TMA225 Differential Equations and Scientific
Computing, part A

Solutions to Problems Week 3

September 9, 2002



Week 3:

Problem 1. Let u be the solution to

—(av') +cu=f in (0,1), (1)
u(0) = u(1) =0, (2)

where a, c, and f are given functions.
(a) Show that u satisfies the variational equation

) dx = d 3
/O(auv + cuv) dz /fv x, (3)

for all sufficiently smooth v with v(0) = v(1) = 0.
(b) Introduce a partition of (0,1) and the corresponding space of continuous piecewise
linear functions Vo which are zero for x = 0 and x = 1. Formulate a finite element
method based on the variational equation in (a).

1/2
(c) Let |||u|l] = (fol(au’u'—l-cuu) da:) . Verify that ||| - ||| is a norm if a(z) > 0 and

c(z) >0 for all z € (0,1).
(d) Prove the a priori error estimate

[lu = Ul < [lu = olll, (4)

for all v € Vjy.

(e) Assume that there are constants C, and C. such that ||a||z_0,1) < Ca and ||c||z_ 0,1) <
C., and that ||u"||72(0,1) is bounded. Show that |||u — Ul|| converges to zero as the meshsize
tends to zero.

Solution:

(a) Multiply both sides of the differential equation by v(z), such that v(0) = v(1) = 0, and

integrate from x = 0 to x = 1 to get the following equality:

1 1
/ (—(auw)'v+ cuv) dz = / fvdz.
0 0

Integrate by parts in the first term on the left-hand side, and use the fact that v(0) =
v(1) = 0 to see that the boundary terms vanish:

—[au'v]ﬁié+/ (auv' + cuv d:c—/ fodz;
0

1
/(au'v'-l—cuv) dxz/ fvdz.
0 0

(b) Let 0 = 29 < 21 < --- < oy < Tny41 = 1 be a partition of (0, 1) and let {¢;}~ | be
the “hat-functions” on this partition that are equal to one in an internal node. Define
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Vio = span{e1, a2, ..., N}, i.e., Vi is the vector space of continuous, piece-wise linear
functions v(z) that are zero at z = 0 and = 1. The Finite Element Method now reads:
Find U € V}( such that

1 1
/ (aU'V' + cUv) dx = / fodz for all v € Vi.
0 0

(c) To prove that ||| - ||| is a norm we must verify that:
(1) [+ ofll < llfulll +ll[ol|  for all u and v € V,
(ii) [[lewlll = laf[[[ufll if u e Vo and a € R,

(iii) [||ul|| =0 for u € V; implies u = 0,

where Vj denotes the vector space of functions that are zero at the boundary, and that are
smooth enough for the integrals in the definition of |||ul|| to exist.
Since

)1/2

[l = (u, u)g”,

where

(4, v)p = / (a(@) (@) (2) + c(@)u(z)v(z) ) dz,

is a scalar product between functions in Vj, property (i) follows from the Cauchy-Schwarz
inequality:

llu+ol[|* = (u+v, u+v)sg= (v, u)p+2(u, v)g+ (v, v)g
< Nulli* + 2fulll - llolll + Woll* = (lulll + ll[])*.

Property (ii) follows since

/0 (a(z)(aw ()2 + c() (ou(z))?) dz = o? /0 (a(o) (z)? + c()u(z)?) da.

To prove property (iii) we notice that a(z)u'(z)? > 0 and c(z)u(x)?* > 0. This means
that fo Yu'(z)*dz > 0 and fo u(z)?dr > 0. If 0 = |[[uf|* = fo V2 dx +
fo de both these 1ntegrals must therefore be equal to zero. Slnce a(x) > 0

this 1mphes u (a:) = 0, which means that u(z) = K where K is a constant. But since
u(0) = u(1) = 0 we must have K = 0.

Remark. If ¢(x) > 0 is (also) strictly positive then fol c(z)u(x)? dz = 0 immediately implies
that u(z) = 0 and we don’t need to use the boundary conditions.



(d) Observe that, by using the definition of (u, v)g in (c), the variational equation in (a)
can be written

1
(u, v)Ez/ fvdx for all v € Vj,
0

and the Finite Element Method in (b) can be written

1
(U, v)p = / fudx for all v € Vjy.
0

Since Vj,qg C Vi we get by subtracting:
(u—U,v)p =0 forall v € V.

The last equation expresses the Galerkin orthogonality. This shows that the Finite Element
approximation U(z) of u(z) is the orthogonal projection of u onto Vjo with respect to the
scalar product (-, -)g. This orthogonality, and the Cauchy-Schwarz inequality, implies that
for an arbitrary function v(z) € Vy:

Nh—-UlP=w-Uu-0g=@u-Uu—-U+ U —v))g

=w—=U, u=v)p <|[lu=Ulll-|Ju—-wvll,

since U — v € Vjo. Dividing both sides by |||u — U||| now completes the proof.

Remark. Observe the complete analogy between this proof and the corresponding proof
for the L2-projection.

