Problems Week 2

Quadrature

- **1.** Let I = (0, 1) and $f(x) = x^2$ for $x \in I$.
- (a) Compute (analytically) $\int_I f(x) dx$.
- (b) Compute an approximation of $\int_I f(x) dx$ by using the trapezoidal rule on the single interval (0,1).
- (c) Compute an approximation of $\int_I f(x) dx$ by using the *mid-point rule* on the single interval (0,1).
- (d) Compute the errors in (b) and (c). Compare with theory.
- (e) Divide I into two subintervals of equal length. Compute an approximation of $\int_I f(x) dx$ by using the trapezoidal rule on each subinterval.
- (f) Compute an approximation of $\int_I f(x) dx$ by using the *mid-point rule* on each subinterval.
- (g) Compute the errors in (e) and (f), and compare with the errors in (b) and (c) respectively. By what factor has the error decreased?
- **2.** Let I = (0,1) and $f(x) = x^4$ for $x \in I$.
- (a) Compute (analytically) $\int_I f(x) dx$.
- (b) Compute an approximation of $\int_I f(x) dx$ by using Simpson's rule on the single interval (0,1).
- (c) Compute the error in (b). Compare with theory.
- (d) Divide I into two subintervals of equal length. Compute an approximation of $\int_I f(x) dx$ by using Simpson's rule on each subinterval.
- (e) Compute the error in (d), and compare with the error in (b). By what factor has the error decreased?

L^2 -projection

- **3.** Let I = (0, 1) and $f(x) = x^2$ for $x \in I$.
- (a) Let V_h be the space of linear functions on I and calculate the L^2 -projection $P_h f \in V_h$ of f.
- (b) Divide I into two subintervals of equal length and let V_h be the corresponding space of piecewise linear functions. Calculate the L^2 -projection $P_h f \in V_h$ of f.
- (c) Illustrate your results in figures and compare with the nodal interpolant $\pi_h f$.
- **4.** Let I = (0,1) and $0 = x_0 < x_1 < \cdots < x_N = 1$ be a partition of I into subintervals $I_j = (x_{j-1}, x_j)$ of length h_j .
- (a) Assume $h_j = 1/N$ for all j. Calculate the mass matrix M.

- (b) Calculate the mass matrix M in the general case.
- **5.** Recall that $(f,g) = \int_I fg \, dx$ and $||f||^2_{L^2(I)} = (f,f)$ are the L^2 -scalar product and norm, respectively. Let $I = (0,\pi)$, $f = \sin x$, $g = \cos x$ for $x \in I$.
- (a) Calculate (f, g).
- (b) Calculate $||f||_{L^2(I)}$ and $||g||_{L^2(I)}$.
- **6.** Show that $(f P_h f, v) = 0$, $\forall v \in V_h$, if and only if $(f P_h f, \varphi_i) = 0$, i = 0, ..., N; where $\{\varphi_i\}_{i=0}^N \subset V_h$ is the basis of hat-functions.
- 7. Let V be a linear subspace of \mathbf{R}^n with basis $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_m\}$ with m< n. Let $P\boldsymbol{x}\in V$ be the orthogonal projection of $\boldsymbol{x}\in\mathbf{R}^n$ onto the subspace V. Derive a linear system of equations that determines $P\boldsymbol{x}$. Note that your results are analogous to the L^2 -projection when the usual scalar product in \mathbf{R}^n is replaced by the scalar product in $L^2(I)$. Compare this method of computing the projection $P\boldsymbol{x}$ to the method used for computing the projection of a three dimensional vector onto a two dimensional subspace. What happens if the basis $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_m\}$ is orthogonal?