given function. In the classical formulation of this problem
one looks for a function u € C? = C?(2) which satisfies (3.20). In this section
we shall reformulate (3.20) in variational form and seek a solution in the
larger class Hg. In some cases it is then possible to prove such regularity for
this solution that it is indeed a classical solution.

Assuming first that u is a solution in C?, we multiply (3.20) by v € C}
and integrate over {2. By Green’s formula and since v = 0 on I', we find that

(3.22) / fvd:cz/Auvdxz/(aVu-Vv—}—b-Vuv—l—cuv)dw Yv € Cy,
e} e} o)
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and then also, since Cj is dense in Hy,
(3.23) / (aVu-VU+b-Vuv+cuv)dx:/fvdx, Vv € H.
2 2

The variational problem corresponding to (3.20) is thus to find u € H} such
that (3.23) holds. It will be shown below, by means of the Lax-Milgram
lemma, that this problem admits a unique solution for f € Ly. We say that
this solution is a weak or variational solution of (3.20).

We have thus seen that a classical solution is also a weak solution. Con-
versely, suppose that u € Hg is a weak solution, i.e., u satisfies (3.23). If in
addition we know that u € C?, then by Green’s formula we have from (3.23)

/fvdx:/ (aVu-Vv+b-Vuv+cuv)dx:/Auvdx, Yv € Hj,
2 7} 2
i.e

=

/ (Au— flvde =0, Vv e Hy.

o)

If f € C we have Au — f € C, and therefore this relation implies
Au(z) — f(x) =0, Vze .

Because u € H] we also have u = 0 on I', and it follows that u is a classical
solution of (3.20). A weak solution which is smooth enough is thus also a
classical solution. However, depending on the data f and the domain (2, a
weak solution may or may not be smooth enough to be a classical solution and
the weak formulation (3.23) therefore really constitutes an extension of the
classical formulation. Note that the weak formulation (3.23) is meaningful
for any f € Lo, so that, e.g., f may be discontinuous, while the classical
formulation (3.20) requires f to be continuous. If f € Ly and u € H? N H}
satisfies (3.20), then we say that w is a strong solution. Clearly, a classical
solution is also a strong solution, and a strong solution is a weak solution.
Further a weak solution that belongs to H? is a strong solution. We shall
return below to the problem of the regularity of weak solutions.

We are now ready to show the existence of a weak solution. We use our
standard notation from Sect. 1.2.

Theorem 3.6. Assume that (3.21) holds and let f € Ly. Then the bound-
ary value problem (3.20) admits a unique weak solution, i.e., there exists a
unique u € H} which satisfies (3.23). Moreover, there ewists a constant C
independent of f such that

(3.24) luls < C|Ifl

Proof. We apply the Lax-Milgram lemma, Theorem A.3, in the Hilbert space
V = H} equipped with the norm |- |1, and with
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(3.25) a(v,w) :/ (aVv-Vw+b-Vvw+cvw)dz and L(v) =/ fvda.
Q Q

Clearly the bilinear form a(-,-) is bounded in H} and it is coercive when
(3.21) holds, since

a(v,v) = / (a|Vv]* + (¢ = LV -B)|v]?) dz > aov]}, Vv € Hy.
Q

Further L(-) is a bounded linear functional on Hj, since by Poincaré’s in-
equality, Theorem A.6,

IL@)| < [If[Hloll < Cll A ]s-

This implies that ||L||y~ < C||f|| and the statement of the theorem thus
follows directly from Theorem A.3. O

We observe that when b = 0, (3.21) reduces to (3.2), and the bilinear
form a(-,-) is an inner product on Hg. The theorem can then be proved by
means of the Riesz representation theorem. In this case Theorem A.2 shows
that the weak solution of (3.20) may also be characterized as follows:

Theorem 3.7. (Dirichlet’s principle.) Assume that (3.2) holds and that b=
0. Let f € Ly and u € H} be the solution of (3.23), and set

(3.26) F(v) = %/Q (a|Vol* + cv?) dz — /va dz.

Then F(u) < F(v) for all v € HE, with equality only for v = u.

Remark 3.1. If (3.20) is considered, e.g., to be a model of an elastic membrane
fixed at its boundary, then F(v) as defined by (3.26) is the potential energy
associated with the deflection v; the first term in F'(v) corresponds to the
internal elastic energy and the second term is a load potential (analogous
interpretations can be made for other problems in mechanics and physics
that are modeled by (3.20)). Dirichlet’s principle in this case corresponds to
the Principle of Minimum Potential Energy in mechanics and (3.23) to the
Principle of Virtual Work.

We now consider the boundary value problem with inhomogeneous bound-
ary condition,

(3.27) Au=f in 2, withu=g onT,

where we assume that f € Ly and g € Ly(I'). The weak formulation of this
problem is then to find u € H' such that, with a(-,-) and L(-) as in (3.25),

(3.28) a(u,v) = L(v), Vv e Hy, withyu=g,
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where v : H! — Ly(I') is the trace operator, cf. Theorem A.4. For the
existence of a solution, we assume that the given function g on I' is the trace
of some function ug € H', i.e., g = yug. Setting w = u — ug, we then seek
w € Hy satisfying

(3.29) a(w,v) = L(v) — a(up,v), Vv € Hy.

The right hand side is a bounded linear functional on Hg and hence it follows
by the Lax-Milgram lemma that there exists a unique w € H{} satisfying
(3.29). Clearly, u = uo + w satisfies (3.28) and yu = g. This solution is
unique, for if (3.27) had two weak solutions uy,us with the same data f,g,
then their difference u; — us € H} would be a weak solution of (3.20) with
f =0, and hence the stability estimate (3.24) would imply u; —us = 0, i.e.,
u1 = uy. Hence, (3.27) has a unique weak solution. In particular, the solution
u is independent of the choice of extension ug of the boundary values g.

When b = 0, the weak solution v € H' can equivalently be characterized
as the unique solution of the minimization problem

Uier}jf[1 (%L(a|VU|2+cv2) dx—/gfvdx).

Y=g

3.6 A Neumann Problem
We now consider the Neumann problem

. .., Ou
(3.30) Au:= -V - (aVu) +cu=f in 2, with o 0 on T,
where we now in addition to (3.2) require ¢(z) > ¢ > 0 in 2, and where
f € Ly. (The case ¢ = 0 is discussed in Problem 3.9.) For a variational
formulation of (3.30) we multiply the differential equation in (3.30) by v € C?

(note that we do not require v to satisfy any boundary conditions), and
integrate over 2 using Green’s formula, to obtain

/ fvdzx =/ Avvdz = —/ a@vds +/ (aVu -V +cuv) dz,
Q 0] r on 2
so that since du/On =0 on I,
(3.31) / (aVu - Vv + cuv) dz = / fvdz, YovecCh.
Q fe)
Conversely, if u € C? satisfies (3.31), then by Green’s formula we have

(3.32) /(.Au—f)vdw%—/a@vdszo, Vv € CL.
0 r on
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If we first let v vary only over C}, we see that u must satisfy the differen-
tial equation in (3.30). Thus, the first term on the left-hand side of (3.32)
vanishes, and by varying v on I', we see that u also satisfies the boundary
condition in (3.30).

