TMAZ205 Differential Equations and Scientific Computing for Kb2, part A
QUADRATURE (1D)

To compute the Ly-projection of a given function and, as we will see later, to compute the
Finite Element approximation of the solution to a differential equation, it is necessary to compute
certain integrals.

To compute these integrals we often use quadrature, i.e., numerical integration. One reason for
this is that it might be impossible to compute some of the integrals analytically. Another reason
is that it increases the generality, since the same algorithm can be used for different data. For
example, computing the La-projections of two different functions (defined on an interval) using quadrature
to compute the integrals works in exactly the same way: you only need to evaluate the (different) integrands
at some specific quadrature points (for instance the mid-points of the sub-intervals in a given partition of
the interval). To compute the integrals analytically, on the other hand, requires different techniques for
different integrands.

In these notes, we will present some different quadrature rules, some of which you already know
from Analysis and Linear Algebra K Kf Kb, part B, and briefly discuss their accuracy.

1. GENERAL

Let f :[a, b] = R be a given Lipschitz continuous function andlet a = 2o <21 < ... <zny =b
be a partition of the interval [a, b] into N sub-intervals of length h; = z; — z;_1. We now seek to
approzimate the integral
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we begin by approximating
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and we then obtain an approximation of (1) by adding the approximations of (3) for each sub-
interval.

2. QUADRATURE RULES ON ONE SUB-INTERVAL
We now present some different quadrature rules for approximating (3), and begin with the:

2.1. Mid-point rule. The mid-point rule reads as follows:
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Since f(Z:=1%) h; is the area of a rectangle with sides h; and f(Z=5T2%), (4) can be thought (j_f as

approximating the area under f(z) by the area under the constant function mo f(x) = f(==3

that interpolates (i.e., agrees with the value of) f(z) at the mid-point of the interval:
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See Figure 1.
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FIGURE 1. Mid-point rule.

For the mid-point rule, we have the following estimate of the quadrature error that we state
without proof:
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2.2. Trapezoidal rule. The trapezoidal rule reads as follows:
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Since w h; is the area of a trapezoid with sides f(x;—1) and f(z;), and altitude h;, (6)
can be thought of as approximating the area under f(z) by the area under the linear interpolant
w1 f(z) that agrees with the values of f(z) at the end-points of the interval:
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See Figure 2.
For the trapezoidal rule, we have the following estimate of the quadrature error:
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w1 f(x)
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FIGURE 2. Trapezoidal rule.

2.3. Simpson’s rule. Simpson’s rule reads as follows:
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To derive (8), one approximates the area under f(x) by the area under the quadratic interpolant
7o f () that agrees with the values of f(z) at the mid-point and the end-points of the interval:
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See Figure 3.
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FiGure 3. Simpson’s rule.

For Simpson’s rule, we have the following estimate of the quadrature error:
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2.4. Newton-Cotes Formulas. The quadrature rules that have been presented so far (mid-point
rule, trapezoidal rule and Simpson’s rule) are examples of Newton-Cotes formulas. As we have
seen, they can be derived by approximating the integrand with a polynomial interpolant and
integrating this interpolant. (Since the trapezoidal rule and Simpson’s rule use the values of the
integrand at the end-points of the interval, these rules are called Closed Newton-Cotes formulas.
The mid-point rule is accordingly called an Open Newton-Cotes formula.)

2.5. Accuracy. By construction, it is clear that the mid-point rule must be exact for constant
polynomials, the trapezoidal rule for linear polynomials and Simpson’s rule for quadratic polyno-
mials.

From the error estimate (7) we see that for the trapezoidal rule this is indeed true: Since |f"(y)|
vanishes if f is a linear polynomial the trapezoidal rule is exact for linear polynomials.

From the error estimates (5) and (9), however, we see that the mid-point rule and Simpson’s
rule actually perform better than expected! These error estimates show that also the mid-point
rule is exact for linear polynomials and that Simpson’s rule is exact for cubic polynomials.

The reason we “win” extra accuracy for the mid-point rule and Simpson’s rule can be understood
by examining Figure 1 and Figure 3: Note how the interpolation error changes signs which leads
to cancellation effects when integrating over the interval. In Figure 2, on the other hand, the sign
of the interpolation error is constant and no “lucky” cancellation occurs.

To sum up: The mid-point rule and the trapezoidal rule are both exact for polynomials of
degree less than or equal to one. Simpson’s rule is exact for polynomials of degree less than or
equal to three. Further, since the quadrature error for the mid-point rule and the trapezoidal
rule is proportional to h} while the quadrature error for Simpson’s rule is proportional to h2,
we expect the latter method to give more accurate approximations (provided the integrand is
“smooth” enough, i.e., the higher derivatives do not become “too” large).

2.6. Abscissas and Weights. All the quadrature rules that we have met can be described in
the following way:
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The quadrature points g; are called abscissas and w; are weight coefficients. We summarize:

Mid-point rule: n=1; w; =1; ¢ = (i1 +2;)/2
Trapezoidal rule: n=2; wy =w2=1/2; ¢ =zi_1, ¢ =2;
Simpsons’s rule: n =3; wy =ws =1/6, ws =4/6; q =i 1, @2 = (Ti_1+2:)/2, g3 = x;

2.7. Gaussian Quadrature. A common property of the Newton-Cotes quadrature rules is that
their abscissas are evenly distributed over the interval. One then chooses the weight coefficients in
such a way as to obtain optimal accuracy. In Gaussian Quadrature we give ourselves the additional
freedom to choose also the location of the abscissas which will no longer be equally spaced. Thus,
we will have twice the number of degrees of freedom at our disposal to obtain optimal accuracy.
We will not delve into how to choose abscissas and weights, merely give one example:

The Gauss-Legendre 2-point rule results by choosing (following the syntax in (10))
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hi;

and it thus reads as follows:
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See Figure 4.

FIGURE 4. Abscissas (“Gauss-points”) for the Gauss-Legendre 2-point rule.

For the Gauss-Legendre 2-point rule, we have the following estimate of the quadrature error:
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Note that the order of accuracy is the same as for Simpson’s rule with only two quadrature points!

3. QUADRATURE ON [a, b]

To extend the local results to [a, b], we need only use (2) and add the contributions from the
different sub-intervals. As an example we take the trapezoidal rule, for which we get using (6):
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We conclude by deriving the corresponding global quadrature error estimate:
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Note that we “lose” one power of h compared to the local estimate (7). The extension of the other
quadrature rules to [a, b] is analogous.