(e) Assume for simplicity that the partition is uniform, i.e., that the mesh function h(z) = h
is a constant function. Choosing v in (d) to be the nodal interpolant m,u(z) € Vi of u,
we get:

llw = UI|* < flJw — mpul|*

B /o (a(@)(u — mu)'(@)* + c(z) (u — mhu)(2)?) do

<C, /Ol(u —mpu) (2) dx + C, /Ol(u — mpu)(z)? da

= Col|(u — 7Th“)l||%2(0,1) + Cellu — Wh““%%o,l)

< CaC7 (| [Tz 0,1y + CeCF IR0 |2 0.1

3



212((,,M|2 271.41(,,M"|2
= CoCih7|lu ||L2(0,1) + CCih |lu ||L2(0,1)7
which tends to zero as h tends to zero. (C; denotes interpolation constants.) O

Problem 2. Let u be the solution to

—u" (l‘) _

u(0)

1 in (0,1), (5)
u(1l) = 0. (6)

(a) Solve the problem analytically.

(b) Let I = (0, 1) be divided into a uniform mesh with h = 1/N. Calculate (by hand) the
finite element approximation U for N = 2, 3.

(c) Plot your solutions in a figure. Compare your results.

Solution:

(a) Integrating the differential equation twice gives:

W'(z)=-1 = dv@)=-2+C = ulz)=-2°/2+Ciz+Cs.

The boundary condition 4 (0) = 0 then gives Cy = 0, and u(1) = 0 gives —1/2+C1+C5 = 0,
ie, C; =1/2; Cy=0. Therefore:

_ x(l—x)‘

+x
2 2

u(z) = —%2

(b) The finite element approximation U(z) = Z]Nil &;¢;(z) can be computed by solving
the linear system of equations (see Applied Mathematics: BéS, Part D, equation 54.4, with
a=1):

M 1 1
Zﬁf@MM:/f%m¢:LmJL
j=t 70 0

which determines the unknown coefficients &1,...,&y. Here M is the number of internal
nodes, since we have homogeneous Dirichlet boundary conditions.

If the number of subintervals is N = 2, then there is only one internal node, M = 1,
and the equation above simplifies to:

1 1
@/%%M=/fwm-
0 0

Since f(z) =1, ¢} =2 on [0, 3] and ¢} = —2 on [3, 1], we get

0.5 1 1 1
51(/ 22 diE +/ (—2)2 dCE) = 4/51 = / 1 d.T = -,
0 0.5 0 2

which gives that & = g. That is: U(z) = § ¢1(z).
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Remark. The integral fol 1 dx is geometrically the area under 4, i.e., the area of a triangle.

If the number of subintervals is N = 3, then there are two internal nodes, M = 2, and
we get the following linear system of equations:

1 1 1
61/ 90'1S0'1d$+52/ so’gcp'ldw=/ [ dz,
0 0 0

1 1 1
51/ wiwédw+§2/ 90’2s0’2d93=/ feada.
0 0 0

Since f(z) =1 and

, 0, z¢[0, 5] 0, z¢[g 1]
(,01(3}') = 3, T € [0, g], QDQ(I) = 3, x € [g, 3h
_3a S [%a %]a _3: S [%a l]a

we get:

3 2 2 .

&1 (/0 32da:+/% (—3)2dx) +§2/% 3(—3)dx:6§1—3§2:/0 golda::%,
3 2 1 .

61/% (=3)3do + & (/g 32dx+/_ (_3)2d$> =—3§1+6§2:/0 <P2da::%,

with solution & = & = 5. That is: U(z) = § ¢1(2) + § pa(2).
(c) See Figure 1. O

-
wln

Problem 3*.

(a) Show that the finite element approximations U that you have computed in Problem 2
(Week 3) actually are exactly equal to u at the nodes, by simply evaluating v and U at the
nodes.

(b) Prove this result. Hint: Show that the error e = v — U can be written

e(z) = /0 g (x)e' (z)dz, 0<z<1,

where
(2) = (1-2)z, 0<z<z,
9=\T) = 2(1—x), 2<z<1,

and then use the fact the g,; € Vpo.

(c) Does the result in (b) extend to variable a = a(z)?
Solution:

(a) From Problem 2 (Week 3) with N = 2 we get

u(1/2) = S0~ 5)/2=1/8
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Figure 1: Problem 2 (Week 3). Plots of u(z) and U(z) for N = 2, 3.

and
U(1/2) = %%(1/2) ~1/8.

Hence, u(1/2) = U(1/2).
Using N = 3 we have for the first inner node

1 1
u(1/3) =31 -3)/2=1/9,
and 1 1 1 1
U(1/3) = 5901(1/3) + §(P2(1/3) = § -140= §

For the second inner node:

2 2
u(2/3) = 3(1-3)/2=1/9,
and 1 1 1 1
U2/3) = 501(2/3) + 5 ¢2(2/3) =045 - 1= .

Hence, u(1/3) = U(1/3) and u(2/3) = U(2/3).
(b) To check the given formula for e(z) we must compute the integral. Before we can do



that, we must calculate the derivative of g,(x):

g,(x):dgz(x): 1—2, 0<2z<z2,
? dz -z, z<z<1.