We are thus led to the following variational formulation of (3.30): Find
u € H' such that

(3.33) a(u,v) = L(v), Yve H',

where a(-,-) and L(-) are as in (3.25) with b = 0.

We have seen that if u is a classical solution of (3.30), then u satisfies
(3.33). Conversely, if u satisfies (3.33) and in addition v € C?, then u is a
classical solution of (3.30).

By the Riesz representation theorem we have this time the following ex-
istence, uniqueness, and stability result. Note that since ¢(z) > ¢ > 0 the
bilinear form a(-,-) is an inner product on H®.

Theorem 3.8. If f € Lo, then the Neumann problem (3.30) admits a unique
weak solution, i.e., there is a unique function uw € H' that satisfies (3.33).
Moreover,

lJulls < CIf]]-

Remark 3.2. Note that the Neumann boundary condition du/0n = 0 on I is
not enforced explicitly in the variational formulation (3.33); the function u is
just required to belong to H'. The boundary condition is implicitly contained
in (3.33), since the test function v may be an arbitrary function in H'. Such
a boundary condition, which does not have to be enforced explicitly, is called
a natural boundary condition. In contrast, a boundary condition, such as the
Dirichlet condition u = g on I', which is imposed explicitly as part of the
variational formulation, is said to be an essential boundary condition.

Remark 3.3. The problem

(3.34) Au=f in 2, with a% =g onlT,

where f € Ly(2) and g € Ly(I') can be given the variational formulation:
Find v € H! such that

(3.35) a(u,v) = L(v), Yve€ H',

where a(-,-) is as in (3.25) with b =0 and

L(v):/ﬂfvdm-l—ﬂgvds.

By the Cauchy-Schwarz inequality and the trace inequality (Theorem A.4)
we have
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IL@)| < I+ gllacrylvllzacry < (11 + Cllgllza ) vl

and thus L(-) is a bounded linear form on H'. The Riesz representation
theorem therefore yields the existence and uniqueness of a function u € H*
satisfying (3.35). See also Problem 3.7.

3.7 Regularity

We have learned in Theorem 3.6 that for any f € Ly the Dirichlet problem
(3.20) has unique weak solution u € H}. It can be proved that if I' is smooth,
or if I' is a convex polygon, then, in fact, w € H?, and there is a constant C'
independent of f such that

llull2 < CIf]]-
Since f = Au, this may also be expressed as
(3.36) llull2 < C|lAull, Vu € H?>nN Hy.

Note that, when applied with, e.g., A = —A, this inequality means that it is
possible to estimate the Ls-norm of all second order derivatives of a function
u, which vanishes on I', in terms of the Ls-norm of the special combination
of second derivates of u given by the Laplacian —A. We refer to Problem 3.10
for an example, with (2 neither smooth nor convex, for which the regularity
estimate (3.36) does not hold.

The inequality (3.36) shows that u and its first and second order deriva-
tives depend continuously on f in the sense that if u; and us satisfy

—Au;=f; inf2, withu;=0 onlI, fori=1,2,

then
« a 2 1/2
(X ID%us = Dowsl?) T < Cllfy = Ll

la<2

If I' is smooth, then (3.36) can be generalized as follows. For any integer
k > 0 there is a constant C' independent of f such that if u is the weak
solution of (3.20) with f € H*, then u € H**2 N H} and

(3.37) lulle+2 < C|| fllx-

In particular, in view of Sobolev’s inequality, Theorem A.5, this implies that
if K > d/2, then u € C? and thus u is also a classical solution of (3.20).
When I is a polygon the situation is not so favorable. In fact, if 4 = —A
and 2 C R? has a corner with interior angle w, then using polar coordinates
(r,p) centered at the corner, with ¢ = 0 corresponding to one of the edges,
one can show that the solution of (3.20) behaves as u(r, ) = ¢ 7P sin(B¢p) near
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the corner, with 3 = m/w. For such a function to have H*-regularity near the
corner, it is necessary that (8/9r)*u(r, ) € La(£2), where {2y C {2 contains
a neighborhood of the corner under consideration, but no other corners. But
this requires that

BB-1)---(B—k+ 1))2/br2(ﬁk)rdr < 00
0

for b sufficiently small, or that 2(8 — k) +1 > —1 (note that 5 —k+1 =10
when 2(8 — k) +1 = —1). This in turn means that w < n/(k — 1). For k =2
all angles thus have to be < 7, i.e., {2 has to be convex. For k = 3 all angles
have to be < /2, which is a serious restriction. We refer to Problem 3.10 for
an example that illustrates this.

3.8 Problems

Problem 3.1. Give a variational formulation and prove the existence and
uniqueness of a weak solution of the Dirichlet problem

d
0 0
- Z %(a]’kaaﬁ:)ﬁ-aou:f in 2, withu=0 onlI,
j,k:l J

where aj(z) and ag(z) are functions in C(£2) such that ao(z) > 0 and the
matrix (a;jx(z)) is symmetric and uniformly positive definite in (2, so that
ajr(x) = ap;(x) and

d d
aje(2)Eiék > mZ&? with £ > 0, for £ € R, z € 0.
k=1 j=1

Problem 3.2. Show that if u satisfies —Au = f in 2,4 = 0 on I', where
f € Lo, then p = Vu is the solution to the minimization problem

. l 2
qlergf 2/9|CI| dz,
where
Hy={q=(q1,.-.,q4) : ¢i € L», =V -q = fin 2}.

Problem 3.3. Consider two bounded domains 2; and (25 with a common
boundary S and let I; = 002;\ S, where 0(2; is the boundary of {2;, i = 1,2,
see Fig. 3.1.

Give a variational formulation of the following problem: Find u; defined
in £2;, i = 1,2, such that
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I
I
Fig. 3.1. Domain with interface.
—alAul = f1 in 01, —G,QA’U/Q = f2 in 02,
u =0 on I, us =0 on I5,
and
6“1 3u2
ur =z, a1g- = on S,

where f; € La(£2;), a; > 0 is a constant, for ¢ = 1,2, and n is a unit normal
to S. Prove existence and uniqueness of a solution. Give an interpretation
from physics.

Problem 3.4. Prove Friedrichs’ inequality

1
2
ol < C(IV0IE, ) + 1ol ) *s forvec?,
where (2 is a bounded domain in R? with boundary I'. Hint: Integrate by
parts in the identity [, v?dz = [, v>*A¢dz, where ¢(z) = 5 |z|>.
Problem 3.5. Prove
2\ 1
o|| < C(||Vo|? + /vdx 2, for v € C!,
loll < (el + (| vaz))
where (2 is the unit square in R2. The inequality holds also when 2
is a bounded domain in RY. Hint: v(z) = v(y) + f;ll Dyv(s,z2)ds +
fyx; Dov(y, s) ds.
Problem 3.6. Give a variational formulation of the problem

Ou
on
where f € Ly(2) and g € Lo(I"). Prove existence and uniqueness of a weak

solution. Give an interpretation of the boundary condition in connection with
some problem in mechanics or physics. Hint: See Problem 3.4.

