Matematik Chalmers

TMAO026/MMAA430 Partial differential equations II
Partiella differentialekvationer II, 2016—-08-26 f M

Telefon: Adam Malik 031-7725325
Inga hjilpmedel. Kalkylator ej tillaten. No aids or electronic calculators are permitted.

You may get up to 10 points for each problem plus points for the hand-in problems.
Grades: 3: 20p—29p, 4: 30p—39p, 5: 40p—, G: 20p-34p, VG: 35p—

1. Consider the Poisson equation —Au = f in R3.

(a) Show that the fundamental solution U(x) =

Sol. We remember that Laplace operator in spherical coordinates —AU = —r~2(r2U/)". We
note for r # 0 that,

4rlz|”

—AU = —r2(r2U)! = —r72(=(4n) ") = 0.
For any ¢ € C5°(R?) we have,

/ U(-Ag) dx:/ (—AU)gbda:—ir/ (60nU — Udnd) ds
|z|>e |z|>e€

|z|=e

- +/ ($0uU — Udd) ds.
|z|=¢
Note that 9,U = —U].. We get for the first term 9,U| ;= = —U}|,— = 4me~? and therefore,

1
d d
/|x|—6 @0 U ds = P ~/|:v—6d) s — ¢(0),

as € — 0.
We also have

= (4e) < €|Vollomay — 0,

/ OnoU ds
|z|=€

as € — 0. We conclude,

N/

/ | UG e 6(0),

as € — 0.
(b) Show that u(z) = (U * f)(2) = [gs Uz — y) f(y) dy.

Sol. We have
=/ o(y) f(y) dy
R4

_ /]R d /R Ula—y)A(a) def(y) dy

/R/R (2 — )1 (y) dyAd(z) da

(u, A¢p)
= (Au7 ¢)7

for all ¢ € C3°(R?). Integration by parts is possible since D;Dju = D;D;(U x f) = (D;U *
D;f)(z) € C?(RY), see proof of Theorem 3.4 in Larsson-Thomeé. We conclude Au = f.
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2. Consider the Neumann problem, find u such that

—Au = f, in Q,
{ Opu = g, on I,
where f € L?(Q) and g € L?(T).
(a) Under what additional assumption on f and g do we have existence of solution?
Sol. We derive the weak form, find u € H'(2) such that, (Vu, Vv) = (f,v) + (g,v)r for all
ve H'(Q). Welet v=1¢€ H'(Q) and conclude [, fdz+ [ gds=0.
(b) Show that a solution u can not be unique.
Sol. Given a solution v + C' is also a solution for any constant C.
(c) What is the smallest eigenvalue of the corresponding eigenvalue problem, where g = 0 and f
is replaced by Au?
Sol. We first note that the Rayleigh quotient (v(ivv)) is non-negative since the bilinear form

is symmetric. It is minimized by letting v = C' € R and the minimum is 0 i.e. the smallest
eigenvalue is zero.

3. Consider the following abstract elliptic problem in weak form: find u € Hg(£2) such that,

alu,v) = I(v),
where q is a bilinear form, [ is a linear functional, and €2 is a bounded domain in R3.

(a) Show that HE(Q) is a closed subspace of H'(). The trace theorem for functions in H?!(£2)
can be used without proof.
Sol. Let {v;}32, € Hg(Q) be a sequence with limit v ¢ H§(Q) ie. |yv|[z2@) = > 0. For
any € > 0 there exists an n such that,

CHUz - ’UHHl(Q) <e.
Using the trace theorem we get,
6 = [[yvlle@y = (v = vi)ll2ry < Cllvi —vl|E) <€

for all i > n. By choosing € < § we get a contradiction i.e. H}(Q) is a closed subspace of
H'(Q) and therefore a Hilbert space.

(b) Give sufficient assumptions on a and [ so that the problem has a unique solution in Hg (€2).
Sol. a should be coercive and bounded and [ should be bounded.

(¢) Give an example of a linear functional [ that violates the conditions in (b).
[o(z)]

||7JHH1(Q)

Sol. Let { = 4. Then [|I|g-1(q) = SuPyeni(a) = oo since H'(f2) are not in general

pointwise defined in R3.

4. Let Q C R? be a convex domain, with boundary I'. Consider the heat equation,
uw— Au=0, in Qx(0,7),
u =0, onI'x (0,7),
u(-,0) = v, in Q.
(a) Let v € L3(Q). Show that ||Vu(t)| 120y < Ct=V2||v||12(q), for t > 0.
Sol. Let {¢;} be the set of eigenfunctions (orthogonal w.r.t. (V-,V+)) spanning L?(2) with

corresponding eigenvalues ;. Let u(t) = Y .o, a;(¢)$;. Inserting it into the equation yields
a;(t) = et (v, ¢;). Therefore,

(-, )7 ) = Z)\ e v, ¢:)? < CtH|v]|72(q

(b) Let v € Hg(Q). Show that [|Vu(t)| 12 < Vol L2(q), for t > 0.
Sol. |u('7t)|?ql(g) =2 ic1 Aie ™M (v, ¢;) < ||VU||2L2(Q)-



(c¢) Formulate the Crank-Nicolson Galerkin finite element method for this problem.
Sol. The Crank-Nicolson Galerkin approximation at time t,, = kn, U™ € V}, with time step
size k fulfills,

1 1
(U™, w) + 5Mvm,vm = (U w) - 5k:(VU’H,Vw), Yw € Vi,
with (U% w) = (v, w) for all w € V.

5. Let Q C R? be a bounded domain, with smooth boundary I'. Consider the wave equation,
i — Au = f, in Qx1I,
u =0, onl' x I,
u(-,0)=v, a(-,0) =w, in .

Let uy, be the semi-discrete (in space) Galerkin approximation of u using v, and wy, as approxi-
mations for the initial conditions. Prove for ¢t > 0 that,

t
lu(t)=un(®)llz2() < C (Jon = Ruvlm) + |lwn — Rpw])+Ch? (IIU(t)|H2<Q> +/ l[wst || 22 0 d8> )
0

where Ry, is the Ritz projection.
Sol. See Theorem 13.1.
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