Thus, we have:

/Olg;(x)e'(x) dz = /02(1 — 2)é(2) do +/: e (z) do

= e(2),

since the error e = u — U is equal to zero at the boundary points £ = 0 and = = 1. This
follows from the boundary conditions, u(0) = U(0) = 0 and u(1) = U(1) = 0.

To show that the error is zero also at all internal nodal points x;, we only need to show
that g,; € Vio. The result then follows from the Galerkin orthogonality (cf. Problem 1(d)
(Week 3) with a =1 and ¢ = 0), fol e'v'dr = (e, v)p = 0 for all v € Vi, by taking v = g,,.
But from Figure 2 we see that g,; can be written as

9a,;(x) = Z ¢i pi(z)

with weights ¢; = g;;(7;). Hence, g,; € V. Also note that g,(x) ¢ Vio if 2z # z;, which
can be seen from Figure 3.
(c) No. As a counter-example, consider the case a(z) =1+ z:

The solution is u(x) = IOE)S(;") — z. Computing the Finite Element approximation U(x)

for N = 2 in the same way as in Problem 2(b) (Week 3) gives U(z) = & ¢1(z). We thus

have that U(1/2) = & # lﬁisé?) — 1 =u(1/2). O

Problem 4. Consider the system of ODE:

ME(t) + AE(t) = b in (0, T), (7)
£(0) =¢". (8)

S S A

Assume that



Figure 2: Problem 3 (Week 3). g,(z) when z = z;.

Make a uniform partition of the time interval (0, 1) into two sub-intervals and compute an
approximation of £(1) with the backward Euler method.

Solution: We divide the time interval: 0 = t5 < t; < t9 = 1, with ¢; = 0.5, i.e., into two
subintervals with length At = 0.5. The Euler backward method approximates the time
derivative with a difference quotient in the following manner:

n _ ¢n—1
Mi—i—/lf”:b, n=1,2,

JAN
€% = £(0).
So to compute £? = £(t,) we have to solve, in order, the equations:

é-l _ 50
At

M + AEt = b,

52 _ 61
At

M + A& =b.

Rearrangement of the first of these equations yields:

ME + At At =ME° + Atb;



Figure 3: Problem 3 (Week 3). g,(z) when z # z;.

(M + At A)E =ME° + Atb;
(o =i §])e =0 STh) (o]
2 Je-[]
=7

where the linear system of equations is solved by Gaussian elimination. Similarly, we get
for the second equation:

ME* + Nt AE? =ME' + At b
(M + At A)E =MEH + At b;

(b 22 i §)e=lo 7]l

} is thus an approximation of the solution £(t) at time ¢ = 1 (and

The vector £2 = [_717
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&= [_12} at time ¢ = 0.5). O

Problem 5. Show that, for the time dependent reaction-diffusion problem with Robin
boundary conditions,

i—(au) +cu = f(z,t), ZTmin << Tpax, 0<t<T,

a(xmin)ul(xmina t) = 7($min) (u(-rmina t) — 49D (-rmin)) + gN(xmin)a 0<t< Ta
_a(xmax)ul(xmaxa t) = ’y(xmax)(u(xmaxa t) - gD(xmax)) + gN(xmax)a 0<t< T7

w(@,0) = u(x), ZTmin < T < Tmax

semi-discretization in space leads to the following system of ODE:

ME®) + (A+ M, + R)E(H) = b(t)+ v, 0<t<T.

Solution: Hint: To derive the variational formulation, first multiply both sides of the
differential equation by a function v = v(z). Then integrate both sides from x = Ty, to
T = Tmax- Integrate by parts in “the diffusive term” f;;‘:"( —(au')'v) dz. Finally use the
boundary conditions to replace au’ in the boundary terms at © = Tmin, Tmax- Lhis gives
the variational formulation:

Find u(z,t) such that for every fixed ¢: u(z,t) € V, and

Tmax Tmax Imax
/ wdr + Yuv|p—s,,, + VUV|p—z. + / av'v' dr + / cuvdr =
xT x

min Tmin min

(V9D — GN)V|2=zmax + (V9D — 9N)V|o=z, + / fvdz, 0<t<T, forallvelV,

Zmin

where V is the vector space of functions v = v(z) that are smooth enough for the integrals
in the variational formulation to exist.
The corresponding Finite Element Method reads:

Find U(z,t) such that for every fixed t: U(z,t) € V}, and

TN

TN TN
/ Uvdr + yU|pezy + YUV|pmg, + / aU'V'dx + / cUvdx =

1 1 T1

TN
(’YgD - gN)U|$=wN + (fygD - gN)/U‘SCZIM + / f?) d:ra 0<t< Ta for all v S Vha
1

where V}, is the vector space of functions v = v(z) that are continuous and piecewise linear
on a partition Tmyin = 21 < T2 < ... < TN = Tmax Of [Tmin, Tmax)-
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Finally, insert the Ansatz
N
Ulz,t) =) &(t)p;(x),
7=1

into the Finite Element formulation and choose v = ¢; fori=1,...  N.
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