—Au=f in 2, with +u=g onl,
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Problem 3.7. Prove the stability estimate

lullzs ) < € (1 llLaga) + lgllzacr )
for the solution of (3.34).

Problem 3.8. Give a variational formulation of the problem

-V-(aVu)+cu=f in 2, withag—z-i-h(u—g):k on T,

where f € Ly(f2), g,k € Ly(I'), and the coefficients a, ¢, h are smooth and
such that

a(z) > a9 >0, c(x) >0 forze 2, h(z)>hy>0 forzel.

Prove existence and uniqueness of a weak solution. Prove the stability esti-
mate

lullar oy < C(1flnac2) + EllLacry + 9llary) -
Hint: Use Problem 3.4.

Problem 3.9. Consider the Neumann problem
. .. Ou
(3.38) —Au=f in 2, with o 0 onlI.

(a) Assume that f € Ly(£2) and show that the condition

/Qfdxzo.

is necessary for the existence of a solution.
(b) Notice that if u satisfies (3.38), then so does u + ¢ for any constant c.
To obtain uniqueness, we add the extra condition

/udsz,
Q

requiring the mean value of u to be zero. Give this problem a variational
formulation using the space

V:{veHl(Q):/

Q’UdJUZO}.

Prove that there is a unique weak solution. Hint: See Problem 3.5.
(c) Show that if the weak solution u € V belongs to HZ, then it solves

—Au:f—/fdm in 2, With%=0 on I
0 on
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Problem 3.10. Let (2 be a sector with angle w = 7/3:
2={(r,p):0<r<1, 0<p<n/B},

where r, ¢ are polar coordinates in the plane. Let v(r, @) = P sin(Byp). Verify
that v is harmonic, i.e., Av = 0, by computing

Av_m(%) 1 d%v

“ror\ar) T2 dp?’

(This also follows immediately by noting that v is the imaginary part of the
complex analytic function 22.) Set u(r,p) = (1 — r2)v(r, ). Then v = 0 on
I'. Show that u satisfies —Au = f with f = 4(1 + 8)v. Hence f € H(12).
Then compute ||6*u/8r?||L, (o) and conclude that u ¢ H*(R2) if § < 1, i.e., if
12 is non-convex or w > 7. Show in a similar way that v ¢ H3(2) if w > /2.
Hint: The most singular term in u,, is 8(8 — 1)r?~2 sin(Byp).

Problem 3.11. (Elliptic regularity for a rectangle.) Assume that 2 C R? is
a rectangle and that w is a smooth function with v = 0 on I'. Prove that

|uly = [| Aul].

Use this to prove (3.36) for A = —A.
Hint: Recall that

8%u. 2 Pu 2 ,0%u,2
2 __ P
|u|2 _,/_Q<(6-73f) +2(8$18$2) +(8.'L'§) )d.CC

and integrate by parts in [, ( 0°u )2 dz. Then recall the definition ||u||z =

Ox10zo
(Il + uf? + ful3)'’* and prove that fJul| < Clul, and July < ([Jull u]2)""”.
For arbitrary convex domains one can prove |ulz < ||Au|| by a slightly

more complicated argument based on the same idea.

Problem 3.12. Replace the boundary condition in Problem 3.11 by the Neu-
mann condition Ou/On = 0 on I'. Prove that |u|z = ||Aul|.

Problem 3.13. (Stability with respect to the coefficient.) Let u;, ¢ = 1,2,
be the weak solutions of the problems

-V (az-Vui) =f in (2, withu;=0 onlI,

where 2 C R? is a domain with appropriately smooth boundary I', f €
Ly(2), and the coefficients a;(z) are smooth and such that

ai(xz) > a9 >0 forze .

Prove the stability estimate

C
lur —uzly < =5 [la1 — asllel| fl-
ag



A Some Tools from Mathematical Analysis

In this appendix we give a short survey of results, essentially without proofs,
from mathematical, particularly functional, analysis which are needed in our
treatment of partial differential equations. We begin in Sect. A.1 with a simple
account of abstract linear spaces with emphasis on Hilbert space, including
the Riesz representation theorem and its generalization to bilinear forms of
Lax and Milgram. We continue in Sect. A.2 with function spaces, where after
a discussion of the spaces C*, integrability, and the L,-spaces, we turn to
Ls-based Sobolev spaces, with the trace theorem and Poincaré’s inequality.
The final Sect. A.3 is concerned with the Fourier transform.

A.1 Abstract Linear Spaces

Let V be a linear space (or vector space) with real scalars, i.e., a set such
that if u,v € V and A\, p € R, then \u + pv € V. A linear functional (or
linear form) L on V is a function L : V — R such that

L(Au+ pv) = AL(uw) + pL(v), VYu,v eV, \,p € R.

A bilinear form a(-,-) on V is a function a : V x V — R, which is linear in
each argument separately, i.e., such that, for all u,v,w € V and \,u € R,

a(du + pv,w) = da(u, w) + pa(v,w),
a(w, \u + pv) = Aa(w,u) + pa(w, v).

The bilinear form a(-,-) is said to be symmetric if
a(w,v) = a(v,w), Yv,w €YV,
and positive definite if
a(v,v) >0, YweV, v#0.

A positive definite, symmetric, bilinear form on V is also called an inner
product (or scalar product) on V. A linear space V' with an inner product is
called an inner product space.
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If V is an inner product space and (-,-) is an inner product on V, then
we define the corresponding norm by

(A1) lv|| = (v,v)*/2, forveV.
We recall the Cauchy-Schwarz inequality,
(A.2) |(w,0)| < lwllloll,  Vv,w eV,

with equality if and only if w = Av or v = Aw for some A € R, and the
triangle inequality,

(A3) lw +oll < flwll + lvll, Vo,weV.

Two elements v,w € V for which (v,w) = 0 are said to be orthogonal.
An infinite sequence {v;}$2, in V' is said to converge to v € V, also written
v; = v as i — 00 or v = lim;_, v;, if

[lv;—v|]| =0 asi— oo.
The sequence {v;}5°, is called a Cauchy sequence in V' if
||lv; —vj]l =0 asi,j— oo.

The inner product space V is said to be complete if every Cauchy sequence
in V is convergent, i.e., if every Cauchy sequence {v;}3°; has a limit v =
limwv; € V. A complete inner product space is called a Hilbert space.

When we want to emphasize that an inner product or a norm is associated
to a specific space V', we write (-,-)y and || - ||v.

It is sometimes important to permit the scalars in a linear space V to be
complex numbers. Such a space is then an inner product space if there is a
functional (v, w) defined on V' x V, which is linear in the first variable and
hermitian, i.e., (w,v) = (v,w). The norm is then again defined by (A.1) and
V is a complex Hilbert space if completeness holds with respect to this norm.
For brevity we generally consider the case of real-valued scalars in the sequel.

More generally, a norm in a linear space V is a function ||- || : V = R4
such that
[|lv]| >0, YoeV, v#£0,
IAwfl = Al |vfl, VAeR (or C), vev,
o+ wl| <[Pl +[lwll,  Yo,weV.

A function |-| is called a seminorm if these conditions hold with the exception
that the first one is replaced by |v] > 0, Vv € V, i.e,, if it is only positive
semidefinite, and thus can vanish for some v # 0. A linear space with a norm
is called a normed linear space. As we have seen, an inner product space is
a normed linear space, but not all normed linear spaces are inner product
spaces. A complete normed space is called a Banach space.
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Let V be a Hilbert space and let V; C V be a linear subspace. Such a
subspace Vj is said to be closed if it contains all limits of sequences in Vj,
ie., if {v;}32, C Vo and v; — v as j — oo implies v € Vp. Such a Vp is itself
a Hilbert space, with the same inner product as V.

Let Vj be a closed subspace of V. Then any v € V may be written uniquely
as v = vy +w, where vy € Vy and w is orthogonal to V. The element vy may
be characterized as the unique element in V4 which is closest to v, i.e.,

A4 - = mi —ul|.
(A4) o = voll = min [lv — u|

This is called the projection theorem and is a basic result in Hilbert space
theory. The element vy is called the orthogonal projection of v onto V; and is
also denoted Py,v. One useful consequence of the projection theorem is that
if the closed linear subspace Vj is not equal to the whole space V, then it has
a normal vector, i.e., there is a nonzero vector w € V which is orthogonal to
V.

Two norms || - ||, and || - ||s are said to be equivalent in V if there are
positive constants ¢ and C such that

(A.5) cllolly < flvlla < Cllvlls, Vv e V.

Let V,W be two Hilbert spaces. A linear operator B : V — W is said to
be bounded, if there is a constant C' such that

(A.6) |Bullw < Cllvflv, VoeV.

The norm of a bounded linear operator B is

[I1Bullw
vev\{o} lvllv

(A7) 1Bl =

Thus
|Bullw < [|B|||lv|lv, VveYV,

and, by definition, ||B|| is the smallest constant C' such that (A.6) holds.
Note that a bounded linear operator B : V. — W is continuous. In fact,
ifv; > vin V, then Bv; = Bv in W as j — oo, because

|Bvj — Bollw = [|B(v; —v)llw < [|B [lvj —v[]| =0, asj— oo.

One can show that, conversely, a continuous linear operator is bounded.

In the special case that W = R the definition of an operator reduces to
that of a linear functional. The set of all bounded linear functionals on V is
called the dual space of V, denoted V*. By (A.7) the norm in V* is

|L(v)]

(A.8) IL||v- = :
vev\io} lIvllv
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Note that V* is itself a linear space if we define (AL + uM)(v) = AL(v) +
puM @) for L, M € V*, A\, u € R. With the norm defined by (A.8), V* is a
normed linear space, and one may show that V* is complete, and thus itself
also a Banach space.

Similarly, we say that the bilinear form a(-,-) on V is bounded if there is
a constant M such that

(A.9) la(w,v)| < Mljw||[lv]], Yw,veV.
The next theorem states an important property of Hilbert spaces.

Theorem A.1l. (Riesz’ representation theorem.) Let V' be a Hilbert space
with scalar product (-,-). For each bounded linear functional L on 'V there is
a unique u € V such that

L(v) = (v,u), YveV.
Moreover,
(A.10) LIy~ = [lully-

Proof. The uniqueness is clear since (v,u1) = (v, u2) with v = u; —u» implies
[lur — uz2l|? = (w1 — ua,uy —uz) = 0. If L(v) =0 for all v € V, then we may
take u = 0. Assume now that L(7) # 0 for some v € V. We will construct u
as a suitably normalized “normal vector” to the “hyperplane” Vo = {v e V :
L(v) = 0}, which is easily seen to be a closed subspace of V, see Problem A.2.
Then o = vg +w with vy € V5 and w orthogonal to Vy and L(w) = L(v) # 0.
But then L(v — w L(v)/L(w)) = 0, so that (v — w L(v)/L(w),w) = 0 and
hence L(v) = (v,u), Vv € V, where u = w L(w)/||w]||*. O

This result makes it natural to identify the linear functionals L € V* with
the associated u € V, and thus V* is equivalent to V, in the case of a Hilbert
space.

We sometimes want to solve equations of the form: Find w € V' such that

(A.11) a(u,v) = L(v), Yv eV,

where V' is a Hilbert space, L is a bounded linear functional on V', and af(, )
is a symmetric bilinear form, which is coercive in V, i.e.,

(A.12) a(v,v) > allv||}, Vv €V, witha>0.

This implies that a(-,-) is symmetric, positive definite, i.e., an inner product
on V, and the Riesz representation theorem immediately gives the existence
of a unique solution u € V for each L € V'*.

Moreover, by taking v = u in (A.11) we get

allully < au,u) = L(u) < [|Lllv- [lullv,
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so that, after cancelling one factor ||u||v,
(A.13) [[ully < C||L||y~, where C' =1/a.

This is an example of an energy estimate.

If a(-,-) is a symmetric bilinear form, which is coercive and bounded in V/,
so that (A.12) and (A.9) hold, then we may define a norm || - |,, the energy
norm, by

V]l = alv,v)?, forveV,
By (A.12) and (A.9) we then have
(A.14) Valvlly <llvlle <VMlplly, Vo€V,
and thus the norm || - ||, on V is equivalent to || - ||y-. Clearly, V is then also
a Hilbert space with respect to the scalar product a(-,-) and norm || - |-

The solution of (A.11) may also be characterized in terms of a minimiza-
tion problem.

Theorem A.2. Assume that a(-,-) is a symmetric, positive definite bilinear
form and that L is a bounded linear form on the Hilbert space V. Thenu € V
satisfies (A.11) if and only if

(A.15) F(u) < F(v), Yv€V, whereF(v)=3a(v,v) — L(v).

Proof. Suppose first that u satisfies (A.11). Let v € V be arbitrary and define
w=v—u€V. Then v =u+ w and

F(v) = 1a(u +w,u +w) — L(u + w)
= La(u,u) — L(u) + a(u,w) — L(w) + +a(w,w)
= F(u) + ta(w,w),
where we have used (A.11) and the symmetry of a(:,-). Since a is positive

definite, this proves (A.15).
Conversely, if (A.15) holds, then for v € V given we have

g(t) := F(u+tv) > F(u) =g(0), VteR,
so that ¢g(t) has a minimum at ¢t = 0. But g(t) is the quadratic polynomial

g(t) = La(u+ tv,u + tv) — L(u + tv)
= La(u,u) — L(u) + t(a(u,v) — L(v)) + 2t%a(v,v),
and thus 0 = ¢'(0) = a(u,v) — L(v), which is (A.11). O

Thus, u € V satisfies (A.11) if and only if 4 minimizes the energy func-
tional F'. This method of studying the minimization problem by varying the
argument of the functional F' around the given vector w is called a variational
method, and the equation (A.11) is called the variational equation of F.

The following theorem, which is known as the Laz-Milgram lemma, ex-
tends the Riesz representation theorem to nonsymmetric bilinear forms.
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Theorem A.3. If the bilinear form a(-,-) is bounded and coercive in the
Hilbert space V', and L is a bounded linear form in V', then there exists a
unique vector u € V such that (A.11) is satisfied. Moreover, the energy esti-
mate (A.13) holds.

Proof. With (-,-) the inner product in V' we have by Riesz’ representation
theorem that there exists a unique b € V such that

L(v) = (b,v), YveV.

Moreover, for each v € V', a(u,-) is clearly also a bounded linear functional
on V, so that there exists a unique A(u) € V such that

a(u,v) = (A(u),v), YveV.

It is easy to check that A(u) depends linearly and boundedly on u, so that
Au = A(u) defines A : V — V as a bounded linear operator. The equation
(A.11) is therefore equivalent to Au = b, and to complete the proof of the
theorem we shall show that this equation has a unique solution u = A~1b for
each b.

Using the coercivity we have

alloll}; < a(v,v) = (Av,v) < [|Avllv|lvllv,
so that
(A.16) allvlly < ||Av]lv, VveV.

This shows uniqueness, since Av = 0 implies v = 0. This may also be ex-
pressed by saying that the null space N(A4) = {v € V : Av =0} =0, or that
A is injective.

To show that there exists a solution u for each b € V' means to show that
each b € V belongs to the range R(A) = {w € V : w = Av for some v € V},
ie., R(A) =V, or Ais surjective. To see this we first note that R(A) is a closed
linear subspace of V. To show that R(A) is closed, assume that Av; — w in
V as j — oco. Then by (A.16) we have |jv; — v;l|ly < a™!||Av; — Avi|ly = 0
as i,j — oo. Hence v; =+ v € V as j — oo, and by the continuity of A, also
Av; = Av = w. Therefore, w € R(A) and R(A) is closed.

Assume now that R(A) # V. Then, by the projection theorem, there
exists w # 0, which is orthogonal to R(A). But, by the orthogonality,

allwlly, < a(w,w) = (Aw,w) =0,

so that w = 0, which is a contradiction. Hence R(A) = V. This completes
the proof that there is a unique solution for each b € V. The energy estimate
is proved in the same way as before. O
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In the unsymmetric case there is no characterization of the solution in
terms of energy minimization.

We finally make a remark about linear equations in finite-dimensional
spaces. Let V = R and consider a linear equation in V, which may be
written in matrix form as

Au =b,

where A is a N x N matrix and u,b are N-vectors. It is well-known that
this equation has a unique solution v = A~!b for each b € V, if the matrix
A is nonsingular, i.e., if its determinant det(A) # 0. If det(A) = 0, then the
homogeneous equation Au = 0 has nontrivial solutions v # 0, and R(A) # V
so that the inhomogeneous equation is not always solvable. Thus we have
neither uniqueness nor existence for all b € V. In particular, uniqueness only
holds when det(A) # 0, and we then also have existence. It is sometimes easy
to prove uniqueness, and we then also obtain the existence of the solution at
the same time.

A.2 Function Spaces

The Spaces C*

For M C R? we denote by C(M) the linear space of continuous functions
on M. The subspace Cp(M) of all bounded functions is made into a normed
linear space by setting (with a slight abuse of notation)

(A.17) lvlle(ary = sup [v(@)].
rEM

For example, this defines ||v||¢(ge), which we use frequently. When M is
a bounded and closed set, i.e., a compact set, the supremum in (A.17) is
attained in M and we may write

ollecary = max ().

The norm (A.17) is therefore called the mazimum-norm. Note that conver-
gence in C(M),

|[vi = vlleary = sup |vi(z) —v(z)| = 0, asi— oo,
xEM

is the same as uniform convergence in M. Recall that if a sequence of con-
tinuous functions is uniformly convergent in M, then the limit function is
continuous. Using this fact it is not difficult to prove that C(M) is a complete
normed space, i.e., a Banach space. C(M) is not a Hilbert space, because the
maximum-norm is not associated with a scalar product as in (A.1).
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Let now 2 C R? be a domain, i.e., a connected open set. For any integer
k > 0, we denote by C*(f2) the linear space of all functions v that are k times
continuously differentiable in (2, and by C*(f2) the functions in C*(2), for
which D% € C(2) for all |a| < k, where D®v denotes the partial derivative
of v defined in (1.8). If £2 is bounded, then the latter space is a Banach space
with respect to the norm

vller 2y = max I1D%vll¢(g)-

For functions in C¥(2), k > 1, we sometimes also use the seminorm containing
only the derivatives of highest order,

[vler(2) = max I1D%vl|¢(q)-

A function has compact support in (2 if it vanishes outside some compact
subset of 2. We write C¥ ({2) for the space of functions in C¥(£2) with compact
support in (2. In particular, such functions vanish near the boundary I', and
for very large z if (2 is unbounded.

We say that a function is smooth if, depending on the context, it has
sufficiently many continuous derivatives for the purpose at hand.

When there is no risk for confusion, we omit the domain of the functions
from the notation of the spaces and write, e.g., C for C(2) and || - ||cx for
Il - llcx(22), and similarly for other spaces that we introduce below.

Integrability, the Spaces L,

Let 2 be a domain in R?. We shall need to work with integrals of functions
v = v(z) in 2 which are more general than those in C({2). For a nonnegative
function one may define the so-called Lebesgue integral

IQ(U):/QU(;U)da:,

which may be either finite or infinite, and which agrees with the standard
Riemann integral for v € C(2). The functions we consider are assumed mea-
surable; we shall not go into details about this concept but just note that
all functions that we encounter in this text will satisfy this requirement. A
nonnegative function v is said to be integrable if Ip(v) < 0o, and a general
real or complex-valued function v is similarly integrable if |v| is integrable. A
subset 2 of (2 is said to be a nullset, or a set of measure 0, if its volume |2
equals 0. Two functions which are equal except on a nullset are said to be
equal almost everywhere (a.e.), and they then have the same integral. Thus
if v1(z) =1 in a bounded domain 2 and if vo(x) = 1 in {2 except at xg € 12
where va(zg) = 2, then Io(v1) = In(ve) = |2]. In particular, from the fact
that a function is integrable we cannot draw any conclusion about its value
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at a point xg € (2, i.e., the point values are not well defined. Also, since the
boundary I' of {2 is a nullset, I5(v) = Io(v) for any v.
We now define

/p
/|v |pd$ , for 1 < p < oo,
lvllz, = llvllz, @) =
ess sup [v(x)], for p = o0,

and say that v € L, = L,(2) if ||v||[z, < oo. Here the ess sup means the
essential supremum, disregarding values on nullsets, so that, e.g., ||v2]|., =1
for the function v, above, even though supg, v2 = 2. One may show that L,
is a complete normed space, i.e., a Banach space; the triangle inequality in
L, is called Minkowski’s inequality. Clearly, any v € C belongs to L, for
1 <p< xif 2is bounded, and

[vlle, < Cllvlle, with C = |2|'/7, for1<p<oo, and |l = [lollc,

but L, also contains functions that are not continuous. Moreover, it is not
difficult to show that C({2) is incomplete with respect to the L,-norm for
1 < p < 0. To see this one constructs a sequence {v; }$2, C C(£2), which is a
Cauchy sequence with respect to the L,-norm, i.e., such that ||v; —vj||z, — 0,
but whose limit v = lim;_, o, v; is discontinuous. However, C({2) is a dense
subspace of L,(f2) for 1 < p < oo, if I' is sufficiently smooth. By this
we mean that for any v € L, there is a sequence {v;}52; C C such that
lvi = vl|lr, = 0 asi — oo. In other words, any function v € L, can be ap-
proximated arbitrarily well in the L,-norm by functions in C (in fact, for any
k by functions in C§). In contrast, C is not dense in Ly, since a discontinuous
function cannot be well approximated uniformly by a continuous function.
The case Lo is of particular interest to us, and this space is an inner
product space, and hence a Hilbert space, with respect to the inner product

(A.18) (v,w):/ v(z)w(z) dz.
e

In the case of complex-valued functions one takes the complex conjugate of
w(z) in the integrand.

Sobolev Spaces

We shall now introduce some particular Hilbert spaces which are natural
to use in the study of partial differential equations. These spaces consist of
functions which are square integrable together with their partial derivatives
up to a certain order. To define them we first need to generalize the concept
of a partial derivative.

Let 2 be a domain in R? and let first v € C'(2). Integration by parts
yields
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v / ¢ 1_ ol
de=—-[ v dz, V¢ e Cy=Cy(12).
If v € Ly = Ly(2), then Ov/0x; does not necessarily exist in the classical
sense, but we may define dv/0z; to be the linear functional

_ Ov _ % 1
() = Qvaxi dz, V¢ e€(y.

(A.19) L(9) = 5

This functional is said to be a generalized or weak derivative of v. When L
is bounded in Lo, ie., [L(#)| < C||¢||, it follows from Riesz’ representation
theorem that there exists a unique function w € Ly, such that L(¢) = (w, ¢)
for all ¢ € Lo, and in particular

—/vad)dx:/wédw, Yo € C;.
o Oz Q

We then say that the weak derivative belongs to Ly and write dv/0z; = w.
In this case we thus have

ov _ 09 1
(A.20) ; 8xi¢dx = /Qvaxi dz, V¢ eC(y.

In particular, if v € C1({2), then the generalized derivative dv/0z; coincides
with the classical derivative dv/0x;.

In a similar way, with D®v denoting the partial derivative of v defined in
(1.8), we define the weak partial derivative D®v as the linear functional

(A.21) Dau(¢):(_1)la\/ vD%dz, Vel
2

When this functional is bounded in Ls, Riesz’ representation theorem shows
that there exists a unique function in Lo, which we denote by D®v, such that

(D%, $) = (~1)1(v, D¥¢), Vo € C,”.

We refer to Problem A.9 for further discussion of generalized functions.
We now define H* = H*(12), for k > 0, to be the space of all functions
whose weak partial derivatives of order < k belong to Lo, i.e.,

H" = H*(2)={v € L,: D € L, for |a| < k},

and we equip this space with the inner product

(v,w)g = (v, wW)gr = Z / D*vD%w dz,
2

lo|<k

and the corresponding norm
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lolle = s = @032 = (3 [ (072 as)’

|| <k

In particular, ||v|lo = ||v||L,, and in this case we normally omit the subscript
0 and write ||v||. Also

ol = ([ {v? +§‘, (5" ee) " = (i +we)

and

[v]|2 = (/ {v +i 5?1 i (822;%)2}‘137)1/2.
Jj=1 i,j=

We sometimes also use the seminorm, for k£ > 1,

1/2
(A.22) [v]g = |v|gr = Z/ (D%v) dw

loe|=k

Note that the seminorm vanishes for constant functions. Using the fact that
L, is complete, one may show that H* is complete and thus a Hilbert space,
see Problem A.4. The space H* is an example of a more general class of
function spaces called Sobolev spaces.

It may be shown that C! = C!(12) is dense in H* = H*(12) for any | > k, if
I' is sufficiently smooth. This is useful because it allows us to obtain certain
results for H* by carrying out the proof for functions in C*¥, which may be
technically easier, and then extend the result to all v € H* by using the
density, cf. the proof of Theorem A.4 below.

Similarly, we denote by W} = Wk (2) the normed space defined by the
norm

P
|11||W;c = / Z |D%v|? da:) , forl<p< oo,

la|<k

with the obvious modification for p = oo. This space is in fact complete and
hence a Banach space. For p = 2 we have WF = H*. Again, for v € C* we
have [[v|lwx = ||vl|c-

Trace Theorems

If v € C(f2), then v(z) is well defined for x € I', the boundary of (2. The
trace yv of such a v on I is the restriction of v to I', i.e.,

(A.23) (y)(z) = v(x), forxz € I.

Recall that since I' is a nullset, the trace of v € Ly(£2) is not well defined.
Suppose now that v € H'(£2). Is it then possible to define v uniquely
on I, i.e., to define its trace yv on I'? (One may show that functions in
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H'(£2) are not necessarily continuous, cf. Theorem A.5 and Problems A.6,
A.7 below.) This question can be made more precise by asking if it is possible
to find a norm || - [|(p) for functions on I" and some constant C' that

(A.24) vollery < Cllvlls, Yo € C'(2).

An inequality of this form is called a trace inequality. If (A.24) holds, then
by a density argument (see below) it is possible to extend the domain of
definition of the trace operator  from C'(f2) to H'({2), and (A.24) will also
hold for all v € H'(£2). The function space to which yv will belong will be
defined by the norm || - [|(r) in (A.24).

We remark that in the above discussion the boundary I" could be replaced
by some other subset of {2 of dimension smaller than d.

In order to proceed with the trace theorems, we first consider a one-
dimensional case, with I" corresponding to a single point.

Lemma A.1. Let 2 = (0,1). Then there is a constant C such that
[v(z)] < Cllvlli, VYo € 2, Vvel'(9).

Proof. For z,y € {2 we have v(z) = v(y) + f; v'(s)ds, and hence by the
Cauchy-Schwarz inequality

1
[v(z)| < [v(y)] +/ [v'(s)[ds < [o(y)] + [[V']l.
0
Squaring both sides and integrating with respect to y, we obtain,
(A.25) v(z)* <2(jol” + [lV'II*) = 2[Jv]l}-
which shows the desired estimate. O

We now show a simple trace theorem. By Ly(I") we denote the Hilbert
space of all functions that are square integrable on I" with norm

1/2
Il = ( [ u?as) ™

Theorem A.4. (Trace theorem.) Let 2 be a bounded domain in R% (d > 2)
with smooth or polygonal boundary I'. Then the trace operator ~y : C*(2) —
C(I') may be extended to v : H*(£2) — Lo(I"), which defines the trace yv €
Ly(T) for v e HY(2). Moreover, there is a constant C = C(2) such that

(A.26) volleaery < Cllvlly, Yo € H ().

Proof. We first show the trace inequality (A.26) for functions v € C*(£2). For
simplicity we consider only the case when 2 = (0,1) x (0, 1), the unit square
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in R2. The proof in the general case is similar. For x = (21, 22) € {2 we have
by (A.25)

! L o 2
2 2
v(0, z3) 32(/0 v(21,22)° dry +/0 (—6331 (:171,:1:2)) dxl),

and hence by integration with respect to xs,
1
/ 0(0,2)* daz < 2([[ol|? + [|Vo]?) = 2[Jo]f3.
0

The analogous estimates for the remaining parts of I complete the proof of
(A.26) for v € CL.

Let now v € H1(2). Since C! is dense in H' there is a sequence {v;}$2; C
C! such that ||v — v;||1 — 0. This sequence is then a Cauchy sequence in H?,
ie., |lvi —vj|l1 = 0 as 4,5 — co. Applying (A.26) to v; —v; € C!, we find

||7/Ui - ’ij||L2(1") < C”Ui - Uj||1 — 05 as Z:J — 00,

ie., {yv;}32, is a Cauchy sequence in Ly(I"), and thus there exists w € Ly(I")
such that yv; = w in Ly(I") as ¢ — oo. We define yv = w. It is easy to show
that (A.26) then holds for v € H!. This extends v to a bounded linear
operator v : H(£2) — Lo(I'). Since C! is dense in H', there is only one such
extension (prove this!). In particular, v is independent of the choice of the
sequence {v;}. O

The constant in Theorem A.4 depends on the size and shape of the domain
. Tt is sometimes important to have more detailed information about this
dependence, and in Problem A.15 we assume that the shape is fixed (a square)
and investigate the dependence of the constant on the size of (2.

The following result, of a somewhat similar nature, is a special case of the
well-known and important Sobolev inequality.

Theorem A.5. Let {2 be a bounded domain in R? with smooth or polygonal
boundary and let k > d/2. Then H*(£2) C C({2), and there exists a constant
C = C(£2) such that

(A.27) |lvlle < Cllv|lk, Vv e H’“(Q)

In the same way as for the trace theorem it suffices to show (A.27) for
smooth v, see Problem A.20. The particular case when d = k = 1 is given
in Lemma A.1, and Problem A.13 considers the case 2 = (0,1) x (0,1). The
general case is more complicated. As shown in Problems A.6, A.7, a function
in H'(02) with 2 c R? is not necessarily continuous when d > 2.

If we apply Sobolev’s inequality to derivatives of v, we get

(A.28) vllce < Cllollg, Vv € H*¥(9), if k> £+ d/2,

and we may similarly conclude that H*(£2) C C*(2) if k > £+ d/2.
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The Space H}(£2). Poincaré’s Inequality

Theorem A.4 shows that the trace operator y : H'(£2) — Ly(I') is a bounded
linear operator. This implies that its null space,

H(2) = {ve H (2):yv =0},

is a closed subspace of H!(2), and hence a Hilbert space with the norm ||-||;.
It is the set of functions in H! that vanish on I' in the sense of trace. We
note that the seminorm |v|; = ||Vv|| defined in (A.22) is in fact a norm on
H} (), equivalent to || - |1, as follows from the following result.

Theorem A.6. (Poincaré’s inequality.) If 2 is a bounded domain in RY,
then there exists a constant C = C(f2) such that

(A.29) loll < ClIVoll, Vv e Hg(02).

Proof. As an example we show the result for 2 = (0,1) x (0,1). The proof
in the general case is similar.

Since C§ is dense in H{, it suffices to show (A.29) for v € C}. For such a
v we write

v(z) = %(s,azz)ds, for x = (x1,x2) € 2,
0 1

and hence by the Cauchy-Schwarz inequality

()2 < /01 ds/ol (5—;(5,@))2(13.

The result now follows by integration with respect to 22 and x;, with C =1
in this case. o

The equivalence of the norms |- |; and || - ||; on Hg(£2) now follows from
IVoll? < [lollf = [loll® + Vol < (C+D[[Vol?, Vo e Hy(2).

The dual space of H}({2) is denoted H~1(£2). Thus H=! = (H})* is the
space of all bounded linear functionals on H}. The norm in H ! is (cf. (A.8))

L(v
(A.30) 1l zeye = L1 = sup E@L
veH] |vl

A.3 The Fourier Transform

Let v be a real or complex function in Ly (Rd). We define its Fourier transform
for £ = (&1,...,&) € R? by
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' d
Fou(§) =0(¢) = / v(z)e ®*dx, wherez £ = Za:jgj.
R4 =
The inverse Fourier transform is
Flu(z) = o(z) = (27r)_d/ v(€)e' ¢ dé = (2m)~%(—x), for z € RY.
Rd

If v and 9 are both in L;(R¢?), then Fourier’s inversion formula holds, i.e.,
FHF v) = () =v.

The inner product in Ly (R9) of two functions can be expressed in terms of
their Fourier transforms according to Parseval’s formula,

(A.31) [ @ e = ent [ @@,

Rd
or
(an) = (27r)_d(ﬁ,1f)), where ('U,'U)) = (vaw)Lz(Rd)'

In particular, we have for the corresponding norms
(A.32) lloll = (2m)=*2|j]].

Let D*v be a partial derivative of v as defined in (1.8). We then have,
assuming that v and its derivatives are sufficiently small for |z| large,

F(D)(€) = (i€)*9(€) = il*Ie¥5(¢), where £* = £ -+ €52,

In fact, by integration by parts,

D(z)e "¢ dz = (—1)le v(x)D* (e ') dx = (i€)*0(£).
R4 RA

Further, translation of the argument of the function corresponds to multipli-
cation of its Fourier transform by an exponential,

(A.33) Fu(- +9)(€) = e¥55(¢), for y € RY,
and for scaling of the argument we have
(A.34) Fu(a)(€) = a %(a™1E), for a > 0.

The convolution of two functions v and w is defined by

)@ = [ ow—ywwdr= [ -,

RA

and we have
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F(vxw)(§) = o(§)d(§),

Lo (vt st a)e 5

:/ / v(z — y)w(y)e =¥ €= W€ g dy
R JR4

:/ / v(2)w(y)e e E dz dy.
R¢ JR4

It follows, which can also easily be shown directly, that differentiation of a
convolution can be carried out on either factor,

because

D¥(wxw) = D% xw =v * D%.

A.4 Problems

Problem A.1. Let V be a Hilbert space with scalar product (-,-) and let
u € V be given. Define L : V — R by L(v) = (u,v) Yv € V. Prove that L is
a bounded linear functional on V. Determine ||L]|.

Problem A.2. Prove that if L : V — R is a bounded linear functional and
{vi} is a sequence with L(v;) = 0 that converges to v € V, then L(v) = 0.
This proves that the subspace Vj in the proof of Theorem A.1 is closed.

Problem A.3. Prove the energy estimate (A.13) by using (A.10) and (A.14).
Hint: Recall (A.8) and note that (A.10) means

|L(v)]
veV\{0} [lv]]a

= [[ulla-

Problem A.4. Given that Ly({2) is complete, prove that H*({2) is complete.
Hint: Assume that ||v; — v;]l1 = 0 as 4,j — oo. Show that there are v, wy,
such that ||v; —v|| = 0, ||0v;/0zr — wk|| — 0, and that wy = Ov/dzy, in the
sense of weak derivative.

Problem A.5.Let 2 = (—1,1) and let v : 2 — R be defined by v(z) = 1 if
z € (—1,0) and v(z) = 0 if z € (0,1). Prove that v € Lo({2) and that v can
be approximated arbitrarily well in Lo-norm by C°-functions.

Problem A.6. Let 2 be the unit ball in R4, d =1,2,3,ie., 2 ={z € R?:
|| < 1}. For which values of A € R does the function v(z) = |z|* belong to
(a) L2(£2), (b) H'(£2)?

Problem A.7. Check if the function v(z) = log(— log |z|?) belongs to H*({2)
if 2 ={z € R?: |z| < 1}. Are functions in H'(f2) necessarily bounded and
continuous?
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Problem A.8. It is known that C} (£2) is dense in L (£2) and H (£2). Explain
why C§(£2) is not dense in H'(£2).

Problem A.9. The generalized (or weak) derivative defined in (A.19) is a
special case of the so-called generalized functions or distributions. Another
important example is Dirac’s delta, which is defined as a linear functional
acting on continuous test functions, for 2 C R,

3(¢) = ¢(0), Vo€ ().
Let now d=1, 2 = (—1,1) and
) Z 0: 1, 0,
f(m)z{g z<0 g(w):{o 220.

Show that f' =g, ¢’ = § in the sense of generalized derivative, i.e.,
@) == [ s0da= [ goas. voeci
§(6) == [ o8 d = 900, V6 € Ch(2).

Conclude that the generalized derivative f' = g belongs to Lo, but that g’ = §
does not. For the latter statement, you must show that ¢ is not bounded with
respect to the Ly-norm, i.e., you need to find a sequence of test functions such
that ||¢;||z, — 0, but ¢;(0) =1 as i — oco. Thus, f € H(2) and g ¢ H*(12).

Problem A.10. For f € Ly({2) we define the linear functional f(v) = (f,v)
Vv € Ly(£2). Show the inequality, cf. (A.30),

7l < ClfNl,  VF € La(£2).
Conclude that Ls(2) C H~1(0).

Problem A.11. Let 2 = (0,1) and f(z) = 1/z. Show that f & Ly(f2). Show
that f € H=1(£2) by defining the linear functional f(v) = (f,v) Yv € Hg(12),
and proving the inequality

[(f,0) <CIWIl, Vo€ Hy(2).
Conclude that H=1(2) ¢ L2(2).

Problem A.12. Prove that if 2 = (0, L) is a finite interval, then there is a
constant C' = C(L) such that, for all z € 2 and v € C'(12),

(a) wwnszr{éwnw+Ameyscmmwmp

(b) wwWSL*/wP@+L/wV@scm%
(94 02
© o(@)? < L [ol> + 2]l 1] < Clloll llell.
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Problem A.13. Prove that if 2 is the unit square in R?, then there exists
a constant C' such that

(a) lollz,ry < Clivllwy (o), Vo € C'(02),
(b) llvlle < Cllvllws, Vv € C*(02).

Since [v]ly> < 3'/2[02|'/||v|| >, part (b) implies the special case of Theorem
A5 with k = d = 2 and (2 a square domain. Part (b) directly generalizes to
llvlle < Cllvllyga for £2 C R Hint: Proof of Theorem A.4.

Problem A.14. (Scaling of Sobolev norms.) Let L be a positive number and
consider the coordinate transformation x = L&, which maps the bounded
domain 2 C R? onto 2. A function v defined on 2 is transformed to a
function ¢ on (2 according to 6(&) = v(L&). Prove the scaling identities

(a) ollzagay = L2611 -
(b) IVollzagay = LY IV6ll -
(©) lollary = L2722l 1y

Problem A.15. (Scaled trace inequality.) Let 2 = (0, L) x (0, L) be a square
domain of side L. Prove the scaled trace inequality

1/2 _
lollzary < C(L Mol ) + LIVelE ) > Yo €CH@).

Hint: Apply (A.26) with 2 = (0,1) x (0,1) and use the scaling identities in
Problem A.14.

Problem A.16. Let 2 be the unit square in R?. Prove the trace inequality
in the form

o120y < C (013 (c) + [0l o 1V0lla) < Cllell ol

Hint: Start from

Y1

v(0,y2)” = v(y1,92)° — v(s,y2)” ds.

0 61’1

Problem A.17.1t is a fact from linear algebra that all norms on a finite-
dimensional space V' are equivalent. Illustrate this by proving the following
norm equivalences in V = RM:

(A35) ||U||l2 < ||U||l1 < \/N”U”lza

(A.36) [0l < [0l < VN0llre.
(A.37) ol < lvlley < Nllvllece
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where

N 1/p
Iolh, = (X ) ™ fort<p<oo, ol = max, sl
=

Note that the equivalence constants tend to infinity as N — co.

Problem A.18. Prove (A.33) and (A.34).

Problem A.19. Prove that the Fourier transform of v(z) = e~I*/” is 6(¢) =
nd/2e=1€1%/4

Problem A.20. Assume that Sobolev’s inequality in (A.27) has been proved
for all v € C*(2) with k > d/2. Prove Sobolev’s imbedding H*(2) C C(12).
In other words, for each v € H*(£2) show that there is w € C(£2) such that
v = w almost everywhere, i.e., ||v —wl|, = 0. Hint: C¥(£2) is dense in H*(12)
and C(f2) is a Banach space.
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